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EZH2 promotes progression of small cell lung cancer by
suppressing the TGF-β-Smad-ASCL1 pathway
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Transforming growth factor-β (TGF-β) induces apoptosis in many types of cancer cells and acts as a tumor suppressor.
We performed a functional analysis of TGF-β signaling to identify a molecular mechanism that regulated survival in small
cell lung cancer cells. Here, we found low expression of TGF-β type II receptor (TβRII) in most small cell lung cancer cells
and tissues compared to normal lung epithelial cells and normal lung tissues, respectively. When wild-type TβRII was
overexpressed in small cell lung cancer cells, TGF-β suppressed cell growth in vitro and tumor formation in vivo through
induction of apoptosis. Components of polycomb repressive complex 2, including enhancer of zeste 2 (EZH2), were highly
expressed in small cell lung cancer cells; this led to epigenetic silencing of TβRII expression and suppression of TGF-β-
mediated apoptosis. Achaete-scute family bHLH transcription factor 1 (ASCL1; also known as ASH1), a Smad-dependent
target of TGF-β, was found to induce survival in small cell lung cancer cells. Thus, EZH2 promoted small cell lung cancer
progression by suppressing the TGF-β-Smad-ASCL1 pathway.
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Cell Discovery (2015) 1, 15026; doi:10.1038/celldisc.2015.26; published online 22 September 2015

Introduction

Lung cancer causes mortality more than any other
type of cancer [1]. Lung cancer is mainly classified as
either small cell lung cancer (SCLC) or non-small cell
lung cancer (NSCLC), with incidences of ~ 15 and 84%,
respectively [2]. SCLC, high-grade neuroendocrine
tumors, has been reported to have the worst prognosis,
with a 5-year survival rate of ~ 5% [3]. Those patients
are mostly treated with anti-cancer drugs and/or
radiation. However, a primary clinical issue is the
acquisition of chemoresistance in SCLC cells [4]. Thus,
it is essential to develop novel strategies for SCLC
therapy. For successful drug discovery, it is important
to find molecular mechanism(s) that maintain survival
in SCLC cells.

Transforming growth factor (TGF)-β is a cytokine
that exerts many biological functions. TGF-β binds to
two different types of serine-threonine kinase receptors,
termed type II (TβRII) and type I receptors (TβRI is
also known as activin receptor-like kinase 5, ALK-5)
expressed on the cell surface. Upon ligand binding,
two TβRIIs and two TβRIs form a heterotetrameric
complex, and this activated complex phosphorylates
the receptor-regulated Smads (R-Smads), Smad2 and
Smad3. The phosphorylated R-Smads form complexes
with their common-partner Smad (Co-Smad), Smad4,
and the R-Smad/Co-Smad complex translocates to the
nucleus. Then, the complexes associate with various
transcription factors and transcriptional co-activators
or co-repressors, which in turn, regulate transcription
of a wide spectrum of target genes [5–7].

TGF-β has been reported to have bi-directional roles
in cancer progression [8]. TGF-β induces cell cycle
arrest at G1 by regulating expression of cyclin-
dependent kinase inhibitor 1 A (CDKN1A, also
known as p21), CDKN2B (also known as p15),
the v-myc avian myelocytomatosis viral oncogene
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Figure 1 TGF-β signal transduction is attenuated in several SCLC cells due to decreased expression of TβRII. (a and b) SCLC
and NSCLC cells were stimulated with TGF-β for 2 h. (a) Immunoblot of cell lysates probed with the indicated antibodies;
(b) qRT-PCR analysis of SMAD7 expression. Data represent mean± s.d. **Po0.01; ***Po0.001. (c) qRT-PCR analysis shows
expression of TGF-β signaling components in SCLC and NSCLC cells. Data represent mean± s.d. (d) Comprehensive gene
expression analysis from the NCBI GEO database (GSE32036) shows expression profiles of TGF-β signaling components in
normal lung epithelial cells (n = 59), SCLC cells (n = 29) and NSCLC cells (n = 119). Raw data were normalized by quantile
algorithm. The color indicates the distance from the median of each row. GEO, gene expression omnibus; NCBI, National Center
for Biotechnology Information; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; TGF-β, transforming growth
factor-β; qRT-PCR, quantitative real-time reverse transcription-PCR.
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homolog (MYC), and cell division cycle protein 25A
(CDC25A) [9]. TGF-β also induces apoptosis in several
types of cancer cells through multiple mechanisms
[9, 10]. In ~ 80% of NSCLC tissues, expression of
TβRII was lower than that of normal lung tissues [11].
It was also shown that restoration of TβRII into
NSCLC cells inhibited their growth in vitro and in vivo.
Conversely, TGF-β also plays critical roles in cancer
metastasis via the epithelial-mesenchymal transition
(EMT) [12]. Once EMT occurs in NSCLC cells, they
acquire mesenchymal characteristics, which results in
invasion and metastasis [13]. In NSCLC cells, thyroid
transcription factor-1 (TTF-1) suppresses TGF-β-
mediated EMT and inhibits cell migration and inva-
sion [14]. Thus, the roles of TGF-β in the progression of
NSCLC has been intensively studied. In contrast to
NSCLC, the roles of TGF-β in the progression of
SCLC have not been fully investigated. A few studies
have reported that expression of TGFBR2 (the gene that
encodes TβRII) was decreased in some SCLC cells, but
the mechanisms were not detailed [15, 16]. Therefore,
the present study aimed to clarify the roles of TGF-β in
SCLC cells, to identify the mechanisms involved in the
downregulation of TβRII, and to identify novel TGF-β
target genes in this type of cancer.

