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Abstract

Objective: To develop and validate a radiomics prognostic scoring system (RPSS) for prediction of progression-

free  survival  (PFS)  in  patients  with  stage  IV  non-small  cell  lung  cancer  (NSCLC)  treated  with  platinum-based

chemotherapy.

Methods: In  this  retrospective  study,  four  independent  cohorts  of  stage  IV  NSCLC  patients  treated  with

platinum-based  chemotherapy  were  included  for  model  construction  and  validation  (Discovery:  n=159;  Internal

validation:  n=156;  External  validation:  n=81,  Mutation validation:  n=64).  First,  a  total  of  1,182 three-dimensional

radiomics features were extracted from pre-treatment computed tomography (CT) images of each patient. Then, a

radiomics  signature  was  constructed  using  the  least  absolute  shrinkage  and  selection  operator  method  (LASSO)

penalized  Cox  regression  analysis.  Finally,  an  individualized  prognostic  scoring  system  incorporating  radiomics

signature and clinicopathologic risk factors was proposed for PFS prediction.

Results: The established radiomics signature consisting of 16 features showed good discrimination for classifying

patients with high-risk and low-risk progression to chemotherapy in all cohorts (All P<0.05). On the multivariable

analysis, independent factors for PFS were radiomics signature, performance status (PS), and N stage, which were

all selected into construction of RPSS. The RPSS showed significant prognostic performance for predicting PFS in

discovery  [C-index:  0.772,  95%  confidence  interval  (95%  CI):  0.765−0.779],  internal  validation  (C-index:  0.738,

95%  CI:  0.730−0.746),  external  validation  (C-index:  0.750,  95%  CI:  0.734−0.765),  and  mutation  validation  (C-

index:  0.739,  95%  CI:  0.720−0.758).  Decision  curve  analysis  revealed  that  RPSS  significantly  outperformed  the

clinicopathologic-based model in terms of clinical usefulness (All P<0.05).

Conclusions: This  study  established  a  radiomics  prognostic  scoring  system as  RPSS that  can  be  conveniently

used to achieve individualized prediction of PFS probability for stage IV NSCLC patients treated with platinum-

based chemotherapy, which holds promise for guiding personalized pre-therapy of stage IV NSCLC.
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Introduction

Lung  cancer  remains  the  most  commonly  diagnosed
cancer,  with  high  incidence  and  mortality  rates  in  both
males  and  females  (1,2).  Non-small  cell  lung  cancer
(NSCLC) accounts for 85% of all lung cancer cases. Nearly
two-thirds  of  NSCLC  patients  have  unresectable
metastatic disease upon diagnosis (3).  For patients without
positive  markers  (e.g.,  EGFR/ALK/ROS1),  or  patients
with low programmed death ligand 1  (PD-L1)  expression,
first-line  treatment  of  platinum-based  chemotherapy  is
recommended  for  stage  IV  NSCLC  according  to  the
American  Society  of  Clinical  Oncology  guideline  (4,5).
Even  when  a  curative  treatment  approach  is  feasible,  the
survival  outcomes  among  patients  are  various  (6).  Thus,  a
method  for  individually  predicting  the  progression
probability of patients can determine whether to continue,
escalate,  discontinue,  or  change  a  patient’s  therapeutic
schedule  so  as  to  improve  therapeutic  outcomes  and
potentially  reduce  therapeutic  toxicity  (7).  However,  how
to  assess  the  individual  patient’s  potential  progression
probability  to  platinum-based  chemotherapy  remains  very
challenging.

To  date,  clinical  and  genetic  factors  have  been
extensively investigated to select patients who may benefit
from  specific  chemotherapies  (8).  It  is  increasingly
suggested that tailored individual chemotherapy, based on
molecular  biomarkers,  represents  a  novel  avenue  for
NSCLC  treatment  (9).  However,  these  methods  are
invasive and limited by the fact that they are acquired at a
single  timepoint  and  from a  single  anatomical  location
(10,11). To address this topic, radiomics is an emerging
field that involves throughput conversion of quantitative
automated imaging features into mineable data (12-14).
With  its  capability  of  simultaneous  modelling  of  both
multiple  image  phenotypic  features  and  clinical  factor
effects, radiomics analyses aim to provide comprehensive
quantification  of  tumor  phenotypes,  which  can  be
incorporated into prediction and prognostic models (15-
19). With advances in radiomics, tumor characterization is
not just limited to anatomy, but it also reveals cellular and
genomic  level  information  that  is  quantifiable  as  an
imaging phenotype (14). However, this type of radiomics

prognostic scoring system (RPSS) for predicting disease
progression probability to platinum-based chemotherapy of
stage IV NSCLC is currently lacking (20).

Hence, in this study we aimed to establish an effective
RPSS to individually predict the progression probability to
platinum-based  chemotherapy  for  stage  IV  NSCLC
patients with the aim of providing valuable information for
personalized medicine.

Materials and methods

Patients

This  retrospective  study  had  ethical  approval,  and  the
informed  consent  requirement  was  waived.  In  this  multi-
cohort  study,  we  reviewed  159  patients  with  stage  IV
NSCLC  treated  with  first-line  platinum-based  chemo-
therapy  at  Guangdong  Provincial  People’s  Hospital
between November 2007 and March 2012 as the discovery
cohort,  and  156  patients  treated  from  April  2012  to  June
2016  in  the  same  institution  as  the  internal  validation
cohort.  Another  independent  cohort  of  81  patients  was
included from November 2007 to June 2016 in the Yunnan
Cancer  Hospital  as  the  external  validation  cohort  for  this
study (Figure 1).

