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Abstract: There is an increasing demand for sustainable and safe packaging technologies to improve
consumer satisfaction, reduce food loss during storage and transportation, and track the quality status
of food throughout its distribution. This study reports the fabrication of colorimetric pH-indicative
and flame-retardant nanocomposite films (NCFs) based on polyvinyl alcohol (PVA) and nanoclays
for smart and safe food packaging applications. Tough, flexible, and transparent NCFs were obtained
using 15% nanoclay loading (PVA-15) with superior properties, including low solubility/swelling in
water and high thermal stability with flame-retardant behavior. The NCFs showed average mechanical
properties that are comparable to commercial films for packaging applications. The color parameters
were recorded at different pH values and the prepared NCFs showed distinctive colorimetric
pH-responsive behavior during the transition from acidic to alkaline medium with high values for
the calculated color difference (∆E ≈ 50). The prepared NCFs provided an effective way to detect the
spoilage of the shrimp samples via monitoring the color change of the NCFs during the storage period.
The current study proposes the prepared NCFs as renewable candidates for smart food packaging
featuring colorimetric pH-sensing for monitoring food freshness as well as a safer alternative choice
for applications that demand films with fire-retardant properties.

Keywords: sensor; pH; colorimetric; food; packaging; nanocomposite; flame-retardant; nanoclay; PVA

1. Introduction

Proper packaging of processed foods, fresh vegetables, and fruits save them from spoilage during
transportation and storage. Examples of potential spoilage include: microbial spoilage, oxidation,
and moisture changes due to improper handling, which leads to waste [1,2]. Health issues can also arise
from decayed foods, fruits, and vegetables and sometimes lead to illnesses and/or toxicity [3,4]. One of
the advantages of packaging processed foods is to enable the safe transportation of the foods from the
point of origin to the point and time of consumption [5–8]. To attract industry requirements and satisfy
consumer desire, food packaging should be convenient and cost-effective, while maintaining food
quality, safety, and environmental sustainability [9]. The development of new materials, particularly
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innovative biopolymer formulations, must fulfill the aforementioned requirements. The availability,
biodegradability, and unique properties of biopolymers make their use in multiple food-packaging
applications superior [10]. One of the most challenging trends in the development of innovative
biopolymers is to obtain them from agricultural commodities, natural additives, and/or agricultural
wastes [11–13]. From the food industry standpoint, concerns such as the safety and risks associated
with these new additives, migration properties, and possible human ingestion and regulations need
to be considered [14,15]. The introduction of natural active additives to packaging materials not
only resolves the safety concern but also provides significant advantages compared to the direct
addition to food, such as the lower amount of active substances required, controlled release to food,
and elimination of additional steps during processing [16].

Color, as an indicator, has an important role in the acceptability of foods. Colorants are being in use
to ensure uniformity in food and also as an indicator of food quality. Synthetic colorants have always
been under question regarding their safety. Therefore, consumers prefer natural colorants to synthetic
ones [17]. As a result, interest in natural colorants has increased because of the apparent lack of
toxicity [18]. Among other promising natural colorants are anthocyanins [19]. Due to their non-toxicity,
water-solubility, visibility to the human eye, and colorimetric pH sensitivity, anthocyanin-rich extracts
has increasingly attracted the food industry as a replacement for the synthetic pH indicators, such as
methyl red, cresol red, bromocresol green, bromocresol purple, chlorophenol, bromothymol blue,
and xylenol [19–21]. Their red-orange to blue-violet pigments are present in many fruits and vegetables
such as red cabbage, red grapes, purple corn, strawberry, blackberry, eggplant, and black olives [19].
Anthocyanins extracted from red cabbage (Brassica sp.) is used widely around the world ranging from
drink dye to food due to its fascinating deep blue and red color with broad pH sensitivity [22–27].
On the other hand, anthocyanins from other sources such as grape skin, and elderberry show only
a reasonable degree of color at pH < 4 [28]. Anthocyanins’ red cabbage colors vary from red at low
pH to blue and green at high pH and their use is therefore not limited to acidic products but can
be extended to neutral products as well. A major concern lies in their instability during processing
and storage [29]. To overcome this, solid supporters have been incorporated with anthocyanins
within their packaging films [30,31]. Bio-based materials derived from natural sources are considered
potential substitutes for conventional plastic materials because they are biodegradable, cost-effective,
and widely available [13,26,27]. However, the properties of those films must be improved if they are
intended to compete with petroleum-based products, especially mechanical properties and water
affinity. Several studies researched the use of bio-based or biodegradable polymers and anthocyanins
from red cabbage, grape and spinach extracts to produce biodegradable pH-indicative films for visual
monitoring of food freshness [23,24,32–34].