Results

Downregulation of TβRII expression in SCLC cells
First, we investigated whether TGF-β signals were

transduced in SCLC cells. Phosphorylation of Smad2
and induction of SMAD7, one of the direct targets of
TGF-β, were examined in human SCLC cells (H146,
H82, H209 and H345) and in NSCLC cells (A549
and H441) with immunoblotting and quantitative
real-time reverse transcription-PCR (qRT-PCR)
analyses. TGF-β-mediated phosphorylation of Smad2
was observed in H146 cells as well as in A549 and
H441 cells (Figure 1a and data not shown, see Isogaya
et al [17]). Induction of SMAD7 by TGF-β was also
observed in H146, A549 and H441 cells (Figure 1b).
However, in the other SCLC cells, these responses
were not induced by TGF-β. A qRT-PCR analysis
also showed that expression of TGFBR2 and SMAD3
was decreased in SCLC cells, but other TGF-β signal-
ing components, including SMAD2, SMAD4 and
TGFBR1 (the gene that encodes TβRI), were expressed
at normal levels in these cells (Figure 1c). These
expression profiles were confirmed with comprehensive
gene expression analysis data from the gene expression
omnibus (GEO) of the National Center for Bio-
technology Information (NCBI) with statistically

significant differences (Figure 1d, and Supplementary
Figure S1). Since TGF-β signal is transduced even in
the low expression levels of Smad3 if Smad2 is
expressed in H146 cells (Figure 1b), we assumed that
TGF-β signal transduction was attenuated in SCLC
cells through the decreased expression of TβRII, and
therefore, we decided to focus on the roles of TβRII in
SCLC in the present study.

TβRII suppresses SCLC tumor growth through
TGF-β-induced apoptosis

To examine the roles of TGF-β in SCLC progres-
sion, wild-type TβRII was introduced into H82 cells
(H82-TβRII cells) or H345 cells (H345-TβRII cells)
with lentiviral vectors. Both phosphorylation of Smad2
and induction of SMAD7 by TGF-β were observed in
TβRII-expressing cancer cells, but not in control SCLC
cells that expressed green fluorescent protein (GFP)
alone (H82-GFP cells and H345-GFP cells; Figure 2a
and b). Thus, TGF-β signal transduction was success-
fully recovered by expressing TβRII. These cells were
subcutaneously xenografted into nude mice to examine
tumor growth in vivo. Tumor formation was decreased
in mice injected with H82-TβRII cells and H345-TβRII
cells, compared with mice xenografted with the control
cells (Figure 2c). Although the expression of TGFBR2
mRNA was low (Figure 1c) and the TβRII protein was
not detected by immunoblot analysis (data not shown),
Smad-dependent TGF-β signal was transduced in
H146 cells (Figures 1a and b), suggesting that a low
level of TβRII protein may be functioning in these cells.
Thus, a GFP-tagged dominant-negative form of TβRII
(dnTβRII) was overexpressed in H146 cells (H146-
dnTβRII cells; Supplementary Figure S2a). Both phos-
phorylation of Smad2 and induction of SMAD7 were
inhibited by the introduction of dnTβRII (Supplemen-
tary Figures S2b and S2c). When these cells were sub-
cutaneously xenografted into mice, tumor formation
was accelerated in mice injected with H146-dnTβRII
cells compared with those injected with H146-GFP
cells (Supplementary Figure S2d). These results
suggested that TGF-β may act as a tumor suppressor
in vivo. We assessed angiogenesis in these tumor tissues
by staining for CD31 expression (also known as
platelet/endothelial cell adhesion molecule 1,
PECAM1). However, there was no remarkable differ-
ence in CD31 expression between H146-GFP and
H146-dnTβRII cells xenografted tissues (Supplementary
Figure S2e). This finding suggested that tumor
suppression was mediated by the effect of TGF-β on
SCLC cells, not by its effect on angiogenesis in the
tumor microenvironment.
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We postulated that TGF-β might suppress the pro-
liferative activity of SCLC cells. When we restored
TβRII expression in these cells, TGF-β significantly
suppressed the in vitro proliferation of H82 cells and
H345 cells (Figure 2d). Moreover, dnTβRII expression
canceled TGF-β-mediated growth inhibition in H146
cells (Supplementary Figure S2f). Cell cycle analysis
revealed that TGF-β increased the sub-G0/G1 popu-
lation in H345-TβRII cells compared with H345-GFP
cells (Figure 2e). TGF-β also induced the cleavage of
poly (ADP-ribose) polymerase (PARP) in H345-TβRII
cells (Figure 2f), which suggested that TGF-β
decreased the number of SCLC cells by inducing
apoptosis. TGF-β is also known to suppress prolifera-
tion of many types of cells by regulating CDK activa-
tors or inhibitors. We found that expression levels of
CDKN1A, CDKN2B, MYC or CDC25A in H345-
TβRII cells were not markedly altered by TGF-β
(Figure 2g). However, in human keratinocyte
HaCaT cells, TGF-β upregulated the expression of
CDKN1A and CDKN2B and downregulated the
expression of MYC and CDC25A. Moreover, expres-
sion of retinoblastoma protein (pRB) was not detected
in H345 cells (Figure 2f). These results suggested that
TGF-β suppressed proliferation of SCLC cells by
inducing apoptosis, but not by regulating the cell cycle.

