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ABSTRACT

LncRNAs represent a large class of noncoding RNA
molecules that have important functions and play
key roles in a variety of human diseases. There is
an urgent need to develop bioinformatics tools as
to gain insight into lncRNAs. This study developed
a sequence-based bioinformatics method, LncDis-
ease, to predict the lncRNA-disease associations
based on the crosstalk between lncRNAs and miR-
NAs. Using LncDisease, we predicted the lncRNAs
associated with breast cancer and hypertension. The
breast-cancer-associated lncRNAs were studied in
two breast tumor cell lines, MCF-7 and MDA-MB-
231. The qRT-PCR results showed that 11 (91.7%)
of the 12 predicted lncRNAs could be validated in
both breast cancer cell lines. The hypertension-
associated lncRNAs were further evaluated in hu-
man vascular smooth muscle cells (VSMCs) stimu-
lated with angiotensin II (Ang II). The qRT-PCR results
showed that 3 (75.0%) of the 4 predicted lncRNAs
could be validated in Ang II-treated human VSMCs.
In addition, we predicted 6 diseases associated with
the lncRNA GAS5 and validated 4 (66.7%) of them
by literature mining. These results greatly support
the specificity and efficacy of LncDisease in the
study of lncRNAs in human diseases. The LncDis-
ease software is freely available on the Software
Page: http://www.cuilab.cn/.

INTRODUCTION

Recently, analyses of human transcriptome revealed that
protein-coding transcripts only account for a small portion
of the whole-genome (1). Surprisingly, many of the tran-
scripts in human transcriptome are long noncoding RNAs
(lncRNAs) with lengths of more than 200 nucleotides (2).
For a long time, the functionality of lncRNAs was fre-
quently disputed (3) because of their low cross-species con-
servation, low expression levels and high tissue specificity.
However, due to the fast development of lncRNAs, accu-
mulating studies have reported that lncRNAs have impor-
tant and diverse functions (4); thus, the dysfunction of lncR-
NAs is associated with some diseases, such as cardiovas-
cular disease (5) and cancer (6). We previously built the
long non-coding RNA disease database (LncRNADisease,
http://www.cuilab.cn/lncrnadisease) (7), which shows that
more than 200 diseases are associated with lncRNAs and
more than 250 lncRNAs have roles in at least one disease.
Thus, one emerging opinion is that lncRNAs could be novel
molecules for disease diagnosis and therapy (8). Currently,
a large number of lncRNAs have been identified. For exam-
ple, the NONCODE database (9) and the MiTranscriptome
database (10) have collected more than 90 000, and 60 000
human lncRNAs, respectively. Given the importance and
the large number of lncRNAs, there is an increasing need to
identify which lncRNAs are associated with which diseases
on a genome-wide scale. However, at present, the relation-
ship between most of the lncRNAs and most of the human
diseases remains unknown. Therefore, it becomes impor-
tant to develop bioinformatics methods to predict lncRNA-
disease associations.

Hence, we built the lncRNA disease database (LncR-
NADisease) and presented a method to predict lncRNA-
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disease associations based on the genomic locus of lncR-
NAs (7,11). Recently, several studies presented bioinfor-
matics methods based on co-expression of lncRNA and
protein-coding genes for predicting the lncRNAs involved
in lung cancer (12), human disease (13) and esophageal
squamous cell carcinoma (14). In addition, a Laplacian
Regularized Least Squares based method which integrated
lncRNA-disease association data from the LncRNADis-
ease database and lncRNA expression profile was devel-
oped (15). More recently, several network-based methods
have been developed (16–20). The above presented methods
collectively provide valuable help in dissecting the associa-
tions between lncRNAs and human diseases. However, lim-
itations exist in the above methods. For example, regard-
ing the genomic locus based methods, it is difficult to set
a suitable genomic distance threshold. Also, lncRNAs and
their neighbor genes may not always be functionally related.
Moreover, only a small fraction of lncRNAs have neighbor
protein-coding genes. In the case of the co-expression based
methods, there are three major limitations. Firstly, only a
small number of lncRNAs have matched tissue expression
data with protein-coding genes. Secondly, some lncRNAs
do not have co-expressed genes. Thirdly, co-expression does
not always mean co-function. For the network-based meth-
ods, the major limitation is that they only focus on a limited
number of lncRNAs (∼260) with known disease associa-
tions and cannot be applied to most of the human lncRNAs.
Therefore, novel methods that are efficient and applicable in
a large-scale are needed.