Due to its non-toxicity, biodegradability, biocompatibility, high transparency, and mechanical
properties, polyvinyl alcohol (PVA) is one of the most investigated polymers in different areas
including packaging materials, adhesives, furnishings and textile industries [35]. The key limitations
for using PVA films in food packaging applications are their water solubility, high water-swelling,
and flammability. The high swelling and solubility of PVA films limit their mechanical integrity
during their application period, while their flammability is considered as a potential hazardous
during storage/use in the above-mentioned applications. Regardless, researchers have investigated
different techniques to reduce the solubility/swelling of PVA films including blending with hydrophilic
polymers, graft copolymerization and chemical modification [36–40]. One of the most interesting
methods to prepare multifunctional PVA nanocomposites/bionanocomposites is by blending with
different inorganic/organic nanomaterials such as nanoclay [41], silver nanoparticles [42–44],
cellulose nanofibrils [45,46], chitosan nanoparticles [47], and lignin nanoparticles [48]. Due to
their excellent barrier properties combined with good transparency, naturally occurring nanoclays are
considered as ideal, renewable and green nanomaterials for packaging applications [49]. Nanoclays have
been used as a reinforcing matrix to produce PVA-based biodegradable nanocomposites with superior
thermal, mechanical, and barrier properties [50–58].
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The flammability of the commercial thermoplastics has been eliminated/reduced by incorporating
flame-retardant additives (e.g., halogenated, phosphorus or inorganic compounds) and nanomaterials
(e.g., nanoclays, carbon nanotubes, silica nanoparticles (NPs), metal oxides, NPs and Polyhedral
Oligomeric SilSesquioxane NPs) [59]. Halogen flame-retardants have been phased out due to their
toxicity arising from the formation of toxic compounds/gases during burning/degradation, corrosion as
well as their bioaccumulation in animals and humans, which is associated with numerous health effects
such as endocrine disruption, reproductive toxicity, and cancer [60,61]. The effective use of phosphorous
or inorganic compounds requires high percentage loadings into the polymer matrix in the range of
30–60% [62–66], which can lead to loss of mechanical properties [67] as well as product discoloration
during their application period [68]. In comparison, nanomaterials-based intumescent nanocomposites
require much lower loadings in the range of 0.5–25% [69] without significant deterioration of the
mechanical properties for the resulted nanocomposite systems. This could be attributed to their high
surface area and the difference in flame-retardant action mechanism [61,70]. Nanoclays are effective
for fabricating flame-retardant nanostructured platforms and coatings [71–74] and flame-retardant
nanocomposites [75,76]. This can be recognized from the commercially available two products based
on synergistic enhancements of clay nanocomposites for fire safety applications, which are: (1) a Wire
& Cable jacket material (organoclay + aluminum hydroxide) produced by Kabelwerk Eupen AG;
and (2) a series of polypropylene + organoclay + flame-retardant systems (Maxxam™ FR) produced by
PolyOne® [77].

As illustrated in (Figure 1), the current study reports the preparation of pH-indicative and
flame-retardant nanocomposite films (NCFs) using PVA as the host polymer, nanoclays as the
reinforcing materials, citric acid as the crosslinking agent, glycerol as a plasticizer, and anthocyanin
extracted from red cabbage as a natural pH-indicator. To the best of our knowledge, this is the
first study that reports the preparation of PVA/nanoclays nanocomposites targeting their use as
pH-indicative/flame-retardant NCFs for food packaging applications.Sensors 2020, 20, x FOR PEER REVIEW 4 of 25 
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2. Experimental

2.1. Materials and Methods

Polyvinyl alcohol (PVA) (98–99% hydrolyzed, low molecular weight) was acquired from Alfa
Aesar (Kandel, Germany); Nanoclay–hydrophilic bentonite, particle size ≈ 25 µm was acquired from
Aldrich (Milwaukee, WI, USA). All other chemicals and reagents were used as received. Red Cabbage
was purchased from local stores. The pH buffers were prepared based on a PBS buffer system as
described in our previous work [78].

2.2. Preparation of the Nanocomposite Films (NCFs)

The pH-responsive nanocomposite films (NCFs) were fabricated with four different recipes
containing 0, 5, 15 and 25% nanoclays denoted as nanocomposite PVA-0, PVA-5, PVA-15 and PVA-25,
respectively. The film PVA-0 represents the neat PVA film without added nanoclay or other reagents.
The fabrication steps were carried out as follows: Ten grams of PVA were dissolved in 90 g distilled
water by heating at 60 ◦C with continuous stirring until dissolved completely. Red cabbage extract was
prepared soaking the chopped red cabbage (≈130 g) in a solution made from 150 mL ethanol, 150 mL
water and 4 mL concentrated HCl. The mixture was sonicated for 20 min, and the extracted solution
was filtered off and stored in a glass bottle for subsequent use. The preparation of the NCFs was
carried out as illustrated in (Figure 1). In brief, 10 mL of 10% PVA solution was mixed with red cabbage
extract (5 mL), nanoclay (5, 10 or 15% wt./wt.), glycerol (0.10 g) and citric acid (5, 10, or 20% wt./wt.).
The solution was stirred for 2 h and the pH was adjusted to ≈3, with the help of NaOH and HCl
solutions. After that, the solution was sonicated for 15–20 min, and then the solution was cast on glass
Petri dishes at room temperature for 48 h. After that, the dried films were peeled off and crosslinked
immediately at a predetermined temperature (135 ◦C or 150 ◦C) for a specified time in the range of
5–45 min. The crosslinked NCFs were immersed into deionized water at room temperature for 12 h to
stabilize the NCFs and to remove the excess unreacted citric acid and the non-crosslinked PVA. Finally,
the NCFs were dried at 50 ◦C with an average thickness of 100 µm. The NCFs prepared for mechanical
analysis were cast with dimensions of 14 cm × 14 cm and thickness of ≈0.5 mm.

2.3. Characterization of the NCFs

2.3.1. Water Swelling

Water swelling was measured according to Abdullah and DONG [58]. Square samples of all NCFs
in a size of 2 × 2 cm2 were pre-dried in a vacuum oven at 50 ◦C for 24 h and then cooled to room
temperature in a desiccator prior to weighing them as initial dry weight (Wi). After that, the dried
NCF samples were immersed in 100 mL distilled water at room temperature for 24 h to reach an
equilibrium state. The NCFs were removed from water and their surfaces were gently wiped with
tissue paper. The final weights of the swollen NCFs after immersion were measured and denoted as
(Wf). Three samples for each type of NCF have been tested along with reported average data and
associated standard deviations shown as error bars in the respected graphs. The percentage water
swelling (SW) was calculated according to Equation (1):

SW (%) =
W f − Wi

Wi
× 100% (1)

2.3.2. Water Solubility

Water solubility was measured according to Abdullah and Dong [58]. All swollen samples from
the above water swelling tests were used to calculate the water solubility of the NCFs. The swollen
samples were dried again in a vacuum oven at 50 ◦C for 24 h, followed by cooling to room temperature
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in a desiccator for 30 min. Finally, the NCF samples were weighed to acquire the dry weight after
immersion (Wd). Equation (2) was used to calculate the percentage of water solubility (S):

S (%) =
Wi − Wd

Wi
× 100% (2)

2.3.3. FTIR Spectroscopy

Fourier transform infrared spectra of the NCFs were recorded using Thermo Scientific spectrometer
(Madison, WI, USA), model (Nicolet 6700), operating with smart iTRTM Attenuated Total Reflectance
(ATR) accessory as sampling mode. Measurements were performed in a medium infrared range
(4000–500 cm−1) with a spectral resolution of 4 cm−1 and 32 scans per spectrum.