Importance of EZH2-mediated silencing of TβRII for
SCLC tumor formation

Histone methyltransferase mediates methylation on
lysine or arginine residues of histones of the H3 and H4
families to regulate transcription of various genes [18].
We postulated that, in SCLCs, the expression of TβRII
might be epigenetically silenced through histone
modification by histone methyltransferases. Therefore,
we investigated histone methyltransferase expression in
SCLC cells. Comprehensive gene expression analyses
from the NCBI GEO data set revealed that SCLC cells

and SCLC tissues displayed higher expression of the
enhancer of zeste 2 (EZH2), SUZ12 polycomb
repressive complex 2 subunit (SUZ12), and embryonic
ectoderm development (EED) than normal lung epi-
thelial cells and normal lung tissues, respectively
(Figure 3a, and Supplementary Figure S3). We also
found that their expressions were increased in SCLC
cells but not in NSCLC cells (Figure 3b and c). These
molecules associate to form the polycomb repressive
complex 2 (PRC2), which inhibits gene transcription
through methylation of lysine 27 in histone H3
(H3K27me3). High expression of H3K27me3 was
observed in SCLC cells, which was attenuated by the
treatment with an EZH2 inhibitor, GSK343
(Figure 3c), suggesting that PRC2 is implicated in
transcriptional regulation of several genes in SCLC
cells. H146 cells showed different expression profiles of
the PRC2 complex from those in the other SCLC cells.
The expression level of EZH2 protein was similar to
those in the other SCLC cells, while the expression
levels of EZH2, EED and SUZ12 mRNAs were lower
than those in the other SCLC cells (Figures 3b and c).

In order to directly examine whether EZH2 is
involved in downregulation of TGFBR2, chromatin
immunoprecipitation (ChIP)-qRT-PCR analysis using
anti-EZH2 antibody was performed (Figure 4a). EZH2
bound to the several loci in TGFBR2 in H345 cells.
Moreover, transcription of TGFBR2 mRNA was
increased in GSK343-treated SCLC cells (Figure 4b).
When EZH2 expression was silenced in H345 cells with
a short hairpin RNA (shRNA) (H345-shEZH2), the
knockdown of EZH2 led to an increase in TGFBR2
expression (Figure 4c); in turn, TGF-β induced Smad2
phosphorylation and SMAD7 expression (Figures 4d
and e). These results suggested that EZH2 played a
critical role in downregulating TβRII in SCLC cells.

We also investigated whether EZH2 was important
for TGF-β-mediated apoptosis and tumor formation in

Figure 2 TβRII suppresses SCLC tumor growth through TGF-β-induced apoptosis. (a and b) SCLC cells were infected with lentivirus
vectors encoding GFP (H82-GFP and H345-GFP) or TβRII (H82-TβRII and H345-TβRII). Cells were stimulated with TGF-β for 2 h.
(a) Immunoblots of cell lysates probed with the indicated antibodies. (b) qRT-PCR analysis of SMAD7 expression. Data represent
mean± s.d. ***Po0.001. (c) Mice received subcutaneous transplantations of H82-GFP (n = 15) and H82-TβRII cells (n = 12) or
H345-GFP (n =7) and H345-TβRII cells (n =9), and tumor volumes were measured 16 days (H82) or 17 days (H345) after transplantation.
Data represent mean± s.e.m. *Po0.05; **Po0.01. (d) Cell proliferation assay. SCLC cells were stimulated with TGF-β for 6 days (H82) or
12 days (H345). Data represent mean± s.d. ***Po0.001. (e) Cell cycle analysis. (left panels) H345-GFP and H345-TβRII cells were
unstimulated (top panels) or stimulated (bottom panels) with TGF-β for 12 days; the number of cells in each cell cycle stage is shown (color
coding shown in right panel). (right panel) Percentage of cells in each cell cycle stage. (f) Immunoblots of cell lysates probed with the
indicated antibodies. SCLC and control HaCaT cells were stimulated with TGF-β for 48 h (HaCaT) or 12 days (H345). (g) qRT-PCR analysis
shows cell cycle-related gene expression. H345-GFP, H345-TβRII and HaCaT cells were stimulated with TGF-β for 2 h (MYC) or 24 h
(CDKN1A, CDKN2B and CDC25A). Data represent mean± s.d. *Po0.05; **Po0.01; ***Po0.001. GFP, green fluorescent protein;
SCLC, small cell lung cancer; TGF-β, transforming growth factor-β; qRT-PCR, quantitative real-time reverse transcription-PCR.
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H345 cells. Cell cycle analysis showed that TGF-β
increased the sub-G0/G1 population in H345-shEZH2
cells, but not in H345-shNTC cells (Figure 4f).
Moreover, the ability of H345-shEZH2 cells to form
tumors was attenuated, compared to that of
H345-shNTC cells (Figure 4g).