All  patients  were  treated  according  to  the  American
Society of Clinical Oncology guideline (5). The inclusion
criteria were as follows: 1) Patients who were histological
or cytological confirmed NSCLC; 2) Patients diagnosed
with stage IV according to the TNM classification system
of  the  American  Joint  Committee  on  Cancer  (21);  3)
Patients  who  were  not  harboring  EGFR-sensitizing
mutations or ALK gene rearrangements; 4) Patients with
low PD-L1 expression; 5)  Patients underwent at  least  4
cycles  of  platinum-based  chemotherapy  as  first-line
treatment;  6)  Patients  received  no  radiotherapy  and
anticancer therapy before chemotherapy; and 7) Patients
underwent a full follow-up. Patients with a history of other
malignancies or surgery resection were excluded from this
study. For each patient, the clinical variables that might
correlate with the prognostic outcomes were also recorded,
including age, gender, stage at diagnosis, smoking status,
performance  status  (PS),  histological  type,  and  the
administered therapeutic regimen.

Chinese Journal of Cancer Research, Vol 33, No 5 October 2021 593

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2021;33(5):592-605

https://doi.org/10.21147/j.issn.1000-9604.2021.05.06


Furthermore, with the aim of extending the prognostic
value of RPSS we established for predicting progression-
free survival (PFS), we included in the analysis a mutation
validation cohort of stage IV NSCLC patients with EGFR-
sensitizing mutation who only  received platinum-based
chemotherapy as first-line treatment from November 2007
to June 2016 in Guangdong Provincial People’s Hospital.

Treatment procedure

All  patients  only  received  cisplatin  or  carboplatin  based
double chemotherapy as first-line treatment (5). The other
administrated regimens included pemetrexed, gemcitabine,
paclitaxel, and docetaxel. The details of drug treatment are
provided  in Supplementary  materials.  During  treatment,
routine blood tests were conducted, and the liver and renal
functions were monitored.

Follow-up and assessment of PFS

Each patient was followed at 4-week intervals with a CT of
the  chest/abdomen,  physical  examination,  and  routine
laboratory  tests.  Additional  CT  or  magnetic  resonance
imaging  was  routinely  performed  if  extrapulmonary
metastasis  was  suspected.  PFS  was  defined  as  the  time
interval between the date of initiation of chemotherapy and
either disease progression or death, which was censored at
the  date  of  death  from other  cause  or  the  date  of  the  last
follow-up visit for the progression-free patients.

CT  image  acquisition,  interpretation,  and  radiomics
feature extraction

All patients performed contrast-enhanced CT scans within
2  weeks  before  chemotherapy  start.  The  details  of  CT
image acquisition are described in Supplementary materials.
Then,  all  acquired  CT  images  were  gathered  for  tumor
segmentation  and  radiomics  feature  extraction.  The
primary  tumors  from  each  patient  were  manually
segmented  by  an  experienced  radiologist,  with  more  than
10 years of clinical experience in chest CT interpretation. If
multiple  disconnected  tumor  volumes  were  found,  the
largest by volume was chosen for features extraction.

To ensure the reproducibility and accuracy, 80 patients
were randomly selected for a reproducibility analysis using
the inter- and intra-class correlation coefficients (ICCs).
The  details  of  ICCs  for  the  reproducibility  analysis  of
radiomics  features  extraction  are  described  in  the
Supplementary  materials.  An  ICC  greater  than  0.75
indicated a good agreement.

Finally,  we  programmed  the  radiomics  analysis
algorithms to automatically extract the radiomics features
from  manually  segmented  tumor  region.  All  medical
images  were  resampled  to  the  same  voxel  of  1  mm3  ×
1 mm3 × 1 mm3 by using cubic spline interpolation in our
study. The voxel intensity within the region of interest was
discretized to the same range of 64 intensity values. The
details of the radiomics analysis algorithms are summarized

 

Figure  1 Study  design  flowchart.  GDPH,  Guangdong  Provincial  People’s  Hospital;  YCH,  Yunnan  Cancer  Hospital;  RPSS,  Radiomics
prognostic scoring system.
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in  Supplementary  materials.  In  total,  1,182  quantitative
radiomics  features  were  extracted  from  each  patient’s
contrast-enhanced chest CT images, which included tumor
intensity,  texture  features,  wavelet  features,  and Gabor
features.  All  features  were  compliant  with  the  Image
Biomarker Standardization Initiative (IBSI) (22).

Feature selection and radiomics signature construction

The radiomics features data were firstly normalized with z-
score  normalization  (23),  and  were  filtered  based  on  their
independence  from  other  features,  as  determined  by  the
Pearson’s  correlation  coefficient  among  the  features  (cut-
off value of 0.9) (24). Then, the feature selection was done
in  the  discovery  cohort  using  the  least  absolute  shrinkage
and  selection  operator  method  (LASSO)  penalized  Cox
proportional  regression  (25,26).  Finally,  the  radiomics
signature  was  built  through  the  combination  of  selected
features weighted by their respective coefficients.

All patients were stratified into high-risk and low-risk
progression groups by the established signature, which was
achieved  by  using  time-dependent  receiver  operating
characteristic (ROC) curves (27) based on Kaplan-Meier
survival  analyses and log-rank test  (28).  The significant
difference in PFS was analyzed to investigate the clinical
benefits  across  different  progression  subgroups  by  the
Kaplan-Meier survival analysis and the Cox proportional
hazards regression model.

Development and validation of RPSS

First,  the  established  radiomics  signature  and  potential
clinicopathologic  characteristics,  including  age,  gender,
smoking  history,  histological  type,  PS,  T  stage,  N  stage,
the  site  and  volume  of  metastases,  and  chemotherapy
regimens,  were  involved  in  multivariable  Cox  regression
analysis.  Then,  a  final  model  selection  was  performed  by
the  backward  step-down  selection  process  with  Akaike
information  criterion  (29).  Subsequently,  RPSS  was
calculated  based  on  the  result  of  multivariate  analysis  for
individualized  probability  prediction  of  PFS.  The
performance  of  RPSS  was  measured  by  the  concordance
index (C-index),  the integrated area under the ROC curve
(iAUC), and the integrated Brier score (iBS) (30), and also
was  assessed  by  comparing  the  predicted  versus  observed
survival  probability  using  the  calibration  curve  (31,32).  In
addition, the prognostic predictive power of the RPSS was
further  validated  in  the  internal  validation,  external
validation, and mutation validation cohort.