2.3.4. Thermal Analysis and Flame-Retardant Property of the NCFs

Thermogravimetric analysis (TGA) was carried out using Netzsch (Berlin, Germany),
model (STA_449_F3). Around 5–8 mg of the film samples was heated in argon atmosphere from room
temperature up to 800 ◦C with a heating rate of 10 ◦C/min. Differential scanning calorimetry (DSC)
was carried out using Mettler Toledo (USA), model (DSC822e). Around 3–5 mg of the film samples
was heated in argon atmosphere from room temperature up to 500 ◦C with a heating rate of 10 ◦C/min.
The percentage degree of crystallinity (χc) was calculated using Equation (3):

χc(%) = (∆Hm/∆Hf) × 100 (3)

where ∆Hm = enthalpy of melting for the unknown film sample, and ∆Hf = enthalpy of fusion for 100%
crystalline PVA, which was reported to be 138.6 J/g [79].

The flame-retardant property of the NCFs was tested by the burn test and differential scanning
calorimetry [48].

2.3.5. Mechanical Analysis

Tensile tests were conducted according to ASTM D882 using Lloyds tensile instrument
(West Sussex, UK) with a load cell of 100 N and a controlled rate of 50 mm/min. The sample
size and shape were according to ASTM D638 type V. For each type of material, 5 samples were
tested and the average values of the properties were reported. The tensile properties, such as the
modulus of elasticity, tensile strength, and percent of elongation, were determined from the tensile
plots. The modulus was obtained from the slope of the initial curve of the stress–strain plot.

2.3.6. XRD Analysis

XRD analysis for the NCF samples was carried out using a Rigaku MiniFlex X-ray diffractometer
(Tokyo, Japan) with Cu Kα1 radiation (γ = 0.15416 nm), a tube current of 10 mA, and an accelerating
voltage of 30 kV with angle 2θ from 5◦ to 60◦. The scanning rate was 2◦/min with a step size 0.02◦.

2.3.7. SEM Analysis

The microstructure of the prepared NCF samples was examined with a scanning electron
microscope Coxem (Daejeon, Korea), model CX200 Plus. The specimens were sputter coated with gold
and the cross-sectional fracture surfaces were mounted vertically on 90◦ pin stubs with carbon tape
and imaged using an accelerating voltage of 10–15 kV.

2.3.8. Optical Properties of the Film

Light transmittance of the prepared NCFs was plotted as a function of wavelength in the range
of 400–800 nm, using a double beam spectrophotometer Cintra 2020 (GBC Scientific Equipment,
Melbourne, Australia). The color parameters (a*, b* and L*) of the NCFs were measured using
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colorimeter device manufactured by Sheen Instruments (Metamora, MI, USA), model No. 281
SPECTRO–GUIDE 45/0 with white background. The values of the rectangular coordinates (L*, a*, b*),
where (L*) is lightness (from L = 0 for black to L = 100 for white), a* is the degree of redness or greenness
(a = −60 for green to a = 60 for red), and b* is the degree of yellowness or blueness (from b = −60 blue
to b = 60 for yellow) were recorded at different pH levels, and the total color differences, ∆E* was
calculated by using Equation (4):

∆E = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]
1
2 (4)

where: ∆L* = L* − L0*; ∆a* = a* − a0*; ∆b* = b* − b0* (L0*, a0* and b0* are the color parameters of the
reference NCF at specific pH level.

2.3.9. Sensing Shrimp Spoilage

NCFs were evaluated as intelligent films for use in the packaging industry; shrimps with an
average weight of 5 g were purchased from the local supermarket. About 15 g of shrimp and the
testing NCF (prepared at pH 3) were sealed in a glass Petri dish using plastic film and the color change
of the film was recorded every 6 h for a total period of 24 h.

2.3.10. Statistical Analysis

The properties of the NCFs were measured with individually prepared films in triplicate.
The results are provided as the mean ± SD (standard deviation) values. One-way analysis of variance
(ANOVA) was performed and the significance of each mean property value was determined (p < 0.05)
with Tukey’s HSD (honestly significant difference) test for paired comparison, using IBM® SPSS®

statistics 20 software (IBM Co., New York City, NY, USA).