ASCL1 is negatively regulated by TGF-β in a
Smad-dependent manner

We next attempted to identify TGF-β target
genes that were involved in SCLC cell apoptosis.

ChIP-sequencing (ChIP-seq) analysis was performed
with an anti-Smad2/3 antibody in H345-TβRII cells
to identify comprehensively Smad2/3-regulated genes.
The characteristics of SCLC cells are thought to
depend on the expression of several neuroendocrine-
related genes, including the achaete-scute family basic
helix-loop-helix transcription factor 1 (ASCL1, also
known as ASH1), synaptophysin (SYP), neural cell
adhesion molecule (NCAM) and v-myc avian myelo-
cytomatosis viral oncogene lung carcinoma derived
homolog (MYCL) [19]. Therefore, we focused on
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Figure 3 EZH2 is highly expressed in SCLC cells. (a) Expression profiles of PRC2 components in SCLC cells, based on the data
in Figure 1d. The color indicates the distance from the median of each row. (b) qRT-PCR analysis shows expression of PRC2
components in SCLC and NSCLC cells. Data represent mean± s.d. (c) Immunoblot of cell lysates probed with the indicated
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3 days. (right panel) Relative expression of EZH2 protein in each cell without GSK343 was quantified. NSCLC, non-small cell lung
cancer; SCLC, small cell lung cancer; qRT-PCR, quantitative real-time reverse transcription-PCR.
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Smad2/3 binding to these gene loci. ChIP-seq analysis
showed that, in the presence of TGF-β, Smad2/3 sig-
nificantly bound to two loci of the ASCL1 gene and
several loci of the NCAM1 gene, but not to the SYP

locus orMYCL locus, in H345-TβRII cells (Figure 5a).
Among the binding regions in the NCAM1 locus,
Smad2/3 strongly bound to the first intron. Compre-
hensive gene expression analysis from the NCBI GEO
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data sets showed that the mRNA levels of each of these
neuroendocrine-related genes were elevated in SCLC
cells and SCLC tissues, except for SYP in the SCLC
tissue (Supplementary Figures S4a and S4b). Next,
TGF-β regulation of these genes was assessed by qRT-
PCR analysis (Figure 5b and Supplementary Figures
S5a and S5b). In H345-TβRII cells, treatment with
TGF-β caused ASCL1 expression to decrease within
1 h, and it reached a minimum at 4 h. TGF-β also
decreased ASCL1 expression within 2 h in H146 cells.
However, MYCL, NCAM1 and SYP were not
regulated by TGF-β in these cells. Moreover, TGF-β
suppressed ASCL1 protein expression in SCLC cells
(Figure 5c). In accordance with a previous analysis
(Supplementary Figure S4a), in NSCLC cells, ASCL1
was only weakly expressed, and it was not regulated by
TGF-β (A549 and H441) (Supplementary Figure S5c).
These results suggested that ASCL1 was a TGF-β
target, and regulation ofASCL1 by TGF-βwas specific
for SCLC cells.

We then focused on the molecular mechanism
underlying TGF-β-mediated transcriptional regulation
of ASCL1 in SCLC cells. ChIP-qRT-PCR analysis was
performed to confirm whether Smad2/3 bound in
the ASCL1 locus. We found that TGF-β-stimulated
H345-TβRII cells showed a sixfold-enrichment of
Smad2/3 binding to these loci, compared with those to
hemoglobin beta (HBB) locus (Figure 5d). In addition
to the recovery of TβRII expression and TGF-β signal
transduction in H345-shEZH2 cells (see Figures 4d
and e), ASCL1 expression was decreased in these cells
(Figure 5e). Next, cycloheximide (CHX), a de novo
protein synthesis inhibitor, was used to investigate
whether ASCL1 expression was directly or indirectly
regulated by TGF-β. Even in the presence of CHX,

TGF-β could upregulate SMAD7 and downregulate
ASCL1 expression (Figure 5f). This result suggested
that, similar to SMAD7, the expression of ASCL1 was
directly regulated by TGF-β.

TGF-β can activate both Smad and non-Smad
pathways. To determine which pathway played a
predominant role in regulating ASCL1 expression, we
used a shRNA (shSmad4) to silence the expression of
Smad4 in H345-TβRII cells. The knockdown of Smad4
attenuated the induction of SMAD7 by TGF-β
(Figures 5g and h). Moreover, TGF-β-mediated
downregulation of ASCL1 expression was canceled in
H345-TβRII cells by shSmad4, but not in cells infected
with negative control shRNA (shNTC). These results
suggested that TGF-β directly suppressed ASCL1
expression in a Smad-dependent manner.