It is known that lncRNAs could exert their functions
by interacting with miRNAs (21,22). The human miRNA-
disease associations have been collected and annotated in
a large scale in our Human microRNA disease database
(HMDD) database since 2007 (23,24). Therefore, it seems
possible to predict lncRNA-disease associations by enrich-
ment analysis of the miRNAs interacting with the given
lncRNAs in specific disease-associated miRNA sets. We
previously presented a miRNA enrichment analysis tool
(25), TAM and confirmed its usefulness in mining miRNA-
related knowledge (26). In a recent study, Chen revealed that
integrating the HMDD data (human miRNA-disease asso-
ciations) and the starBase data (miRNA–lncRNA interac-
tions) can indeed infer lncRNA-disease associations (27).
However, two major limitations exist in the study. Firstly,
the lncRNA–miRNA interaction data the author used is
from the starBase database (21), which included only the ex-
perimentally supported data set. This makes Chen’s method
only feasible in a very small fraction of lncRNAs and hu-
man diseases. The reason is that the lncRNA–miRNA inter-
actions in starBase only contain 1114 lncRNAs, which only
cover ∼1.2% (∼1114/90000) of the total human lncRNAs.
Therefore, Chen’s method cannot be applied to ∼98.8% of
the total human lncRNAs. Moreover, the lncRNA–miRNA
interactions in starBase only contain 132 miRNAs, which
only cover ∼23.1% (132/572) of the total miRNAs in the
HMDD database. This will also largely restrict the appli-
cation of Chen’s method. Secondly, Chen’s study did not
provide web-based or standalone software for users, which
also greatly limit the application of the method. Based on
the above observations, our study developed a standalone
tool, LncDisease, to predict lncRNA-disease associations

based on disease enrichment analysis of the miRNAs in-
teracting with the given lncRNA. For a given lncRNA se-
quence, LncDisease first predicted the potential miRNAs
interacting with the given lncRNA. Next, LncDisease per-
formed enrichment analysis for the predicted miRNAs on
the disease-associated miRNA sets, which are derived from
our HMDD database (23,24). Afterward, LncDisease pre-
dicted the significant diseases as the potential diseases as-
sociated with the given lncRNA. Finally, to validate the
accuracy of LncDisease, we selected the 12 most signifi-
cant lncRNAs predicted to be associated with breast can-
cer for further biological experiments in two breast cancer
cell lines, MCF7 and MDA-MB-231, respectively. More-
over, four lncRNAs predicted to be associated with hyper-
tension were also validated in human vascular smooth mus-
cle cells (VSMCs) stimulated with angiotensin II (Ang II).
The results showed that 11 (91.7%) of the 12 predicted-
breast-cancer-associated lncRNAs were significantly dereg-
ulated in both breast cancer cell lines. Also, 3 (75.0%) of
the 4 predicted hypertension-associated lncRNAs were sig-
nificantly deregulated in Ang II-treated human VSMCs.
In addition, we predicted the diseases associated with the
lncRNA GAS5 and literature mining showed that 66.7% of
the predicted diseases have literature evidence. These results
suggest that LncDisease could be a useful tool in predicting
the lncRNA-disease associations.

MATERIALS AND METHODS

The data used in this study

We downloaded the sequence data of human lncRNAs from
the lncipedia database (28) (http://www.lncipedia.org/) and
the miRNA sequence data from the miRBase database.
Also, we downloaded the human miRNA-disease associa-
tion data set from the HMDD database (23,24).

Predicting lncRNA–miRNA interactions

Currently, there is no computational tool or pipeline devel-
oped for the prediction of lncRNA–miRNA interactions.
According to current knowledge, miRNAs regulate lncR-
NAs through the same mechanism of regulating mRNAs,
which is mainly based on the base pairing of target RNA
sequences and the seed regions of miRNAs (29). Given that
TargetScan and miRanda represent two of the most popu-
lar and efficient computational tools for miRNA target pre-
diction (30), in our study, LncDisease used TargetScan (31)
and miRanda (32) to predict the lncRNA–miRNA interac-
tions. In addition, the users can use the union or intersec-
tion of the predictions by the two tools. For TargetScan, the
criteria for target prediction and ranking include stringent
seed pairing, site number, site type and site context; whereas
for miRanda, the criteria include moderately stringent seed
pairing and site number (30). From this, we can conclude
that TargetScan has more stringent criteria than miRanda.
Therefore, under normal circumstances, miRanda will pre-
dict more miRNA targets and more binding sites than Tar-
getScan.

http://www.lncipedia.org/
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Predicting lncRNA-associated disease