3. Results and Discussion

3.1. Optimization of Film Fabricating Parameters

All NCFs were obtained without visual phase separation even at 25% loading of nanoclay
(Figure 2A). It has been reported that bentonite nanoclays with 25% loading exhibited homogeneous
dispersion in PVA polymer matrix [51]. The swelling of the NCFs decreased as the content of the
nanoclay increased up to 15% and then the swelling leveled off to almost a constant value. The decrease
in water swelling could be attributed to the non-swelling properties of the nanoclays as well as the
increase in the hydrophobicity of the NCF (or reduced PVA hydrophilicity) from the added bentonaite
nanoclays [52,80]. NCFs with 15% loading of nanoclay reached an acceptable swelling level of 52%,
which is much lower than those reported for PVA/chitosan/HNTs NCFs crosslinked with gluteraldehyde
which exhibited 137% swelling with 5% loading of nanoclay [81]. Different research groups have
reported the preparation of crosslinked PVA films using citric acid with concentrations in the range of
10–50 wt.% [82–85]. However, Brick et al. reported that PVA films crosslinked with 40 wt.% citric acid,
cured at 130 ◦C for 40 min, showed brittle behavior due to the excessive crosslinking density without
any observed plastic deformation [85]. In the current study, the optimum concentration of the citric
acid was investigated in terms of swelling and solubility of the NCFs in water (Figure 2B). It can be
inferred that, as the concentration of citric acid increased, both swelling and solubility decreased due to
the increased crosslinking density between different PVA chains. The highest dimensional stability of
the NCFs was obtained at 20 wt.% citric acid content, which provided tough and flexible NCFs with 2%
solubility and reasonable water swelling of 54% (Figure 2B). It is worth mentioning that the obtained
NCFs were stable even in hot water up to 60–80 ◦C, which can be envisaged for other applications
such as polyelectrolyte membranes for medium temperature alkaline fuel cells.
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Figure 2. Optimization of parameters for fabricating the NCFs including: (A) the effect of nanoclay
content on the swelling of the NCFs; (B) the effect of citric acid content on the swelling and solubility
of the polyvinyl alcohol (PVA)-15 NCFs; (C) the effect of the crosslinking time and the crosslinking
temperature on the swelling of the PVA-15 NCFs; (D) illustration of the color change and leaching out
of the indicator from PVA-15 NCFs before and after various crosslinking treatments.

The NCFs were investigated in terms of (1) swelling of the NCFs; (2) color change of the crosslinked
films; and (3) leaching out of the embedded indicator from the crosslinked NCFs. Truong et al. reported
the optimum crosslinking parameters for PVA/citric acid with 20–30 wt.% citric acid content and
crosslinking temperature of 130 ◦C for a total time of 45 min [82]. Similar optimum crosslinking
parameters were reported by Brick et al. for crosslinking PVA/citric acid with 10 wt.% citric acid
content at a temperature of 130 ◦C for a total time of 40 min [85]. In the current study, the cast NCFs
were crosslinked at either 135 ◦C or 150 ◦C, for a total time of 5, 15, and 45 min (Figure 2C). The use of
150 ◦C was investigated to expedite the curing process of the NCFs. It should be noted that 150 ◦C
is the highest crosslinking temperature that can be used as PVA matrix starts to degrade above this
temperature [41]. As can be inferred from (Figure 2C), the swelling of the NCFs was reduced as the
crosslinking time increased from 5 to 45 min at both temperatures. The optimum swelling was obtained
using a crosslinking period of 45 min, with swelling values of 41% and 54% at 150 ◦C and 135 ◦C,
respectively. However, it was observed that the NCFs crosslinked at 135 ◦C did not show significant
color change after the crosslinking reaction, while the color of the NCFs crosslinked at 150 ◦C has
changed from pink-reddish color to dark brown after the crosslinking reaction (Figure 2D). Hence,
the optimum crosslinking temperature and time parameters were selected to be 135 ◦C for 45 min.
Another observed advantage of the crosslinked films is the stability of the indicator inside the matrix
of the NCFs. It was observed that the immobilized indicator did not leach out from the crosslinked
NCFs, which is important for obtaining reusable films with a longer shelf life, especially in humid/wet
environments (Figure 2D).
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3.2. Characterization of the NCFs

3.2.1. FTIR Analysis

FTIR spectra for neat PVA film, neat bentonite nanoclay, and PVA-15 NCFs are displayed in Figure 3.
The crosslinked films exhibit new peak at ≈1712–1717 cm−1 that is characteristic of carbonyl stretching
of the ester functional groups [82] (Figure 3c–e). This demonstrates the successful esterification
occurred between the carboxylic acid groups of citric acid and the hydroxyl moieties of PVA to form
the crosslinked polymer films [82]. The effect of crosslinking temperature and time was investigated
to evaluate the best conditions and to avoid possible degradation of the crosslinked films. The film
crosslinked at 135 ◦C for 45 min exhibited the highest intensity at 1712–1717 cm−1 as compared to
films crosslinked for 15 min at either 135 ◦C or 150 ◦C. These crosslinking parameters are similar to
those reported for crosslinking of electrospun PVA membranes with different organic acids (130 ◦C and
30 min), which provided good film stability in water [82]. The crosslinked PVA-15 NCFs exhibit peaks
at ≈1031 cm−1, which is attributed to the Si-O bonds of nanoclay [86]. The peak around 1146 cm−1 is
assigned to the C-C bonds associated with the crystallization of PVA [86]. The interfacial crosslinking of
PVA/bentonite nanoclays can be inferred from the present Si-O-C absorbance peak at 1082 cm−1 which
verifies the covalent reaction between bentonite nanoclays and citric acid [86]. The intensity of the –OH
band at ≈3200–3300 cm−1 was reduced after the crosslinking reaction due to the formation of the ester
bonds, which decreases the number of available free hydroxyl groups tethered from PVA chains [83]
(Figure 3). Hence, the FTIR analysis of the PVA-15 NCFs confirmed the successful crosslinking reaction
at 135 ◦C for 45 min.
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crosslinked at 150 ◦C -15 min. The inset image represents the FTIR spectral features in the range of
2600–4000 cm−1.
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3.2.2. Thermal Analysis