ASCL1 promotes survival of SCLC cells
Next, we determined whether negative regulation

of ASCL1 transcription was important for TGF-β-
mediated apoptosis of SCLC cells. When expression of
ASCL1 was silenced in H345 cells with shRNA
(shASCL1) (Figure 6a), cell growth was inhibited
by the induction of apoptosis (Figures 6b and c).
Conversely, when ASCL1 was exogenously introduced
by transferring lentiviral vectors into H345-TβRII cells,
cell cycle analysis revealed that the TGF-β-mediated
increase in the sub-G0/G1 population was attenuated
(Figures 6d and e). These results suggested that ASCL1
had an important role in enabling SCLC cells to escape
from TGF-β-induced apoptosis.

Next, we performed subcutaneous transplantations
in mice to determine whether knocking down ASCL1
expression would suppress tumor growth or formation.
We knocked down ASCL1 expression by treating cells

Figure 4 EZH2-mediated silencing of TβRII is required for SCLC tumor formation. (a) qRT-PCR analysis post-immunoprecipitation with
anti-EZH2 antibody shows EZH2 enrichment in the TGFBR2 locus of H345 cells. Hypoxanthine guanine phosphoribosyl transferase1
(HPRT1) was used as the negative control. Data represent mean± s.d. TGFBR2 locus 1, chromosome 3: 30606416–30606492 bp;
TGFBR2 locus 2, chromosome 3: 30605676–30605771 bp; TGFBR2 locus 3, chromosome 3: 30604616–30604714 bp; TGFBR2 locus
4, chromosome 3: 30603967–30604061 bp. *Po0.05; **Po0.01. (b) qRT-PCR analysis shows TGFBR2 expression. SCLC cells were
treated with GSK343 (10 μM) for 7 days. Data represent mean± s.d. (c) qRT-PCR analysis shows EZH2 and TGFBR2 expression. H345
cells were infected with lentivirus vectors with control shRNA (H345-shNTC) or shRNA that targeted EZH2 (H345-shEZH2). Data
represent mean± s.d. ***Po0.001. (d) Immunoblot of cell lysates from cells in (c) stimulated with TGF-β for 2 h and probed with the
indicated antibodies. H345-GFP cells and H345-TβRII cells were negative and positive controls, respectively. (e) qRT-PCR analysis
shows SMAD7 expression. Cells in (c) were stimulated with TGF-β for 4 h. Data represent mean± s.d. H345-GFP cells and H345-TβRII
cells were negative and positive controls, respectively. **Po0.01; ***Po0.001. (f) Cell cycle analysis of cells in (c) stimulated with
TGF-β for 12 days. (left panels) The number of cells in each cell cycle stage is shown (color coding shown in right panel). (right panel)
Percentage of cells in each cell cycle stage. (g) Mice received subcutaneous transplants of H345-shNTC cells (n = 7) or H345-shEZH2
#1 cells (n = 7). (left panels) Representative photographs 4 weeks after injection. Arrow heads indicate tumors. (right panel) Tumor
volumes at the indicated time points. Data represent mean± s.e.m. **Po0.01. SCLC, small cell lung cancer; qRT-PCR, quantitative
real-time reverse transcription-PCR.
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with small interfering RNA (siRNA) that targeted
ASCL1 (siASCL1). Control cells were treated with
negative control siRNA (siNTC) (Figure 6f). The
siNTC treated-H345 cells formed tumors in six out of

seven mice, but siASCL1-treated H345 cells formed
tumors in only one out of seven mice (Figure 6g). These
results suggested that ASCL1 was involved in SCLC
tumor formation.
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EZH2-mediated silencing of TβRII in SCLC tissues
Finally, we compared the expression of EZH2,

TβRII and ASCL1 in SCLC tissues andNSCLC tissues
to that in normal lung tissues (Supplementary Table S1).
Immunohistochemical analysis showed that EZH2 was
strongly expressed in the nuclei of all SCLC cells
(Figure 7a). However, its expression was not observed
in those of normal lung epithelial cells. In contrast,
TβRII was weakly expressed in SCLC cells, while it
was expressed on the surface of normal lung epithelial
cells (Figure 7a). Although ASCL1 was also detected in
nuclei of some SCLC cells, it was not observed in most
of normal lung epithelial cells and other lung cancer
cells (Figure 7a and Supplementary Figure S6). The
expression profiles of EZH2, TβRII and ASCL1 are
shown in Figure 7b. The number of positive samples,
grouped according to expression frequency, is shown in
Supplementary Table S2. When all lung tissues in
Figure 7 were considered, there was a negative corre-
lation between EZH2 and TβRII and a positive cor-
relation between EZH2 and ASCL1 (Supplementary
Table S3). These results supported the notion that
EZH2 had a role in epigenetic silencing of TβRII in
human SCLC tissues, and that the loss of TβRII
upregulated the expression of ASCL1.