Given that the accuracy of the current miRNA target
predictions tools (including TargetScan) is not high (30),
we cannot predict that the diseases associated with the
lncRNA-binding miRNAs are the potential associated dis-
eases of the given lncRNA. Because the predicted targets
could be true targets with higher probability than random
predictions (30), statistical enrichment analysis becomes a
useful solution to predict associated diseases of a given
lncRNA. This study used the TAM method (25), which
was previously developed to discover novel knowledge for
a group of inputted miRNAs by performing hypergeomet-
ric test based enrichment analysis of the inputted miRNAs
in a number of miRNA sets. miRNA sets were defined as a
group of miRNAs with similar or the same biological mean-
ing (24). For example, the miRNAs associated with breast
cancer are grouped into the breast cancer miRNA set. As-
suming that the number of miRNAs included in all miRNA
sets is P; the number of miRNAs in miRNA set A is S; the
number of input miRNAs included in the P total miRNAs
is HP; and the number of input miRNAs included in the
S miRNAs of miRNA set A is HS, we then calculated the
probability of HS miRNAs of interest in the miRNA set A
using Equation (1):

P(x = HS) = CHS
HP × CS−HS

P−HP

CS
P

(1)

where the symbol ‘C’ is the combination operation. Thus,
we calculated the statistical significance of the enrichment
of the input miRNAs in miRNA set A using Equation (2):

P(enrichment) =
∑S

h=HS
P(x = h) (2)

Finally, the P-values for all miRNA sets were adjusted
by Bonferroni correction. The flowchart of LncDisease is
shown in Figure 1. In total, LncDisease collected 372
disease-associated miRNA sets based on the miRNA-
disease association data set in the HMDD database. One
disease-associated miRNA set is defined as a group of miR-
NAs that is associated with one disease. For example, the
total miRNAs that are associated with breast cancer are as-
signed to the breast cancer miRNA set. LncDisease works
according to the following flow. For a given lncRNA se-
quence, LncDisease first predicts the miRNAs interacting
with the given lncRNA. Next, LncDisease performs enrich-
ment analysis of the predicted miRNAs in the 372 disease-
associated miRNA sets based on the TAM method. More-
over, LncDisease outputs the enrichment significance of the
predicted miRNAs in each disease-associated miRNA set.
Finally, we may take the significant results as the potential
diseases associated with the inputted lncRNA.

Breast cancer cell culture and reagents

The human breast cancer cell lines MCF7 and MDA-MB-
231 were purchased from ATCC (Manassas, VA, USA)
and both were cultured using Dulbecco’s modified eagle
medium (DMEM) (Invitrogen, Carlsbad, CA, USA) with
10% fetal bovine serum (FBS) (Atlanta Biologicals, Flow-
ery Branch, GA, USA). The human mammary epithelial

Figure 1. Flowchart of LncDisease for the prediction of lncRNA-disease
associations.

cell line HMEC was purchased from Lonza (Allendale, NJ,
USA), and cultured in Mammary Epithelial Cell Growth
Medium MEGM (Lonza) containing BulletKit (Lonza)
with serum-free.

RNA isolation

Total RNA was extracted by Trizol reagent (Invitrogen).
Cells were harvested and dissolved in 1 ml of Trizol reagent
and then 200 �l of 1-bromo-3-chloropropane solution was
added (Molecular Research Center, Inc. Cincinnati, OH,
USA) and mixed thoroughly by inverting the tube un-
til well-blended. After the centrifugation, 14 000 rpm for
15 min at 4◦C, the upper aqueous phase was removed
to a new 1.5 ml tube, an equal volume of isopropanol
(Sigma-Aldrich, St Louis, MO, USA) for precipitation sub-
sequently. Extracted RNA was dissolved in nuclease-free
water after washing the pellets using 75% ethanol twice, and
then the RNA concentration was determined by Nanodrop
(Thermo, Worcester, MA, USA).

Quantitative real-time PCR
The total RNA was used to synthesize cDNA by a high
capacity cDNA reverse transcriptase kit (Applied Biosys-
tems, Foster City, CA, USA). The relative mRNAs expres-
sion of lncRNAs was determined by quantitative real-time
PCR (qRT-PCR), and the reaction mixtures was consisted
of 10 �l 2x SYBR master mix (Roche, Indianapolis, IN,
USA), 2 �l synthesized forward primer and reverse primer
mixture, 1 �l cDNA and 7 �l nuclease-free water. The RT-
PCR was performed on a Stratagene Mx3000p with the fol-
lowing cycling conditions: 95◦C for 5 min followed by 40
cycles of 95◦C for 30 s, 59◦C for 30 s, 72◦C for 30 s. After
finishing 40 cycles, a final extension at 72◦C for 7 min was
performed. Quantitative values were obtained as threshold



e90 Nucleic Acids Research, 2016, Vol. 44, No. 9 PAGE 4 OF 8

Table 1. The 12 candidate breast-cancer-associated lncRNAs and their primers for qRT-PCR validation experiments