Figure 4 shows the TGA and DTG curves for films of neat PVA, and PVA-15 with/without
crosslinking treatments. It can be observed from TGA curves that all the crosslinked PVA-15 NCFs
exhibit higher thermal stabilities than those of either neat PVA film or the non-crosslinked PVA-15 NCF.
In the temperature range of 25–800 ◦C, all films exhibit four steps of weight loss. The first stage occurs
in the temperature range of 40–150 ◦C, which is attributed to the loss of water molecule absorbed
by the hydrophilic PVA matrix. It can be inferred that the crosslinked PVA-15 NCFs display lower
absorbed water content compared to the neat PVA or non-crosslinked PVA-15 films, which could be
attributed to (1) the increased hydrophobicity of the NCFs due to the presence of nanoclay; and (2)
the crosslinking effect, which reduces the number of the available hydrophilic site (–OH groups) in
the PVA polymer chains. The PVA-15 crosslinked at 135 ◦C for 45 min shows less than 2% weight
loss up to 150 ◦C, which reflects the suitability of the used crosslinking parameters and the improved
hydrophobicity of the NCF. The second stage falls in the temperature range of 150–380 ◦C, which is
attributed to the loss of –OH groups and the deacetylation of PVA chains [87]. It is evident that the
NCFs exhibit less degradation (38–45% weight loss) in this temperature range as compared to the
neat PVA film (60% weight loss), which could be attributed to the incorporation of the nanoclays
in the PVA matrix. PVA-15 crosslinked at 135 ◦C for 45 min showed the highest thermal stability
with a weight loss of 38% in the second stage. The third stage occurs in the temperature range of
380–500 ◦C, which is attributed to the main chain degradation of the polymeric backbone [87]. The last
degradation stage and breakdown of the charred residue occurs in the temperature range of 500–800 ◦C,
which is attributed to the combustion of carbonaceous char residue. Neat PVA produced 8% charred
residue which is comparable to the results obtained by Kaiyan and Anil for pristine PVA films (6% char
residue) [53]. Indeed, both PVA-15 NCFs crosslinked either at 135 ◦C for 45 min, or at 150 ◦C for 15 min,
produced the highest char residue of ≈25%. These results could be attributed to the flame-retardant
effect of the nanoclays, which have been used for preparing fire retardant NCFs and intumescent
coatings [69,88]. To demonstrate the flame-retardant behavior of the NCFs, burning tests were carried
out for neat PVA film and PVA-15 NCF crosslinked at 145 ◦C for 45 min (Figure 5). It can be observed
that neat PVA sustained a self-propagating flame after ignition, and no residue was left after the
burning test (Figure 5A). In contrast, the flame of the PVA-15 NCF did not self-propagate even after 6 s.
(Figure 5B). The fire-retardant property of the PVA-15 NCF could be attributed to the migration of the
nanoclays to the surface of the polymer during the combustion process, leading to the formation of a
physical barrier silicate layer, which slows mass and heat transfer, limits the oxygen flow and escape of
volatiles [69].

DSC thermograms for the NCFs are displayed in Figure 6, and the analyzed results are summarized
in Table 1. As can be seen, neat PVA film exhibits a glass transition temperature of Tg = 76 ◦C,
an endothermic melting peak at Tm = 194 ◦C, and a corresponding crystallinity index of χc = 25%.
It should be noted that the peak around 110 ◦C corresponds to the evaporation entropy for the physically
bonded water molecules [89]. The former peak disappeared completely from the thermograms of the
NCFs, which indicates their lower tendency to bind with water as well as their lower hydrophilicity
compared to neat PVA film. PVA-15 NCFs showed two distinct and overlapping melting peaks
one around the bulk (Tm1 ≈ 199 ◦C) and another one at higher melting temperature (Tm2 ≈ 233 ◦C),
with similar behavior for the reported PVA/Na+ montmorillonite nanocomposites, which showed
MMT-induced crystal phase at 235 ◦C [56]. The new Tm2 endothermic peak is an indication for
the presence of a new higher-Tm crystal phase, rather than a higher Tm morphology with bulk
PVA structure [56]. For the non-crosslinked PVA-15 NCF, the slight increase in Tg and Tm values
(Tg = 81 ◦C, Tm = 199 ◦C) and decreased crystallinity (χc = 18%) could be ascribed to the incorporation
of nanoclays [54]. After the crosslinking reaction, PVA-15 NCF showed further reduction in the
crystallinity index (χc = 10%) with no change in the Tm value. The lower crystallinity after the
crosslinking reaction could be attributed to the restricted segmental motion of the molecules, which are
commonly observed phenomena in most polymers [54]. The Tg value for the crosslinked PVA-15 NCF
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was too weak to be detected which could be attributed to the enhanced dispersion of nanoclay after
crosslinking reaction, i.e., “neatly intercalated” nanocomposites, or it is suppressed due to the polymer
confinement [56]. Similarly, by comparing the enthalpy of melting peak (∆Hm1), the crosslinked
PVA-15 film showed the lowest ∆Hm1 value among the NCFs, which provides evidence for the
suppression of the melting in the crosslinked PVA-15 NCF due to the confinement of polymer chains
in between clay platelets as well as to the layers structure, which provides an indication of the strong
interaction between the polymer and clay [79]. Finally, the suppression of the melting enthalpy of the
crosslinked PVA-15 film, the higher degradation temperature (Td = 326 ◦C) as compared to the neat
PVA film (Td = 310 ◦C), and the lowest enthalpy of degradation (∆Hd) provide strong evidence for the
flame-retardant behavior of the prepared NCFs [48] (Table 1).

Sensors 2020, 20, x FOR PEER REVIEW 11 of 25 

 
Figure 4. Thermogravimetric analysis (TGA) (top) and DTG (bottom) thermograms for various 
prepared NCFs. 

 
Figure 5. Burning test for the (A) neat PVA film, and (B) PVA-15 NCF crosslinked at 135 °C for 45 
min. 

DSC thermograms for the NCFs are displayed in Figure 6, and the analyzed results are 
summarized in Table 1. As can be seen, neat PVA film exhibits a glass transition temperature of Tg = 
76 °C, an endothermic melting peak at Tm = 194 °C, and a corresponding crystallinity index of ꭓc = 
25%. It should be noted that the peak around 110 °C corresponds to the evaporation entropy for the 

Figure 4. Thermogravimetric analysis (TGA) (top) and DTG (bottom) thermograms for various
prepared NCFs.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 25 

 
Figure 4. Thermogravimetric analysis (TGA) (top) and DTG (bottom) thermograms for various 
prepared NCFs. 