Clinical usefulness

To  determine  the  clinical  benefits  of  this  radiomics
signature,  we  established  another  clinicopathologic-based
model  with  only  clinicopathological  characteristics.  Then,
comparisons  between  RPSS  and  clinicopathologic-based
model  were  evaluated  by  C-index,  iAUC,  iBS,  net
reclassification  improvement  (NRI),  and  integrated
discrimination  improvement  (IDI)  (33,34).  The  larger  C-
index which resulted in the positive value for NRI and IDI,
the  more  accurate  was  the  prognostic  prediction  for
predicting PFS (35). For iAUC, the higher value indicated
better  performance;  while  for  iBS,  the  lower  value
indicated  better  performance.  Finally,  a  decision  curve
analysis  was  performed  for  determining  the  clinical
usefulness  of  RPSS  by  quantifying  the  net  benefits  at
different threshold probabilities (36-38).

Statistical analysis

The Kaplan-Meier method was used to calculate PFS, and
the differences in PFS were compared using a log-rank test.
The data were analyzed using R software (Version 3.2.3; R
Foundation  for  Statistical  Computing,  Vienna,  Austria),
and  the  details  of  all  R  packages  used  in  this  study  are
described  in Supplementary  materials.  The  results  are
considered  statistically  significant  at  P<0.05  using  a  two-
tailed test.

Results

Characteristics of study population

The demographics and clinical characteristics of all patient
cohorts  are  shown in Table  1.  The median follow-up time
was  5.73  [interquartile  range  (IQR):  3.53−8.00]  months  in
discovery cohort, 5.47 (IQR: 3.33−7.93) months in internal
validation  cohort,  7.07  (IQR:  4.03−12.02)  months  in
external  validation  cohort,  and  6.04  (IQR:  3.49−8.83)
months in mutation cohort, respectively.

Radiomics analysis profiling of PFS

Based on the reproducibility and the accuracy of radiomics
features  extraction,  we  found  that  the  intra-  and  inter-
observer  reproducibility  of  features  extraction  was
satisfactory.  The  inter-observer  ICCs  calculated  ranged
from  0.751  to  0.957  based  on  Reader  1’s  and  Reader  2’s
first  extraction  features,  and  the  intra-observer  ICCs
calculated ranged from 0.763 to 0.911 based on Reader 1’s

Chinese Journal of Cancer Research, Vol 33, No 5 October 2021 595

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2021;33(5):592-605



twice  feature  extractions.  A  total  of  1,182  radiomics
features were extracted from the pre-treatment CT images
of  each  patient.  After  filtering  by  correlation  analysis,  100
radiomics  features  were  used  for  the  subsequent  analysis
(Supplementary Figure S1). Then, 16 key features with non-
zero coefficients in the LASSO Cox regression model were
selected  (Supplementary  Figure  S2).  The  radiomics
signature was  constructed based on the regression analysis
with  a  corresponding  value  calculated  for  each  patient
(Supplementary  materials).  The  cut-off  value  of  radiomics
signature  was −0.734,  which  was  generated  by  a  time-
dependent ROC curve (Supplementary Figure S3), and used

for  dividing  patients  into  high-risk  and  low-risk
progression  groups.  The  Kaplan-Meier  curves  clearly
showed  different  prognostic  strata  in  PFS  between  the
high-risk and low-risk progression subgroups in all cohorts,
with  a  high  statistical  significance  (log-rank  P<0.01  in  all
cases, Figure  2).  Lower  value  of  radiomics  signature  was
associated  with  improved  PFS  in  discovery  (HR:  5.829,
95% CI: 3.532−9.618), internal validation (HR: 3.701, 95%
CI: 2.262−6.054), external validation (HR: 3.077, 95% CI:
1.617−5.857),  and  mutation  validation  cohort  (HR:  3.050,
95%  CI:  1.390−6.693).  The  PFS  and  disease  progression
rate  in  the  high-risk  progression  and  low-risk  progression

Table 1 Demographic and pathological characteristics of all patient cohorts

Characteristics
n (%)

Discovery cohort
(N=159)

Internal validation cohort
(N=156)

External validation
cohort (N=81)

Mutation validation
cohort (N=64)

Age (year) [median (IQR)] 58 (52, 66) 59 (49, 65) 55 (49, 63) 57 (46, 65)

Gender

　Male 120 (75.5) 119 (76.3) 48 (59.3) 40 (62.5)

　Female 39 (24.5) 37 (23.7) 33 (40.7) 24 (37.5)

Smoking status

　Yes 72 (45.3) 76 (48.7) 30 (37.0) 37 (57.8)

　No 87 (54.7) 80 (51.3) 51 (63.0) 27 (42.2)

Histological type

　Squamous cell carcinoma 33 (20.8) 24 (15.4) 10 (12.3) 4 (6.3)

　Adenocarcinoma 120 (75.5) 115 (73.7) 71 (87.7) 59 (92.2)

　Others 6 (3.8) 17 (10.9) 0 (0) 1 (1.6)

PS

　<2 124 (78.0) 126 (80.8) 78 (96.3) 60 (93.8)

　≥2 35 (22.0) 30 (19.2) 3 (3.7) 4 (6.3)

T stage

　T1 7 (4.4) 20 (12.8) 6 (7.4) 5 (7.8)

　T2 58 (36.5) 43 (27.6) 31 (38.3) 23 (35.9)

　T3 34 (21.4) 44 (28.2) 12 (14.8) 12 (18.8)

　T4 60 (37.7) 49 (31.4) 32 (39.5) 24 (37.5)