Primers Primer sequence (5′ to 3′)

lnc-CEP170–1:2 Sense TGCGAGATTGAGATGATGA
Antisense GCTGAGAACTTACCAGAGT

lnc-CHAD-1:1 Sense GTGATGGAGCAAGACTGT
Antisense GGCTGAAGTGTTGAAGGA

lnc-GGCT-1:4 Sense TGACAAGAGGAGGAAGGAA
Antisense TGCTGAGATTATAGGTGTGAG

lnc-IL5RA-4:1 Sense AAGAGGAGCCAGCACTTC
Antisense AGCCACTGTCCTGATGAAT

lnc-PARN-7:2 Sense AGGTGCTGGAGTCAAGAA
Antisense GGTGTGGTTGGTAGGAAG

lnc-PPHLN1–1:1 Sense CACACCAAGACGGACTATC
Antisense GAATACTGAAGATGCTGACTG

lnc-PSCA-1:1 Sense AGACGAGGCTAATCACTGT
Antisense GGCGGTTGTAAGAGGATG

lnc-SCN5A-1:1 Sense CCAGGTCAGGTATCATAATAAG
Antisense CAGTTGTCAAGTAAGCAGTT

lnc-SMARCA5–3:1 Sense AGTTAGACCATAATGCCTCT
Antisense GTGTCAATGTGTTACCTTCA

lnc-USP8–2:3 Sense GGTAGCAGGTAGGTGTGA
Antisense GTGAAGACATTACTATCCTCCT

lnc-PPHLN1–1:2 Sense CACACCAAGACGGACTATC
Antisense GAATACTGAAGATGCTGACTG

lnc-WBSCR16–1:1 Sense TCAGTACACCATCCATCCA
Antisense AAGAGTTGAGCAGAGTTCC

GAPDH Sense TTGGCTACAGCAACAGGGTG
Antisense GGTCTACATGGCAACTGTGAG

Table 2. The 4 candidate hypertension-associated lncRNAs and their primers for qRT-PCR validation experiments

Primers Primer sequence (5′ to 3′)

lnc-C16orf95–1:5 Sense ACATCCAGAACAGGCAAAGC
Antisense AATGTTAGGTCTCCCAGCCC

lnc-RASA1–3:9 Sense GGGACGAACAGCGTGACAAT
Antisense TGCAGTCACCTCATGTCCAAAA

lnc-SLC17A9–1:1 Sense GATCACTTGAGCCCAGGAGT
Antisense GACAGGGTCTTTCTCCGTCA

lnc-SPATA9–1:2 Sense ATTTGACCCATGTAACGCGG
Antisense CAGTGCGTTTGGGAATGTCA

�-actin Sense GGTGGGAATGGGTCAGAAGG
Antisense GTACATGGCTGGGGTGTTGA

PCR cycle number (Ct) when the increase in the fluores-
cent signal of PCR product showed exponential amplifica-
tion. Target lncRNA level was normalized to that of house-
keeping gene in the same sample. In brief, the relative ex-
pression level of the target gene compared with that of a
housekeeping gene was calculated as 2−�Ct, where �Ct =
Cttarget lncRNA − Cthousekeeping gene. The ratio of the relative ex-
pression of the target gene in treated cells or cancer cells to
that of untreated cells or normal cells was then calculated
as 2−��Ct, where ��Ct = �Cttreated cell – Ctcontrol cell. Each
sample was measured in duplicate or triplicate for each ex-
periment. Moreover, melting and amplification curves for
each PCR product were analyzed to ensure the specificity
of the amplification product (33,34).

Parameters were: 95◦C for 10 min, and then 40 cycles of
95◦C for 10 s and 58◦C for 35 s. GAPDH was taken as the
endogenous control. The comparative cycle threshold (CT)
method was used to compute the relative quantification of
lncRNAs in human breast cancer cells by comparing them
with the normal cells. The primer sequences used for qRT-
PCR in the study are listed in Tables 1 and 2.

VSMC stimulated with Ang II

One popular way of mimicking hypertension in cells is by
treating VSMCs with Ang II, a key mediator of hyperten-
sion (35); hence, we treated human VSMC cell line T/G
HA-VSMC with 0.5 M Ang II for 24 h. Then, the expression
levels of the four predicted hypertension-associated lncR-
NAs, lnc-C16orF95–1:5, lnc-RASA1–3:9, lnc-SLC17A9–
1:1 and lnc-SPATA9–1:2, were determined using qRT-PCR
analysis. The primer sequences are listed in Table 2.

Statistical analysis

The qRT-PCR result data were presented as mean ± S.E.M.
The statistical significance of differences between groups
was analyzed by t-test.