 
Figure 5. Burning test for the (A) neat PVA film, and (B) PVA-15 NCF crosslinked at 135 °C for 45 
min. 

DSC thermograms for the NCFs are displayed in Figure 6, and the analyzed results are 
summarized in Table 1. As can be seen, neat PVA film exhibits a glass transition temperature of Tg = 
76 °C, an endothermic melting peak at Tm = 194 °C, and a corresponding crystallinity index of ꭓc = 
25%. It should be noted that the peak around 110 °C corresponds to the evaporation entropy for the 

Figure 5. Burning test for the (A) neat PVA film, and (B) PVA-15 NCF crosslinked at 135 ◦C for 45 min.



Sensors 2020, 20, 5462 11 of 22

Sensors 2020, 20, x FOR PEER REVIEW 12 of 25 

physically bonded water molecules [89]. The former peak disappeared completely from the 
thermograms of the NCFs, which indicates their lower tendency to bind with water as well as their 
lower hydrophilicity compared to neat PVA film. PVA-15 NCFs showed two distinct and 
overlapping melting peaks one around the bulk (Tm1 ≈ 199 °C) and another one at higher melting 
temperature (Tm2 ≈ 233 °C), with similar behavior for the reported PVA/Na+ montmorillonite 
nanocomposites, which showed MMT-induced crystal phase at 235 °C [56]. The new Tm2 endothermic 
peak is an indication for the presence of a new higher-Tm crystal phase, rather than a higher Tm 
morphology with bulk PVA structure [56]. For the non-crosslinked PVA-15 NCF, the slight increase 
in Tg and Tm values (Tg = 81 °C, Tm = 199 °C) and decreased crystallinity (ꭓc = 18%) could be ascribed 
to the incorporation of nanoclays [54]. After the crosslinking reaction, PVA-15 NCF showed further 
reduction in the crystallinity index (ꭓc = 10%) with no change in the Tm value. The lower crystallinity 
after the crosslinking reaction could be attributed to the restricted segmental motion of the molecules, 
which are commonly observed phenomena in most polymers [54]. The Tg value for the crosslinked 
PVA-15 NCF was too weak to be detected which could be attributed to the enhanced dispersion of 
nanoclay after crosslinking reaction, i.e., “neatly intercalated” nanocomposites, or it is suppressed 
due to the polymer confinement [56]. Similarly, by comparing the enthalpy of melting peak (ΔHm1), 
the crosslinked PVA-15 film showed the lowest ΔHm1 value among the NCFs, which provides 
evidence for the suppression of the melting in the crosslinked PVA-15 NCF due to the confinement 
of polymer chains in between clay platelets as well as to the layers structure, which provides an 
indication of the strong interaction between the polymer and clay [79]. Finally, the suppression of the 
melting enthalpy of the crosslinked PVA-15 film, the higher degradation temperature (Td = 326 °C) as 
compared to the neat PVA film (Td = 310 °C), and the lowest enthalpy of degradation (ΔHd) provide 
strong evidence for the flame-retardant behavior of the prepared NCFs [48] (Table 1). 

 
Figure 6. Differential scanning calorimetry (DSC) thermograms for the prepared NCFs. 

  

Figure 6. Differential scanning calorimetry (DSC) thermograms for the prepared NCFs.

Table 1. Analysis results from DSC measurements *.

Tg (◦C) Tm1 (◦C) ∆Hm1 (J/g) Tm2 (◦C) ∆Hm2 (J/g) Td (◦C) ∆Hd (J/g) χc (%)

Neat PVA 76.2 ± 1.1 b 194.0 ± 0.1 b 34.4 ± 0.8 a - - 310.0 ± 1.5 b 165.0 ± 2.9 a 25 ± 0.8 a

PVA-15, Not
crosslinked 81.1 ± 0.7 a 199.0 ± 0.08 a 25.3 ± 0.6 b 232.6 ± 1.5 a 15.6 ± 1.2 a 326.0 ± 0.6 a 55.0 ± 1.4 a 18 ± 0.6 b

PVA-15, Crosslinked
at 135 ◦C, 45 min Not detected 199.2 ± 0.04 a 14.2 ± 0.7 c 232.8 ± 1.3 a 7.6 ± 0.7 b 326 ± 0.4 a 26.2 ± 0.8 c 10 ± 1.2 c

* Results are the means of three determinations ± standard deviation. Values with the same letter in the same row
do not differ statistically by Tukey’s test (p ≤ 0.05).

3.3. XRD Analysis

The XRD spectrograms of the prepared NCFs are displayed in Figure 7. Neat PVA film exhibits
main characteristic peaks at 2θ= 16.5◦, 19.5◦ and 22.8◦, which corresponds to 100, 10ı̄, and 200 crystalline
reflection of monoclinic PVA crystal [56]. The non-crosslinked PVA-15 NCF showed similar peaks with
less intensity and a slight shift of the main peak at 2θ = 19.8◦, which could be attributed to the decreased
crystallinity after incorporating the nanoclays. The shift in the main peak from 19.5◦ to 19.8◦ could be
attributed to the presence of nanoclay, which is characterized by a reflection peak at 2θ = 19.8◦ [56].
After the crosslinking reaction with citric acid, the main peak at 2θ = 19.9◦ became broader with
a further decrease in the intensity, while other peaks disappeared. This could be attributed to the
reduced numbers of intramolecular hydrogen bonding after the crosslinking reaction, which converts
the semicrystalline thermoplastic PVA into a more amorphous state with lower crystallinity [90].
Similar findings were reported for the PVA/20 wt.% MMT/10 wt.% polystyrenesulfonate NCFs
crosslinked with 5 wt.% glutaraldehyde solution [55].