N stage

　N0 20 (12.6) 15 (9.6) 12 (14.8) 9 (14.1)

　N1 14 (8.8) 12 (7.7) 12 (14.8) 8 (12.5)

　N2 61 (38.4) 64 (41.0) 38 (46.9) 22 (34.4)

　N3 64 (40.3) 65 (41.7) 19 (23.5) 25 (39.1)

Chemotherapy regimens

　DDP/CBP+GEM/PEM 128 (80.5) 117 (75.0) 54 (66.7) 50 (78.1)

　DDP/CBP+TAX/TXT/DOC 31 (19.5) 39 (25.0) 27 (33.3) 14 (21.9)

IQR, interquartile range; PS, performance status; DDP, cisplatin; CBP, carboplatin; GEM, gemcitabine; PEM, pemetrexed; TAX,
paclitaxel; TXT, taxinol; DOC, docetaxel.
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group in all cohort are listed in Table 2.

RPSS for predicting of PFS

The  multivariate  analysis  demonstrated  that  PS,  N  stage,
and  radiomics  signature  were  independent  risk  factors  for
prediction  of  PFS  (Table  3).  RPSS  was  computed  per
patient according to the multivariate analyses, using a linear
combination of  selected independent  risk  factors  weighted
by  their  respective  coefficients  (Table  3).  The  C-index  of
RPSS  for  prediction  of  PFS  were  0.772  (95%  CI:
0.765−0.779) in discovery, 0.738 (95% CI: 0.730−0.746) in

internal  validation,  0.750  (95%  CI:  0.734−0.765)  in
external  validation,  and  0.739  (95%  CI:  0.720−0.758)  in
mutation  validation.  The  iAUC  was  0.760  in  discovery,
0.700  in  internal  validation,  0.741  in  external  validation,
and  0.705  in  mutation  validation  cohort.  AUC  at  1-year
PFS was  0.956 (95% CI:  0.914−0.998)  in  discovery,  0.825
(95%  CI:  0.725−0.925)  in  internal  validation,  0.819  (95%
CI: 0.715−0.923) in external validation, and 0.818 (95% CI:
0.649−0.986)  in  mutation  validation  cohort.  And  the  iBS
was  0.038  in  discovery,  0.072  in  internal  validation,  0.070
in  external  validation,  and  0.054  in  mutation  validation
cohort.  The calibration plot  for  the probability  of  survival

 

Figure 2 Kaplan-Meier survival curves for PFS in (A) discovery cohort (P<0.001, HR: 5.829, 95% CI: 3.532−9.618); (B) internal validation
cohort  (P<0.001,  HR: 3.701,  95% CI:  2.262−6.054);  (C) external  validation cohort  (P=0.001,  HR: 3.077,  95% CI:  1.617−5.857);  and (D)
mutation  validation  cohort  (P=0.008,  HR:  3.050,  95%  CI:  1.390−6.693)  according  to  radiomics  signature  to  classify  stage  IV  NSCLC
patients with high-risk and low-risk progression treated by platinum-based chemotherapy. PFS, progression-free survival; HR, hazard ratio;
95% CI, 95% confidence interval; NSCLC, non-small cell lung cancer.
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at  the  10-month  or  1-year  PFS  showed  an  optimal
agreement between the prediction by RPSS and the actual
observation (P<0.05, Figure 3).

Comparison of predictive accuracy for PFS between RPSS
and clinicopathologic-based model

As  shown  in Table  3,  hazard  ratios  of  the  radiomics
signature in the RPSS for survival were higher than that for
other factors (PS and N stage). By removing signature from
RPSS,  a  clinicopathologic-based  model,  with  only  the
clinicopathologic  characteristics  (PS  and  N  stage),  was
constructed.  The  predictive  power  for  prognosis  of  PFS
between  RPSS  and  clinicopathologic-based  model  was
compared.  The  C-index  values  for  PFS  prediction  by
clinicopathologic-based  model  were  0.686  (95%  CI:
0.678−0.694) in discovery, 0.649 (95% CI: 0.639−0.659) in
internal  validation,  0.519  (95%  CI:  0.502−0.536)  in
external  validation,  and  0.674  (95%  CI:  0.655−0.693)  in
mutation  validation  cohort,  respectively,  which  were
significantly lower than the C-index by RPSS (All P<0.01).
The  iAUC  was  0.616  in  discovery,  0.638  in  internal
validation,  0.544  in  external  validation,  and  0.659  in
mutation validation cohort,  which were significantly lower
than  the  iAUC  by  RPSS.  And  the  iBS  was  0.055  in

discovery,  0.084  in  internal  validation,  0.101  in  external
validation,  and 0.056 in mutation validation cohort,  which
were significantly higher than the iBS by RPSS (of note: for
iAUC and C-index, the higher the better, while for iBS, the
lower  the  better)  (Figure  4,5).  Consequently,  these  results
suggested  that  the  RPSS  was  a  more  accurate  and  useful
tool  for  the  prediction  of  PFS  regarding  NRI  of  0.732
(95%  CI:  0.497−0.834)  in  discovery,  0.480  (95%  CI:
0.203−0.676)  in  internal  validation,  0.463  (95%  CI:
0.131−0.674)  in  external  validation,  and  0.287  (95%  CI:
0.232−0.759)  in  mutation  validation  cohort  (All  P<0.05),
and IDI of 0.335 (95% CI: 0.210−0.459) in discovery, 0.113
(95%  CI:  0.036−0.184)  in  internal  validation,  0.263  (95%
CI: 0.076−0.397) in external validation, and 0.119 (95% CI:
0.002−0.248) in mutation validation cohort (All P<0.05).