RESULTS AND DISCUSSION

The LncDisease standalone software

As shown in Figure 2, the users can copy and paste the se-
quence(s) of one or multiple lncRNAs in FASTA format
into the ‘LncRNAs Input’ panel. An alternative solution
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Figure 2. The user interface of the LncDisease software.

for inputting the lncRNA sequences is to load the file con-
taining the sequences in FASTA format by clicking the ‘Im-
port’ button. After inputting the lncRNA sequences, the
users can then click the ‘Predict’ button to run LncDisease.
During the running process, the status of LncDisease will
be shown in the ‘Log’ panel. When LncDisease finishes the
task, the prediction results will be shown in the ‘Results’
panel. The users can rank the predicted lncRNA-disease en-
tries by using several items, such as lncRNA name, disease
name and the significance (P-value). In addition, the users
can output the prediction results into a file by clicking the
‘Save All’ button.

Validation of putative lncRNAs associated with breast cancer

To evaluate the accuracy of the predictions of LncDisease,
we selected the 12 most significant predicted lncRNAs as-
sociated with breast cancer to explore the differential ex-
pression by biological experiments. qRT-PCR analysis was
used to determine the level of lncRNAs in breast cancer cells
(MCF7 and MDA-MB-231) and HMEC cells. For each
lncRNA, we compared its expression level in MCF7 with
that in the control cell (HMEC) using t-test. In addition,

we also compared the expression level of each lncRNA in
MDA-MB-231 with that in HMEC. But we did not com-
pare the expression level of each lncRNA in MCF7 with
that in MDA-MB-231. We found that 11 (91.7%) of the 12
selected lncRNAs had a significantly elevated level in both
breast cancer cell lines compared with HMEC cells (Figure
3). The results suggest that these putative lncRNAs could
indeed be involved in breast cancer, which further suggests
that the presented method has a reliable accuracy.

Validation of putative lncRNAs associated with hypertension

To evaluate the accuracy of the predictions of LncDisease,
four predicted lncRNAs associated with hypertension were
selected to further explore the differential expression by bi-
ological experiments. qRT-PCR analysis was used to deter-
mine the level of lncRNAs in Ang II-treated VSMCs and we
found that 3 (75.0%) of the 4 selected lncRNAs exhibited a
significantly decreased expression after treatment with Ang
II (Figure 4). The results suggest that these putative lncR-
NAs could indeed be involved in hypertension, which fur-
ther suggests that the presented method has a reliable accu-
racy.
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Figure 3. Validation results of the 12 candidate lncRNAs associated with breast cancer. * P < 0.05.

Figure 4. Validation results of the four candidate lncRNAs associated with
hypertension. * P < 0.05.

Literature mining for diseases predicted to be associated with
the lncRNA GAS5

We predicted six diseases (liver cirrhosis, hepatocellular car-
cinoma, fibrosis, kidney diseases, Duchenne muscular dys-
trophy and lung cancer) which are significantly associated
with the lncRNA GAS5 (P < 0.01). By literature mining,
we found that literature supports four of these diseases, hep-
atocellular carcinoma (P = 1.11e-3) (36–39), fibrosis (P =
1.17e-3) (40), kidney diseases (P = 3.16e-3) (41,42) and lung
cancer (P = 9.76e-3) (43,44). For liver cirrhosis, we did not
find any evidence linking it to GAS5. Given that GAS5 is
significantly associated with hepatocellular carcinoma and
liver fibrosis, two diseases highly associated with liver cir-
rhosis, it is reasonable to suggest that GAS5 may also be
associated with liver cirrhosis. The results collectively sug-
gest that the presented method is valuable in predicting
lncRNA-disease associations.

Current limitations and future perspectives

LncRNAs are one class of crucial non-coding molecules,
which play critical roles in some biological processes.
Therefore, their dysfunctions are associated with a variety
of human diseases. LncRNAs represent potential new
molecules for disease diagnosis and therapy. Recently, a
large number of human lncRNAs have been identified. For