3.4. SEM Analysis

The morphologies of the prepared PVA-15 NCFs are displayed in Figure 8. The non-crosslinked
PVA-15 NCF revealed well-dispersed nanoclays inside the PVA matrix (Figure 8A) [55], and the film
exhibits surface roughness due to the incorporation of the nanoclay microparticles (Figure 8B). The SEM
images of the crosslinked PVA-15 NCFs provide further evidence of the well-dispersed nanoclays
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into PVA matrix as well as the absence of phase separation at the microscale level (Figure 8D,F).
The morphology of the crosslinked NCFs exhibits higher dense structure when the crosslinking time
was increased from 15 to 45 min, which suggests that nanoclays have participated in the crosslinking
reaction, which agrees with the FTIR analysis results. It has been reported that the nanoclays embedded
inside the PVA/MMT NCFs exhibit a randomly oriented structure when the content of the nanoclays is
<30%, whereas layered structure is observed when the content of nanoclays suppresses 30% [91]. In the
current study, the obtained morphologies of the nanoclays embedded inside the PVA matrix exhibit
random oriented structure arrangement which agrees with the former literature report (Figure 8D,F).
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3.5. Mechanical Properties of the NCFs

Nowadays, the commercial production of packaging films demands superior mechanical
performance due to the diversity of transportation and distribution methods [92,93]. Figure 9
represents typical tensile tests for the prepared NCFs with different nanoclay loadings. The addition
of nanoclay to PVA material has resulted in a slight decrease of the tensile strength and ductility
which could be attributed to the formation of a crosslinked network via covalent bonding between
PVA matrix and the dispersed nanoclays [81] (Figure 10). Regardless, the reinforcing and stiffening
effect of nanoclays can be inferred from the linear increase in the average modulus for the NCFs from
160 (PVA-0) to 265 MPa for the 15% nanoclay loading (PVA-15) (Figure 10). This increase is a good
indication of the randomly distributed nanoparticles in the polymer matrix, as also shown in SEM
micrographs (Figure 8D,F). The presence of plasticizer is known to have a negative effect on tensile
strength and elastic modulus due to the decrease in the intermolecular van der Waals forces between
polymeric chains and the consequent increase in their molecular mobility [93]. Regardless, the addition
of glycerol as a plasticizer allowed for obtaining tough NCFs without scarifying their ductility at 15%
nanoclay loading (Figure 11). The obtained NCFs exhibit suitable mechanical properties for food
packaging applications as they possess average mechanical properties that are comparable to the
commercial food packaging films made from low density polyethylene (LDPE), linear low density
polyethylene (LLDPE), ethylene vinyl acetate copolymer (EVA) and ethylene vinyl alcohol copolymer
(EVOH) (Table 2).
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Figure 9. Typical stress–strain plots of PVA materials with different nano-clay content. All films were
crosslinked at 135 ◦C for 45 min.
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Table 2. Mechanical properties for selected commercial polymer films.

Elongation at Break (%) Tensile Strength at Break (MPa) Modulus (MPa) Reference

LDPE 130–540 22–26 240–290 [94]
LLDPE 570–850 35–50 190–220 [94]

EVA 530 31 48 [94]
EVOH 13–16 24–42 3550–5200 [95]

PVA-15 NCFs 310 ± 20 31 ± 1 265 ± 45 This study
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3.6. Optical Properties of the NCFs

Figure 12 displays the transmittance properties for the prepared NCFs. Neat PVA film exhibits
a transmittance of 85%. All NCFs exhibit high transparency with a light transmittance of ≈ 79–83%.
The slight reduction in the optical transmittance is attributed to the light scattering by the embedded
nanoclay platelets inside the polymer matrix.

Color parameters for the prepared NCFs at selected pH values are listed in Table 3. The lightness
of the NCFs (L*) is almost constant and provides an indication about the absence of color degradation
in both acidic and alkaline medium, which reflects the stability of the anthocyanin color at the entire
pH range. The a* parameter has positive and high values in the acidic medium in the range of pH 3 to
pH 6, where the NCF exhibits red color at pH 3–4 and pink color at pH 5–6 (Figure 13). When the
medium became neutral at pH 7, the a* value decreased further but was still in the positive range,
as the NCF exhibits a light purple color (Table 3). However, in alkaline medium from pH 8 to pH 9,
the NCF exhibits a distinct green color, which is reflected from the recorded a* negative values (Table 3).
The inflection points of the (a*) below and above pH 7 allows for using the NCFs as colorimetric
pH-sensor and pH-indicative film for monitoring the food freshness/spoilage (Figure 13). This result
is supported by the calculated values of ∆E in the range of ≈ 8–34, which indicates that the color
change can be observed by the naked eye from neutral medium (pH 7) to acidic/alkaline pH ranges
(Table 3). The clarity of the color change can be further enhanced by obtaining higher ∆E values as in
the case when the transition occurs from pH 3 to pH 8–9. Hence, in this study, all the NCFs were cast
at pH 3 with reddish color appearance, and used as pH-indicative films for providing fast response
and distinctive change to bright green color at pH 8–9 (∆E ≈ 39–50) (Table 3). It is worth mentioning
that both green and red colors are complementary colors and the transition from pink-reddish colors to
greenish color derivatives was effective for observing and detecting different phenolic compounds
with paper-based chemical sensor platform [96]. This can be seen from the highest color difference
(∆E ≈ 50) for the transition from red at pH 3 to green at pH 9 as compared to the color difference
(∆E ≈ 46) for the transition from red at pH 3 to yellow at pH 11 (Table 3).
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Table 3. Color parameters at different pH values for PVA-15 NCF crosslinked at 135 ◦C for 15 min *.