Discussion

The present study clarified the tumor suppressive
role of TGF-β in SCLCs. We showed that TβRII was
expressed in normal lung epithelial cells, and that it
inhibited abnormal cell growth by downregulating
ASCL1 in a Smad-dependent manner (Figures 8a
and b). However, EZH2 was highly expressed in
SCLC cells, which epigenetically attenuated the
expression of TβRII; thus, TGF-β signaling was

suppressed, which resulted in high ASCL1 levels and
progression of SCLC. These results suggested new
therapeutic strategies for targeting EZH2 and ASCL1
in SCLC therapy.

We demonstrated that TGF-β inhibited prolifera-
tion of SCLC cells in vivo and in vitro. The SCLC cells
used in this study carried mutations in the DNA
binding region of TP53, and they did not express pro-
apoptotic pRB, except for the H209 cells (Figure 2f,
data not shown) [20]. Thus, TGF-β-mediated apoptosis
in SCLC cells may occur independently of p53 and
pRB. TGF-β causes cell cycle arrest at the G1 phase or
apoptosis in many types of cancer cells [9]. For cell
cycle arrest at the G1 phase, TGF-β regulates p21, p15,
c-Myc and CDC25A in various types of cells, but it did
not regulate these genes in SCLC cells. TGF-β was also
reported to induce apoptosis by inducing expression of
BCL2-like 11 (BCL2L11, also known as Bim), growth
arrest and DNA-damage-inducible beta (GADD45B)
and inositol polyphosphate-5-phosphatase 145 kDa
(INPP5D, also known as SHIP) [9]. In contrast, our
comprehensive gene expression analysis and ChIP-seq
analysis showed that the TGF-β-mediated apoptosis in
SCLC cells appeared to be independent of those genes
(data not shown). Based on these observations, we
attempted to identify novel target(s) for TGF-β, which
could regulate survival in SCLC cells.

In many types of cancers, TβRII is dysfunctional
through either genetic mutation or transcriptional
repression [21–23]. The TGFBR2 locus was shown to
be mutated in the 10-adenine (A10) tract of exon 3 and
serine-threonine kinase domain in some cancers
[21–24]. Previous studies demonstrated that genetic
mutations in the TGFBR2 A10 tract or expression of a
truncated TβRII were not common in SCLC [15, 25].
Moreover, loss of heterozygosity in chromosome 3,

Figure 5 ASCL1 is negatively regulated by TGF-β in a Smad-dependent manner. (a) ChIP-seq analysis using anti-Smad2/3 antibody.
H345-TβRII cells were stimulated with TGF-β for 1.5 h. Arrows indicate transcription start sites and direction. (b) qRT-PCR analysis
shows SMAD7 and ASCL1 expression in H345-GFP and H345-TβRII cells after TGF-β stimulation for the indicated times. Data represent
mean± s.d. (c) Immunoblot of cell lysates probed with the indicated antibodies. H345-GFP and H345-TβRII cells were stimulated with
TGF-β for 12 days. (d) qRT-PCR analysis post-immunoprecipitation with anti-Smad2/3 antibody shows Smad2/3 enrichment. H345-GFP
and H345-TβRII cells were stimulated with TGF-β for 1.5 h. Hemoglobin beta (HBB) was used as a negative control. Data represent
mean± s.d. ASCL1 locus 1, chromosome 12: 103351326–103352062 bp; ASCL1 locus 2, chromosome 12: 103351326–103352062 bp.
*Po0.05; **Po0.01. (e) qRT-PCR analysis shows ASCL1 expression in indicated cells. Data represent mean± s.d. ***Po0.001.
(f) qRT-PCR analysis shows SMAD7 and ASCL1 expression. H345-GFP and H345-TβRII cells were stimulated with TGF-β for 4 h after
pre-treatment with CHX (3 μM) for 24 h. Data represent mean± s.d. ***Po0.001. (g) qRT-PCR analysis shows SMAD4 expression.
H345-GFP and H345-TβRII cells were infected with lentivirus vector with control shRNA (shNTC) or shRNA that targeted Smad4
(shSmad4). Data represent mean± s.d. (h) qRT-PCR analysis shows SMAD7 and ASCL1 expression. Cells in (g) were stimulated with
TGF-β for 4 h. Data represent mean± s.d. *Po0.05; ***Po0.001. ChIP, chromatin immunoprecipitation; TGF-β, transforming growth
factor-β; qRT-PCR, quantitative real-time reverse transcription-PCR.
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including in the TGFBR2 locus, was not observed in
SCLC [25]. Those studies indicated that genetic muta-
tion was not a common mechanism for the dysfunction