example, the NONCODE database and the MiTranscrip-
tome have collected more than 90 000 human lncRNAs and
60 000 human lncRNAs, respectively. However, for most of
the human lncRNAs, their relations with human diseases
remain unknown. Given the large number of lncRNAs and
their important functions, it becomes critically important
to identify the relations between lncRNAs and diseases.
For this purpose, we presented a sequence-based method,
LncDisease, to predict associations between lncRNAs and
human diseases through disease enrichment analysis of the
miRNAs interacting with the given lncRNAs. Moreover, a
biological experiment confirmed that the presented method
has a reliable accuracy. However, several limitations exist
in the current method. Firstly, the exact mechanism by
which miRNAs regulate lncRNAs is not clear. This makes
the prediction of lncRNA targets of miRNAs to have
high false positives and high false negatives. Secondly, the
miRNA-disease association data set is far from complete-
ness. For example, the disease number is 372, which is
greatly less than the total number of human diseases. As
more precise knowledge of miRNA–lncRNA interaction
and more miRNA-disease association data become avail-
able, LncDisease will be improved continuously. Thirdly,
miRNA target prediction currently has high false positives.
When better miRNA target prediction tools become
available in the future, LncDisease will be improved. In
addition, it is interesting that the 11 predicted breast cancer
lncRNAs are all up-regulated in breast cancer while the 3
predicted hypertension lncRNAs are all down-regulated in
hypertension. The reasons why these lncRNAs predicted
by LncDisease show the same change in direction remains
unknown. Further explorations are needed to find out
whether these lncRNAs have special relations with disease-
associated miRNAs. Finally, although the above limitations
exist, we believe that LncDisease is a convenient tool for
researchers to dissect the relations between lncRNAs and
diseases in a large-scale, which could be helpful in identify-
ing potential lncRNAs for disease diagnosis and therapy.

FUNDING

National Basic Research program of China [2012CB517506
to Q.C.]; National High Technology Research and Devel-



PAGE 7 OF 8 Nucleic Acids Research, 2016, Vol. 44, No. 9 e90

opment Program of China [2014AA021102 to Q.C.]; Na-
tional Natural Science Foundation of China [91339106 to
Q.C., 81422006 to Q.C.]; NIH/NCI R01 [1R01CA192395
to Y.X.]; American Cancer Society Research Scholar [RSG-
13–265–01-RMC to Y.X.]; NIH/NCI R21 [1R21CA160280
and 1R21CA182754 to Y.X.]. Funding for open access
charge: National High Technology Research and Develop-
ment Program of China [2014AA021102].
Conflict of interest statement. None declared.

REFERENCES
1. Bertone,P., Stolc,V., Royce,T.E., Rozowsky,J.S., Urban,A.E., Zhu,X.,

Rinn,J.L., Tongprasit,W., Samanta,M., Weissman,S. et al. (2004)
Global identification of human transcribed sequences with genome
tiling arrays. Science, 306, 2242–2246.

2. Kapranov,P., Cheng,J., Dike,S., Nix,D.A., Duttagupta,R.,
Willingham,A.T., Stadler,P.F., Hertel,J., Hackermuller,J.,
Hofacker,I.L. et al. (2007) RNA maps reveal new RNA classes and a
possible function for pervasive transcription. Science, 316, 1484–1488.

3. Ponting,C.P., Oliver,P.L. and Reik,W. (2009) Evolution and functions
of long noncoding RNAs. Cell, 136, 629–641.

4. Chu,C., Spitale,R.C. and Chang,H.Y. (2015) Technologies to probe
functions and mechanisms of long noncoding RNAs. Nat. Struct.
Mol. Biol., 22, 29–35.

5. Kataoka,M. and Wang,D.Z. (2014) Non-coding RNAs including
miRNAs and lncRNAs in cardiovascular biology and disease. Cells,
3, 883–898.

6. Chakravarty,D., Sboner,A., Nair,S.S., Giannopoulou,E., Li,R.,
Hennig,S., Mosquera,J.M., Pauwels,J., Park,K., Kossai,M. et al.
(2014) The oestrogen receptor alpha-regulated lncRNA NEAT1 is a
critical modulator of prostate cancer. Nat. Commun., 5, 5383.

7. Chen,G., Wang,Z., Wang,D., Qiu,C., Liu,M., Chen,X., Zhang,Q.,
Yan,G. and Cui,Q. (2013) LncRNADisease: a database for
long-non-coding RNA-associated diseases. Nucleic Acids Res., 41,
D983–D986.

8. Wapinski,O. and Chang,H.Y. (2011) Long noncoding RNAs and
human disease. Trends Cell Biol., 21, 354–361.

9. Bu,D., Yu,K., Sun,S., Xie,C., Skogerbo,G., Miao,R., Xiao,H.,
Liao,Q., Luo,H., Zhao,G. et al. (2012) NONCODE v3.0: integrative
annotation of long noncoding RNAs. Nucleic Acids Res., 40,
D210–D215.

10. Iyer,M.K., Niknafs,Y.S., Malik,R., Singhal,U., Sahu,A., Hosono,Y.,
Barrette,T.R., Prensner,J.R., Evans,J.R., Zhao,S. et al. (2015) The
landscape of long noncoding RNAs in the human transcriptome.
Nat. Genet., 47, 199–208.

11. Li,J., Gao,C., Wang,Y., Ma,W., Tu,J., Wang,J., Chen,Z., Kong,W. and
Cui,Q. (2014) A bioinformatics method for predicting long
noncoding RNAs associated with vascular disease. Sci. China. Life
Sci., 57, 852–857.