Clinical usefulness of RPSS

RPSS  displayed  as  a  nomogram  is  shown  in Figure  6A,
which used as an easy-to-use tool for probability scoring of
10-month and 1-year PFS. The decision curve analysis for
RPSS  provided  a  range  of  risk  thresholds  that  yielded  a
positive  net  benefit  compared  with  the  clinicopathologic-
based  model,  which  is  shown  in Figure  6B.  The  RPSS
provided the largest  overall  net benefit  for predicting PFS

Table 2 PFS and disease progression rate in high-risk progression and low-risk progression group

Parameter

Discovery cohort Internal validation cohort External validation cohort Mutation validation cohort

High-risk

progression

Low-risk

progression
Total

High-risk

progression

Low-risk

progression
Total

High-risk

progression

Low-risk

progression
Total

High-risk

progression

Low-risk

progression
Total

No. of patients

[n (%)]

133

(83.6)

26

(16.4)
159

123

(78.8)

33

(21.2)
156

60

(74.1)

21

(25.9)
81

51

(79.7)

13

(20.3)
64

1-year PFS

[median (IQR)]

(month)

5.1

(3.4, 7.0)

14.3

(11.8, 20.2)

5.7

(3.5, 8.0)

4.8

(3.2, 6.8)

10.1

(6.5, 16.9)

5.5

(3.3, 7.9)

6.2

(2.6, 8.6)

13.9

(6.9, 23.0)

6.0

(3.5, 8.8)

5.2

(2.8, 8.0)

10.0

(5.4, 15.3)

6.0

(3.5, 8.8)

No. of progression patients [n (%)]

　At 10 months
117

(88.0)

12

(46.2)

129

(81.1)

95

(77.2)

15

(45.5)

110

(70.5)

46

(76.7)

8

(38.1)

54

(66.7)

41

(80.4)

6

(46.2)

47

(73.4)

　At 1 year
120

(90.2)

25

(96.2)

145

(91.2)

103

(83.7)

25

(75.8)

128

(82.1)

55

(91.7)

20

(95.2)

75

(92.6)

45

(88.2)

11

(84.6)

56

(87.5)

PFS, progression-free survival; IQR, interquartile range.

Table 3 Multivariate Cox regression analysis of models in discovery cohort

Variable
RPSS Clinicopathologic-based model

Coefficient HR (95% CI) P Coefficient HR (95% CI) P

PS 0.474 1.606 (1.058, 2.438)   0.026 0.632 1.881 (1.260, 2.810)   0.002

N stage 0.214 1.239 (1.033, 1.485)   0.021 0.337 1.401 (1.169, 1.679) <0.001

Radiomics signature 1.296 3.655 (2.767, 4.827) <0.001 − − −
PS, performance status; RPSS, radiomics prognostic scoring system; HR, hazard ratio; 95% CI, 95% confidence interval. The score
value of RPSS was calculated as follow: Score = 0.474 × performance status + 0.213 × N stage + 1.296 × radiomcis signature.
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Figure 3 Calibration curves of RPSS and clinicopathologic-based model in terms of agreement between predicted and observed 1-year PFS
and 10-month PFS. Calibration curve for RPSS (A) and clinicopathologic-based model (B) to predict survival probability. RPSS, radiomics
prognostic scoring system; PFS, progression-free survival.

 

Figure  4 Prognostic  value  of  RPSS  and  clinicopathologic-based  model  in  terms  of  iAUC.  (A)  Discovery  cohort;  (B)  internal  validation
cohort;  (C)  external  validation  cohort;  and  (D)  mutation  validation  cohort.  The  higher  value  of  iAUC  indicated  the  better  prognostic
performance of clinical model. RPSS, radiomics prognostic scoring system; iAUC, integrated area under the curve.
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compared with the clinicopathologic-based model.

Discussion

Although  target  therapy  and  immunotherapy  have  been
recently  developed  to  treat  lung  cancer,  platinum-based
chemotherapy is still first-line treatment for most stage IV
NSCLC patients without gene mutations or for those with
low  PD-L1  expression  (4,5).  Disease  progression  is  the
common  reason  to  stop  first-line  cytotoxic  chemotherapy
according  to  the  American  Society  of  Clinical  Oncology
guideline  (4).  First-line  cytotoxic  chemotherapy  should  be
stopped  at  disease  progression  or  after  four  cycles  in
patients  whose  disease  is  stable  but  not  responding  to
treatment.  Because  NSCLC  is  remarkably  heterogeneous,
with  regard  to  survival  of  the  individual  patients  (6),  the
rarity of the biomarkers as a clinical entity means that any
attempts  to  create  predictive  models  to  give  an  indication
of  prognosis  are  extremely  challenging.  In  the  present

study,  we  developed  a  noninvasive  approach  as  RPSS  to
solve this  problem. This  scoring system aimed to estimate
the  probability  of  PFS  based  on  a  multivariate  Cox
proportional  hazards  model  that  included  a  radiomics
signature and two clinical variables (PS and N stage). Based
on  three  independent  validation  cohorts,  RPSS  was
validated as a reliable tool to predict disease progression in
these  patients,  and  was  superior  to  the  clinicopathologic-
based  model,  with  only  clinicopathological  characteristics
(PS and N stage).  Furthermore, deriving of decision curve
analysis and displaying as a nomogram for RPSS enhanced
its practical utility.