of TβRII in SCLC. In contrast, transcriptional
repression of TGFBR2 was reported in retinoblastoma
and hematopoietic malignancies [23, 26].
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In this study, we showed that PRC2 components
were highly expressed in most of the SCLC cells, and
that increased EZH2 expression caused silencing of
TβRII expression in SCLC cells. Sato et al [27].
reported that many kinds of genes, such as JUB,
PTRF, DMKN, AXL and EPHB4, were identified as
targets for EZH2 in SCLC cells by ChIP-seq analysis.
They also found that introduction of JUB inhibited
cellular growth, suggesting that suppression of these
genes by EZH2 other than TGFBR2 might be involved
in the growth of SCLC. Genetic alternations in TP53
and RB1 are commonly observed in patients with
SCLC; consequently, these were considered as early
events that triggered SCLC development [28–30].
EZH2 expression was upregulated in Rb1 knockout
MEF cells [31]. Based on those studies, our finding that
EZH2 was highly expressed in SCLC suggests that
EZH2 is an oncogenic factor. EZH2 was also reported
to be highly expressed in breast cancer and prostate
cancer [32, 33]; moreover, EZH2 inhibitors have been
considered a promising therapy for certain types of
tumors [34, 35]. A specific EZH2 inhibitor induced
TGFBR2 expression (Figure 4b); therefore, EZH2
inhibitors may also effectively eradicate SCLC cells
by restoring TβRII expression, and thus, enabling
TGF-β-mediated apoptosis.

TGF-β-target genes have been comprehensively
identified in many kinds of tumors, including liver
cancer, pancreatic cancer, NSCLC and breast cancer
[17, 36–38], but rarely in neuroendocrine tumors.
Identification of novel target(s) may improve our
understanding of SCLC cell characteristics. In the
present study, our comprehensive gene expression
analysis and ChIP-seq analysis demonstrated that the
TGF-β-induced apoptosis in SCLC cells could be
attributed to negative regulation of ASCL1 by TGF-β.
It was previously shown that ASCL1 expression was
inhibited by Notch signaling in SCLC cells [39]. This

report was the first to reveal the mechanism underlying
TGF-β regulation of ASCL1 expression. ASCL1, a
member of the basic helix-loop-helix family transcrip-
tion factors, has a crucial role in the differentiation of
neural stem cells into neuronal lineages [40]. ASCL1 is
also expressed in neuroendocrine tumors, especially in
cases with poor prognoses [41–48]. In addition, several
genes were identified as targets for ASCL1 [49]. Among
them, miRNA-375 (miR-375) was supposed to inacti-
vate Yes-associated protein (YAP)1 in SCLC [50]. In
H345-TβRII cells, TGF-β exhibited a downgulation of
ASCL1, followed by upregulation of primary-miR 375
(pri-miR-375) (data not shown). Thus, our present
findings suggested that the TGF-β-Smad-ASCL1
pathway is important in SCLC progression, and that it
may also have an important role in other neuroendo-
crine tumors.

Materials and Methods

Cell culture and reagents
Human SCLC H82, H146, H209, H345 cells and human

NSCLC A549 and H441 cells were purchased from American
Type Culture Collection (ATCC, Manassas, VA, USA) and
cultured as recommended. Human skin keratinocyte
HaCaT cells were previously described [51]. TGF-β3 (R & D
Systems, Minneapolis, MN, USA) was reconstituted in 4 mM

HCl and 0.1% bovine serum albumin (BSA, Sigma-Aldrich,
St Louis, MO, USA) and used at a concentration of 1 ngml− 1.
GSK343 (Sigma-Aldrich) and CHX (Sigma-Aldrich) were
reconstituted in dimethyl sulfoxide. See also Supplementary
Information.

Cell proliferation assay
H82 cells (1 × 104 cells), H146 cells (3 × 104 cells) and H345

cells (3 × 104 cells) were seeded on 12-well plates, and then
stimulated with TGF-β. Cell proliferation was evaluated with
Cell Count Reagent SF (Nacalai Tesque, Kyoto, Japan).
Absorbance at 450 nm was measured with a Model 680