12. Sun,L., Luo,H., Liao,Q., Bu,D., Zhao,G., Liu,C., Liu,Y. and Zhao,Y.
(2013) Systematic study of human long intergenic non-coding RNAs
and their impact on cancer. Sci. China. Life Sci., 56, 324–334.

13. Liu,M.X., Chen,X., Chen,G., Cui,Q.H. and Yan,G.Y. (2014) A
computational framework to infer human disease-associated long
noncoding RNAs. PloS One, 9, e84408.

14. Hao,Y., Wu,W., Shi,F., Dalmolin,R.J., Yan,M., Tian,F., Chen,X.,
Chen,G. and Cao,W. (2015) Prediction of long noncoding RNA
functions with co-expression network in esophageal squamous cell
carcinoma. BMC Cancer, 15, 168.

15. Chen,X. and Yan,G.Y. (2013) Novel human lncRNA-disease
association inference based on lncRNA expression profiles.
Bioinformatics, 29, 2617–2624.

16. Bialkowska-Hobrzanska,H., Driman,D.K., Fletcher,R., Harry,V.
and Razvi,H. (2006) Expression of human telomerase reverse
transcriptase, Survivin, DD3 and PCGEM1 messenger RNA in
archival prostate carcinoma tissue. Can. J. Urol., 13, 2967–2974.

17. Ganegoda,G.U., Li,M., Wang,W. and Feng,Q. (2015) Heterogeneous
network model to infer human disease-long intergenic non-coding
RNA associations. IEEE Trans. Nanobioscience, 14, 175–183.

18. Sun,J., Shi,H., Wang,Z., Zhang,C., Liu,L., Wang,L., He,W., Hao,D.,
Liu,S. and Zhou,M. (2014) Inferring novel lncRNA-disease

associations based on a random walk model of a lncRNA functional
similarity network. Mol. BioSyst., 10, 2074–2081.

19. Yang,X., Gao,L., Guo,X., Shi,X., Wu,H., Song,F. and Wang,B.
(2014) A network based method for analysis of lncRNA-disease
associations and prediction of lncRNAs implicated in diseases. PloS
One, 9, e87797.

20. Zhou,M., Wang,X., Li,J., Hao,D., Wang,Z., Shi,H., Han,L., Zhou,H.
and Sun,J. (2015) Prioritizing candidate disease-related long
non-coding RNAs by walking on the heterogeneous lncRNA and
disease network. Mol. BioSyst., 11, 760–769.

21. Li,J.H., Liu,S., Zhou,H., Qu,L.H. and Yang,J.H. (2014) starBase
v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res., 42, D92–D97.

22. Paraskevopoulou,M.D., Georgakilas,G., Kostoulas,N., Reczko,M.,
Maragkakis,M., Dalamagas,T.M. and Hatzigeorgiou,A.G. (2013)
DIANA-LncBase: experimentally verified and computationally
predicted microRNA targets on long non-coding RNAs. Nucleic
Acids Res., 41, D239–D245.

23. Li,Y., Qiu,C., Tu,J., Geng,B., Yang,J., Jiang,T. and Cui,Q. (2014)
HMDD v2.0: a database for experimentally supported human
microRNA and disease associations. Nucleic Acids Res., 42,
D1070–D1074.

24. Lu,M., Zhang,Q., Deng,M., Miao,J., Guo,Y., Gao,W. and Cui,Q.
(2008) An analysis of human microRNA and disease associations.
PloS One, 3, e3420.

25. Lu,M., Shi,B., Wang,J., Cao,Q. and Cui,Q. (2010) TAM: a method
for enrichment and depletion analysis of a microRNA category in a
list of microRNAs. BMC Bioinformatics, 11, 419.

26. Qiu,C., Chen,G. and Cui,Q. (2012) Towards the understanding of
microRNA and environmental factor interactions and their
relationships to human diseases. Sci. Rep., 2, 318.

27. Chen,X. (2015) Predicting lncRNA-disease associations and
constructing lncRNA functional similarity network based on the
information of miRNA. Sci. Rep., 5, 13186.

28. Volders,P.J., Helsens,K., Wang,X., Menten,B., Martens,L.,
Gevaert,K., Vandesompele,J. and Mestdagh,P. (2013) LNCipedia: a
database for annotated human lncRNA transcript sequences and
structures. Nucleic Acids Res., 41, D246–D251.

29. Poliseno,L., Salmena,L., Zhang,J., Carver,B., Haveman,W.J. and
Pandolfi,P.P. (2010) A coding-independent function of gene and
pseudogene mRNAs regulates tumour biology. Nature, 465,
1033–1038.