A large number of studies have tried to identify genetic
variations or clinical factors that can be used to individually
predict the outcomes of platinum-based chemotherapy (7).
However,  due  to  their  inherent  limitations,  which  are
achieved invasively or inconsistently, it  is impractical to
noninvasively  conduct  the  prediction  with  univariate

 

Figure 5 Prognostic value of RPSS and clinicopathologic-based model in terms of iBS. (A) Discovery cohort; (B) internal validation cohort;
(C) external validation cohort; and (D) mutation validation cohort. The lower value of iBS indicated the better prognostic performance of
clinical model. RPSS, radiomics prognostic scoring system; iBS, integrated Brier score.
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genetic or clinical factors. We thus extracted 1,182 image
features  from  the  pre-therapy  CT  images,  and  then
reduced these to 16 potential predictors for integration into
a radiomics signature by using LASSO Cox regression. All
radiomics features selected for construction of radiomics

signature  were  compliant  with  Image  Biomarker
Standardization Initiative (IBSI) (22). Our study showed
that  the  established  radiomics  signature,  which  can
potentially capture biologic properties like intra- and inter-
tumor heterogeneities (39), can successfully stratify patients

 

Figure 6 Clinical usefulness of RPSS. (A) Proposed nomogram to estimate the risk of disease progression for stage IV NSCLC treated with
platinum-based chemotherapy. An individual patient’s value is located on each variable axis,  and a line is drawn upward to determine the
number  of  points  received  for  each  variable  value.  The  sum  of  these  numbers  is  located  on  the  Total  Points  axis,  and  a  line  is  drawn
downward to the survival axes to determine the likelihood of 10-month and 1-year PFS; (B) Decision curve analysis for comparison of the
proposed  RPSS  (red  line)  and  the  clinicopathologic-based  model  (blue  line)  in  terms  of  clinical  usefulness.  The  y-axis  measures  the  net
benefit. The net benefit was calculated by subtracting the proportion of all patients who are false positive from the proportion who are true
positive, and weighting by the relative harm of forgoing treatment compared with the negative consequences of an unnecessary treatment.
Accordingly, the proposed RPSS had the higher net benefit compared with the clinicopathologic-based model for prediction of PFS in stage
IV NSCLC patients treated with platinum-based chemotherapy. RPSS, radiomics prognostic scoring system; NSCLC, non-small cell lung
cancer.
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into high-risk and low-risk progression and demonstrate
that  approximately  70%−80%  of  the  patients  were
predicted as high-risk progression of chemotherapy. Our
results showed that higher value of radiomics signature was
associated with higher risk of disease progression for stage
IV  NSCLC  patients  treated  with  platinum-based
chemotherapy  (All  P<0.05).  Through  the  multivariate
analysis,  we  identified  that  PS  and  N  stage  were
independent prognostic  factors.  These findings were in
high  concordance  with  previous  studies  for  stage  IV
NSCLC  pat ients  t rea ted  wi th  p la t inum-based
chemotherapy (7,40).  Additionally,  we found that  there
were  significant  differences  in  T  stage  between  the
discovery  cohort  and  validation  cohorts.  The  possible
reasons for  the inconsistency might be that  the eligible
patients were enrolled from different periods, which is a
stronger  approach  for  the  validation  of  RPSS  (32).
Therefore,  consistent  with  a  previous  study  on  the
prediction of EGFR-TKI treatment outcome in stage IV
NSCLC (15), T stage was not suitable to be included as an
independent factor into the final model in this study.

Even though overall survival (OS) is as the gold standard
endpoint in clinical trials of chemotherapy for lung cancer,
some of the disadvantages of this endpoint are the need for
long-term follow-up and larger number of patients. Serial
studies had found a high level of evidence that PFS can be
considered  a  surrogate  endpoint  for  OS  in  advanced
NSCLC  treated  with  chemotherapy  (41).  Disease
progression also is the common reason to stop first-line
cytotoxic chemotherapy according to the American Society
of Clinical Oncology guideline (4,5). Thus, we kept PFS as
the primary endpoint for this study. Furthermore, we have
validated this radiomics signature we established for OS
prediction on discovery and internal  validation cohorts.
The  results  showed  that  radiomics  signature  also
successfully achieved patient stratification with respect to
OS  on  discovery  and  internal  validation  cohorts,  and
remained  as  an  independent  predictor  adjusted  for
clinicopathological parameters (All P<0.05, Supplementary
materials).

Here, we also investigate whether the prognostic value of
RPSS  for  predicting  PFS  could  be  extended  in  the
mutation validation cohort of stage IV NSCLC patients
with  gene  mutation  who  only  received  platinum-based
chemotherapy as the first-line treatment. Surprisingly, we
found that the RPSS also displayed a good discrimination
in  predicting  PFS  in  mutation  validation  cohort  (C-
index=0.739; iAUC=0.705; and AUC at 1-year PFS=0.818).

This  came  to  the  robustness  and  effectiveness  of  our
proposed  RPSS  for  prognostic  prediction.  Thus,  our
established RPSS showed a good accuracy for prediction of
PFS in all stage IV NSCLC patients treated with platinum-
based chemotherapy.

To  further  investigate  that  how  much  extra  clinical
benefits we can obtain for individualized prediction on PFS
by  incorporating  the  radiomics  signature,  we  also
developed and compared a clinicopathologic-based model
incorporated clinicopathologic characteristics (PS and N
stage) without signature. Finally, results showed that RPSS
showed  better  discrimination  performance  than  the
clinicopathologic-based  model  in  all  cohorts  (C-index,
RPSS vs. clinicopathologic-based model, discovery cohort:
0.772 vs. 0.686; internal validation cohort: 0.738 vs. 0.649;
external  validation  cohort:  0.750  vs.  0.519;  mutation
validation cohort: 0.739 vs. 0.674; all comparisons P<0.05).
And the decision curve analysis proved that RPSS offered
significant improvement for individualized PFS prediction
comparing with clinicopathologic-based model.

Although the RPSS we established demonstrated good
levels of accuracy for the prediction of PFS, there are some
limitations to our study. That is, the prognostic factors we
used  were  restricted  to  the  pre-therapy  CT  image
phenotypic features and common clinical  variables,  and
some potential molecular or immune biomarkers, such as
excision repair complementing group 1 (ERCC1) protein
(42), were not included as variables in the model analysis.
The  refinement  of  RPSS,  with  the  identification  of
additional clinical,  pathological or molecular predictors,
will  permit  the  optimization  of  this  model.  However,
results  of  immunohistochemically  staining  are  often
inconsistent,  assays  for  many  biological  or  molecular
markers are not widely available, and it may be difficult to
standardize such results across the clinical practice.