pH L * a * b * ∆E

∆E is calculated with reference to pH = 7
pH 3 59.65 ± 0.41 c 37.50 ± 0.46 a 2.53 ± 0.05 e 32.73 ± 0.18 e

pH 6 62.81 ± 0.30 a 18.60 ± 0.30 b 6.42 ± 0.20 d 14.60 ± 0.22 g

pH 7 57.69 ± 0.10 d 5.25 ± 0.05 d 8.03 ± 0.11 c 0 i

pH 8 62.00 ± 0.11 b −1.40 ± 0.12 e 8.11 ± 0.09 c 7.94 ± 0.10 h

pH 9 54.27 ± 0.21 e
−11.27 ± 0.07 f 9.28 ± 0.02 b 16.94 ± 0.16 f

pH 11 57.83 ± 0.07 d 12.92 ± 0.02 c 41.11 ± 0.10 a 33.88 ± 0.06 d

∆E is calculated with reference to pH = 3
pH 8 61.80 ± 0.13 b −1.37 ± 0.03 e 8.03 ± 0.05 c 39.31 ± 0.05 c

pH 9 54.23 ± 0.06 e
−11.28 ± 0.07 f 9.24 ± 0.06 b 49.59 ± 0.01 a

pH 11 57.84 ± 0.15 d 13.00 ± 0.10 c 41.3 ± 0.03 a 45.85 ± 0.05 b

* Results are the means of three determinations ± standard deviation. Values with the same letter in the same row
do not differ statistically differ by Tukey’s test (p ≤ 0.05).

Sensors 2020, 20, x FOR PEER REVIEW 19 of 25 

 
Figure 13. Digital images for the solutions (top) and NCFs (bottom) at different pH values. 

3.7. Application of the NCFs as pH-Indicative Films for Food Packaging 

Shrimp samples have been used as a model food for verifying the effectiveness of the pH-
indicative sensor, as there is a strong correlation between the pH of the shrimp samples and their 
freshness [97]. The cast PVA-15 NCFs, crosslinked at 145 °C for 45 min, were applied as pH-indicative 
films for testing the freshness of shrimp samples (Figure 14A). Fresh shrimp samples were 
intentionally spoiled in ambient conditions to observe the successive color change of the pH 
indicative films during the testing period. Initially, the indicative films were red as they were 
prepared at pH 3. After 6 h, the films turned into light pink color, which indicates that the pH has 
increased to pH ≈ 5–6, with color difference (ΔE = 11.3) (Figure 14B). This is attributed to the release 
of volatile nitrogenous compounds (e.g., ammonia and triethylamine) from shrimp’s proteins when 
they start to get spoiled due to bacterial growth and microbial degradation [98]. The color change 
increased slightly after twelve hours due to the presence of mixed areas with both light pink and light 
green colors, as reflected from the calculated color difference (ΔE ≈ 14.2). The total spoilage of the 
shrimp samples was confirmed after 24 h, which can be inferred from the appeared bright and 
distinctive olive green color (pH 8–9) of the pH-indicative film, with high difference in color change 
(ΔE ≈ 29). 

Figure 13. Digital images for the solutions (top) and NCFs (bottom) at different pH values.

3.7. Application of the NCFs as pH-Indicative Films for Food Packaging

Shrimp samples have been used as a model food for verifying the effectiveness of the pH-indicative
sensor, as there is a strong correlation between the pH of the shrimp samples and their freshness [97].
The cast PVA-15 NCFs, crosslinked at 145 ◦C for 45 min, were applied as pH-indicative films for
testing the freshness of shrimp samples (Figure 14A). Fresh shrimp samples were intentionally spoiled
in ambient conditions to observe the successive color change of the pH indicative films during the
testing period. Initially, the indicative films were red as they were prepared at pH 3. After 6 h,
the films turned into light pink color, which indicates that the pH has increased to pH ≈ 5–6, with color
difference (∆E = 11.3) (Figure 14B). This is attributed to the release of volatile nitrogenous compounds
(e.g., ammonia and triethylamine) from shrimp’s proteins when they start to get spoiled due to bacterial
growth and microbial degradation [98]. The color change increased slightly after twelve hours due
to the presence of mixed areas with both light pink and light green colors, as reflected from the
calculated color difference (∆E ≈ 14.2). The total spoilage of the shrimp samples was confirmed after
24 h, which can be inferred from the appeared bright and distinctive olive green color (pH 8–9) of the
pH-indicative film, with high difference in color change (∆E ≈ 29).
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Figure 14. (A) Color change of PVA-15 NCFs in contact with shrimp samples exposed to air during
the test period of 24 h. The added arrows indicate the color of the corresponding NCFs. (B) The
corresponding values for the color parameters (L*, a* and b*) and color difference (∆E) for the NCF used
in the shrimp spoilage test at different time intervals. The results are the means of three determinations
± standard deviation. Values with the same letter in the same row do not differ statistically by Tukey’s
test (p ≤ 0.05).

4. Conclusions

The prepared NCFs with 15% nanoclay have shown very good film-forming properties, as revealed
from SEM analysis, high transparency, very low solubility, and low swelling properties compared to
many precedent literature reports. The elastic modulus was improved for the NCFs, which showed
comparable mechanical properties to other commercially available packaging films. The stability of
the indicator dye inside the films was improved during the crosslinking treatment.

The NCFs allowed visual detection for the gradual transition from acidic to alkaline medium.
The obtained NCFs showed flame-retardant behavior, especially after sufficient crosslinking treatment,
which resulted in lowering both the enthalpy of melting (∆Hm) and the enthalpy of degradation (∆Hd).
Thus, the fabricated NCFs are envisaged as multifunctional, green, and sustainable alternatives to those
commercially available petroleum-based thermoplastics for smart and safe packaging applications.
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