30. Bartel,D.P. (2009) MicroRNAs: target recognition and regulatory
functions. Cell, 136, 215–233.

31. Friedman,R.C., Farh,K.K., Burge,C.B. and Bartel,D.P. (2009) Most
mammalian mRNAs are conserved targets of microRNAs. Genome
Res., 19, 92–105.

32. Betel,D., Wilson,M., Gabow,A., Marks,D.S. and Sander,C. (2008)
The microRNA.org resource: targets and expression. Nucleic Acids
Res., 36, D149–D153.

33. Wang,C., Chen,Z., Li,S., Zhang,Y., Jia,S., Li,J., Chi,Y., Miao,Y.,
Guan,Y. and Yang,J. (2014) Hepatic overexpression of ATP synthase
beta subunit activates PI3K/Akt pathway to ameliorate
hyperglycemia of diabetic mice. Diabetes, 63, 947–959.

34. Wang,C., Chi,Y., Li,J., Miao,Y., Li,S., Su,W., Jia,S., Chen,Z., Du,S.,
Zhang,X. et al. (2014) FAM3A activates PI3K p110alpha/Akt
signaling to ameliorate hepatic gluconeogenesis and lipogenesis.
Hepatology, 59, 1779–1790.

35. Prasad,A.M., Morgan,D.A., Nuno,D.W., Ketsawatsomkron,P.,
Bair,T.B., Venema,A.N., Dibbern,M.E., Kutschke,W.J., Weiss,R.M.,
Lamping,K.G. et al. (2015) Calcium/calmodulin-dependent kinase II
inhibition in smooth muscle reduces angiotensin II-induced
hypertension by controlling aortic remodeling and baroreceptor
function. J Am. Heart Assoc., 4, e001949.

36. Chang,L., Li,C., Lan,T., Wu,L., Yuan,Y., Liu,Q. and
Liu,Z. (2015) Decreased expression of long non-coding RNA GAS5
indicates a poor prognosis and promotes cell proliferation and
invasion in hepatocellular carcinoma by regulating vimentin. Mol.
Med. Rep., 13, 1541–1550.

37. Hu,L., Ye,H., Huang,G., Luo,F., Liu,Y., Liu,Y., Yang,X., Shen,J.,
Liu,Q. and Zhang,J. (2015) Long noncoding RNA GAS5 suppresses
the migration and invasion of hepatocellular carcinoma cells via
miR-21. Tumour Biol., doi:10.1007/s13277-015-4111-x.



e90 Nucleic Acids Research, 2016, Vol. 44, No. 9 PAGE 8 OF 8

38. Tao,R., Hu,S., Wang,S., Zhou,X., Zhang,Q., Wang,C., Zhao,X.,
Zhou,W., Zhang,S., Li,C. et al. (2015) Association between indel
polymorphism in the promoter region of lncRNA GAS5 and the risk
of hepatocellular carcinoma. Carcinogenesis, 36, 1136–1143.

39. Tu,Z.Q., Li,R.J., Mei,J.Z. and Li,X.H. (2014) Down-regulation of
long non-coding RNA GAS5 is associated with the prognosis of
hepatocellular carcinoma. Int. J. Clin. Exp. Pathol., 7, 4303–4309.

40. Yu,F., Zheng,J., Mao,Y., Dong,P., Lu,Z., Li,G., Guo,C., Liu,Z. and
Fan,X. (2015) Long non-coding RNA growth arrest-specific
transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism
of competing endogenous RNA. J. Biol. Chem., 290, 28286–28298.

41. Qiao,H.P., Gao,W.S., Huo,J.X. and Yang,Z.S. (2013) Long
non-coding RNA GAS5 functions as a tumor suppressor in renal cell
carcinoma. Asian Pac. J. Cancer Prev., 14, 1077–1082.

42. Zhou,S., Wang,J. and Zhang,Z. (2014) An emerging understanding of
long noncoding RNAs in kidney cancer. J. Cancer Res. Clin. Oncol.,
140, 1989–1995.

43. Dong,S., Qu,X., Li,W., Zhong,X., Li,P., Yang,S., Chen,X., Shao,M.
and Zhang,L. (2015) The long non-coding RNA, GAS5, enhances
gefitinib-induced cell death in innate EGFR tyrosine kinase
inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR
via downregulation of the IGF-1R expression. J. Hematol. Oncol., 8,
43.

44. Zhou,Y., Wu,K., Jiang,J., Huang,J., Zhang,P., Zhu,Y., Hu,G.,
Lang,J., Shi,Y., Hu,L. et al. (2015) Integrative analysis reveals
enhanced regulatory effects of human long intergenic non-coding
RNAs in lung adenocarcinoma. J. Genet. Genomics, 42, 423–436.