Another limitation was that the primary tumors’ features
were  extracted  in  our  study.  For  IV  carcinoma,  the
metastases might be more important than primary tumor to
predict  the chemotherapy response.  However,  stage IV
NSCLC  patients  might  have  more  than  one  tumor
including the metastases, which might affect the uniformity
of extracted radiomics features. Most of radiomics studies
built radiomics models based on primary tumor to predict
the development of distant metastases from NSCLC (43).
Lack of radiomics studies had shown the reproducibility of
extracted radiomics features from the metastases tumor.
Thus,  we  selected  the  primary  tumors  of  each  eligible
patient for features extraction.  If  multiple disconnected
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tumor  volumes  were  found,  the  largest  by  volume  was
chosen for features extraction. Further investigations are
warranted to explore the potential usefulness of radiomics
features extracted from metastases tumor for the prediction
of  chemotherapy  response  in  patients  with  stage  IV
NSCLC. To the best of our knowledge, our study provided
the first prognostic scoring system integrating both pre-
therapy image biomarkers and clinical factors for stage IV
NSCLC  patients  treated  with  platinum-based  chemo-
therapy.

Conclusions

We  developed  and  externally  validated  a  RPSS  that  was
conveniently used to achieve an individualized prediction of
PFS probability for stage IV NSCLC patients treated with
platinum-based chemotherapy, which holds the promise of
guiding the personalized pre-therapy of stage IV NSCLC.
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Supplementary  materials

Treatment of patients

All  patients  only  received  cisplatin-  or  carboplatin-based  double  chemotherapy  as  the  first-line  treatment.  The  other
administrated  regimens  included  pemetrexed,  gemcitabine,  paclitaxel,  and  docetaxel.  The  regimens  were  administered  as
follow: 1) cisplatin/carboplatin + pemetrexed: pemetrexed 500 mg/m2 on d 1 plus cisplatin 75 mg/m2 (PP) or carboplatin area
under the curve (AUC) 5 mg/mL/min (PC) on d 1; 2) cisplatin/carboplatin + gemcitabine: gemcitabine 1.00 g/m2 on d 1 plus
cisplatin 75 mg/m2 (GP) or carboplatin AUC 5 mg/mL/min (GC) on d 1; 3) cisplatin/carboplatin + paclitaxel: paclitaxel 175
mg/m2 on d 1 plus cisplatin 75 mg/m2 (TP) or carboplatin AUC 5 mg/mL/min (TC) on day 1; and 4) cisplatin/carboplatin +
docetaxel: docetaxel 75 mg/m2 on d 1 plus cisplatin 75 mg/m2 (DP) or carboplatin AUC 5 mg/mL/min (DC) on day 1. All
drugs were administered intravenously every three weeks, and patients were treated for 2−6 cycles until disease progression,
unacceptable toxicity, or patient’s refusal, as the therapeutic regimen.

Computed tomography (CT) image acquisition parameters

The acquisition parameters were as follows: 120 kV; 160 mAs; 0.5- or 0.4-s rotation time; detector collimation: 8 mm × 2.5
mm or 64 mm × 0.625 mm; field of view, 350 mm × 350 mm; and matrix, 512×512. The contrast-enhanced CT image was
taken  after  a  25-s  delay  following  the  intravenous  administration  of  85  mL  of  iodinated  contrast  material  (Ultravist  370,
Bayer Schering Pharma, Berlin, Germany) at a rate of 3 mL/s with a pump injector (Ulrich CT Plus 150, Ulrich Medical,
Ulm, Germany) after routine non-enhanced CT. Images in DICOM format images were retrieved from the picture archiving
and communication system (PACS; Carestream, Canada).

Inter- and intra-class correlation coefficients (ICCs) for reproducibility analysis of radiomics features extraction

For the assessment of the inter-observer agreement of radiomics feature extraction, two radiologists with 15 years (Reader 1)
and 12 years (Reader 2) of experience in chest CT interpretation performed the region of interest-based radiomics feature
extraction procedure, in a blind fashion, respectively. Then, Reader 1 repeated the procedure with an interval of 1 week for
assessment of the intra-observer agreement of radiomics feature extraction.

Algorithm for radiomics features calculation

The  radiomics  features  analysis  was  applied  to  the  pretreatment  CT  using  in-house  radiomics  analysis  software,  with
algorithms  implemented  in  MATLAB  2014a  (Mathworks,  Natick,  USA).  The  contrast-enhanced  CT  image  data  were
retrieved from the institution archive  and were loaded to  a  personal  laptop for  further  analysis.  All  contrast-enhanced CT
images were gathered for tumor segmentation. The primary tumors of all eligible patients were manually segmented by an
experienced radiologist with more than 10 years of clinical experience in chest CT interpretation, thus a volume of interest
(VOI)  was  delineated  initially  around  the  tumor  outline  for  the  whole  volume  area.  The  VOI  was  further  refined  by
excluding  the  air  area  with  a  thresholding  procedure  that  removed any  pixels  from the  analysis  with  an  attenuation values
below −50 HU and beyond 300 HU.

In total, 1,182 quantitative radiomics features were extracted from each chest contrast-enhanced chest CT images, which
included the tumor intensity, texture features, wavelet features, and Gabor features. The features of the tumor intensity and
texture features were extracted without/after a filtration of the Laplacian of Gaussian filter (filter parameter = 1.0, 1.5, 2.0,
2.5, respectively) from the CT image. The wavelet features and Gabor features focused the features in different frequency
ranges within the tumor pixels.

Laplacian of Gaussian filtration for gray-level histogram features and texture features
r2GThe Laplacian of the Gaussian filter ( ) distribution is given by
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x; y ¾ denote the spatial coordinates of the pixel, and  is the value of the filter parameter.

Gray-level histogram features
X (i) i N

M
 indicates  the  intensity  of  the  gray  level ,  and  denotes  the  sum  of  the  pixels  in  the  image. β indicates  the  top

percentage of the histogram curve, which could be 50%, 25%, and 10%,  denotes the number of pixels in the histogram on
the percentage of (1−β).
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Gray-level co-occurrence matrix features
P (i; j) i j

Ng x; y
¹ ¹x (i) ; ¹y (j ) P (i; j) Px (i) Py (j) ¾x (i) ¾y (j)

Px (i) Py (j)

A  matrix  to  indicate  the  relative  frequency  with  the  intensity  values  of  two  pixels  (  and )  at  the  three  distances
(δ=1,2,3) and in four directions (0º, 45º, 90º, 135º). is the number of discrete intensity levels in the image;  denote the
spatial coordinates of the pixel. ,  is the mean of , , , and , is the standard deviation of

, , respectively.
1) Contrast
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3) Entropy
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Gray-level run-length matrix features

p (i; j jµ) (i; j ) i
µ N g N r

N p

A gray level  run was  defined as  the  length in  the number of  pixels,  of  the  consecutive  pixels,  that  had the same gray level
value. In a gray level run length matrix , the th element describes the number of times j a gray level  appears
consecutively in the direction specified by  (0º, 45º, 90º, 135º), and  is the number of discrete gray level intensities.  is
the number of different run lengths, and  is the number of pixels in the image.
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4) Run Length Non-Uniformity (RLN)
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6) Low Gray Level Run Emphasis (LGLRE)
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7) High Gray Level Run Emphasis (HGLRE)
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8) Short Run Low Gray Level Emphasis (SRLGLE)
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10) Long Run Low Gray Level Emphasis (LRLGLE)

LR L GLE =

PN g
i=1
PN r

j=1

·
p(i; j jµ)j 2

i2

¸
PN g

i=1
PN r

j=1 p(i; j jµ)

11) Long Run High Gay Level Emphasis (LRHGLE)

L R HGLE =
PN g

i=1
PN r

j=1 p(i; j jµ)i2j 2PN g
i=1
PN r

j=1 p(i; j jµ)

Wavelet features
Wavelet  transform effectively  decouples  textural  information by decomposing the  original  image,  in  a  similar  manner  as  a
Fourier analysis, in low- and high-frequencies. In this study, three-level discrete wavelet transform was applied to each CT
image, which decomposed the original image X into 9 decompositions.

Gabor features
Gabor filter,  named after Dennis Gabor, is  a linear filter used for edge detection, which is usually used in the field of face
recognition.  It  selects  valuable  image  information  in  different  directions  and  different  scales.  In  this  study,  we  used  four
directions and three scales to extract Gabor features. The mean was used to construct the Gabor feature group.

M ean (Gabor) =
1
N

NP
i=1

X (i)

N X (i) iindicates the sum of the image pixels and the  presents the intensity  of on the Gabor image.

R packages used

The least  absolute  shrinkage  and  selection  operator  method  (LASSO)  Cox  regression  model  was  done  using  the  “glmnet”
package. The time-dependent receiver operating characteristic (ROC) analyses were done using the “survivalROC” package.
The multivariable Cox regression analysis and calibration plots were done with the “rms” package. The calculation of the C-
index  was  performed  with  the  “Hmisc”  package,  and  the  calculation  of  net  reclassification  index  (NRI)  and  integrated
discrimination improvement (IDI) were performed with the “survIDINRI” package. The calculation of the integrated area
under  the  ROC  curve  (iAUC)  and  the  integrated  Brier  score  (iBS)  were  performed  with  the  “risksetROC”  package.  The
internal validation of the C-index was performed with the “rms” package. The acquisition of the decision curve analysis was
performed with the “stdca.R” package.
 
 



Calculation of radiomics signature based on LASSO Cox regression analysis

The value of radiomics signature
= 0:08454937£ 2D skewness 0+ 0:42527225£ 2D kurtosis 0
¡0:34077344£ 2D cont rast 0 1 0+ 0:46372619
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+0:01030149£ c correlat ion 135 2 0¡ 0:35094852
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Validation of radiomics signature for predicting overall survival (OS) in discovery and internal validation cohorts

Methods
First, all patients were stratified into high-risk and low-risk groups by the established signature using the cutoff=−0.734. The
significant difference in OS was analyzed to investigate the clinical benefits across different subgroups by the Kaplan-Meier
survival analysis and the Cox proportional hazards regression model on both discovery and internal validation cohorts. Then,
the  established  radiomics  signature  and  potential  clinicopathologic  characteristics,  including  age,  gender,  smoking  history,
histological type, performance status (PS), T stage, N stage, the site and volume of metastases, and chemotherapy regimens,
were involved in multivariable Cox regression analysis for OS prediction.

Results
The Kaplan-Meier curves clearly showed different prognostic strata in OS between the high-risk and low-risk subgroups in
both discovery and internal validation cohorts, with a high statistical significance (log-rank P<0.01 in all cases). Lower value
of  radiomics  signature  was  associated  with  improved  OS  in  discovery  (HR:  3.112,  95%  CI:  1.689−5.734)  and  internal
validation cohorts (HR: 2.231, 95% CI: 1.246−3.994). After the multivariate analyses, the radiomics signature remained as an
independent risk factor for prediction of OS (HR: 1.913, 95% CI: 1.336−2.741; P=0.0004).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S1 Correlation mapping for those radiomics features which were independent from other features, as determined by the Pearson’s
correlation coefficient among the features (cut-off value of 0.9).



 

 

Figure  S2 Feature  selection  in  discovery  cohort  using  the  LASSO  penalized  Cox  proportional  regression  analysis.  LASSO,  the  least
absolute shrinkage and selection operator method.

 

Figure  S3 Time-dependent  ROC  curve  at  1  year  in  discovery
cohort  (Best  cut-off=−0.734).  ROC,  receiver-operating
characteristic.