Figure 6 Downregulation of ASCL1 is important for TGF-β-mediated apoptosis in SCLC cells. (a) qRT-PCR analysis shows ASCL1
expression. H345 cells were infected with lentivirus vectors encoding control shRNA (shNTC) or shRNA that targeted ASCL1 (shASCL1).
H345-TβRII cells stimulated with TGF-β for 48 h served as control. Data represent mean± s.d. *Po0.05; ***Po0.001. (b) Cell
proliferation assay. Cells in (a) were incubated for 12 days. Data represent mean± s.d. ***Po0.001. (c) Cell cycle analysis of cells in (b).
(left panels) The number of cells in each cell cycle stage is shown (color coding shown in right panel). (right panel) Percentage of cells in
each cell cycle stage. (d) Immunoblot of cell lysates probed with the indicated antibodies. H345-GFP and H345-TβRII cells were infected
with lentivirus vectors encoding GFP alone or ASCL1, and then stimulated with TGF-β for 12 days. (e) Cell cycle analysis of cells in (d).
(left panels) The number of cells in each cell cycle stage is shown (color coding shown in right panel). (right panel) Percentage of each cell
cycle stage in indicated cells is shown. (f) qRT-PCR analysis shows ASCL1 expression in H345 cells transfected with control siRNA
(siNTC) or siRNA that targeted ASCL1 (siASCL1). ASCL1 expression was determined 72 h post-transfection. Data represent mean± s.d.
***Po0.001. (g) Mice received subcutaneous transplants of cells in (f) (siNTC, n = 7, siASCL1, n = 7). (Left panels) Representative
photographs; (right panel) incidence of tumor formation 2 weeks after injection. Arrow heads indicate tumors. GFP, green fluorescent
protein; SCLC, small cell lung cancer; TGF-β, transforming growth factor-β; qRT-PCR, quantitative real-time reverse transcription-PCR.
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Figure 7 Expression profiles of EZH2, TβRII and ASCL1 in human normal lung tissues and human lung cancer tissues. (a) Lung
tissues were stained with HE, anti-EZH2 antibody, anti-TβRII antibody and anti-ASCL1 antibody. Representative images show
normal tissues (top and third rows) and SCLC tissues (second and bottom rows) from two patients, as indicated. (Insets) ASCL1
staining in boxed region is shown at high magnification. Scale bars are 30 μm. (b) Expression profiles of samples in (a) and
Supplementary Figure S6 were analyzed by defining scores (s) that corresponded to the frequency of positive cells (f) in each
sample, as follows: s = 4 for 80⩽ f⩽ 100; s = 3 for 50⩽ fo80; s = 2 for 20⩽ fo50; s = 1 for 0o fo20; s = 0 for f = 0. Data
represent means. *Po0.05; ***Po0.001. HE, hematoxylin-eosin; LCNEC, large cell neuroendocrine carcinoma; normal, normal
lung; SCLC, small cell carcinoma; Ad, adenocarcinoma; Sq, squamous cell carcinoma.

Fumihiko Murai et al.

13

Cell Discovery | www.nature.com/celldisc

http://www.nature.com/celldisc


Microplate Reader (Bio-Rad, Melville, NY, USA), followed by
subtraction of absorbance at 595 nm.

In vivo tumor growth assay
In vivo experiments were performed as previously described

[52]. The protocols were approved by the Animal Ethics
Committee of The University of Tokyo (approval number:
2186). BALB/c nu/numice (4 weeks, male) were purchased from
Charles River Laboratories (Yokohama, Japan). Cells were
resuspended in culture media supplemented with 50% BD
Matrigel (BD Bioscience, San Jose, CA, USA), and then sub-
cutaneously injected into mice (3 × 106 cells in 100 μl per mouse).
For xenograft transplantations, H345 cells were treated with
siRNA against ASCL1 for 72 h in vitro, followed by sub-
cutaneous transplantation of ASCL1-silenced cells into mice.

Gene expression analysis
Total RNA was extracted with the RNeasy Mini Kit

(Qiagen, Valencia, CA, USA). Complementary DNA was syn-
thesized with the random hexamer protocol described in the
PrimeScript II 1st strand complementary DNA Synthesis Kit
(Takara, Otsu, Japan). For qRT-PCR analysis, gene expression
was quantified with the StepOne Plus Real time-PCR System
(Life Technologies, Tokyo, Japan) and the Fast SYBR Green
Master Mix (Life Technologies). The expression level of each
gene was normalized to that of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). Primer sequences are shown in
Supplementary Table S4.

Immunoblotting
Immunoblotting was previously described [53, 54]. Cells

were lysed in radio-immunoprecipitation assay buffer (50 mM

Tris-HCl (pH 8.0), 150mM NaCl, 1% Nonidet P-40, 0.1% SDS,
and 0.5% sodium deoxycholate) with the Complete Protease
Inhibitor Cocktail (Roche Diagnostics, Tokyo, Japan) and an
EDTA-free phosphatase inhibitor cocktail (Nacalai Tesque).
Protein concentrations were quantified with the BCA Protein
Assay (ThermoFisher Scientific, Yokohama, Japan). Equal
amounts of total protein were applied to SDS-polyaclylamide

gel electrophoresis, and transferred to Fluoro Trans W mem-
brane (Pall, East Hills, NY, USA). Chemiluminescence images
were captured on ImageQuant LAS4000 (Fujifilm, Tokyo,
Japan). Image J software (NIH) was used to quantify blot band
intensities in Figure 3c. See also Supplementary Information.

Lentiviral vector construction and lentivirus production
A lentiviral vector system (provided by Dr Hiroyuki

Miyoshi, RIKEN) was used to induce specific gene introduction
and knockdown. For gene introduction, we inserted com-
plementary DNAs encoding the human wild-type TGFBR2,
TGFBR2 with a truncated intracellular domain and a carboxy-
terminal GFP tag (dnTβRII), and human wild-type ASCL1,
into the entry vector, pENTR201 [55]. Then, pENTR201
vectors were inserted into the lentiviral destination vector,
pCSII-EF-RfA or pCSII-CMV-RfA, as previously described
[56]. Vectors encoding GFP were also generated as controls.

Similarly, shRNAs designed to knockdown a specified gene
were inserted into the entry vector pENTR4-H1. Then,
pENTR4-H1 vectors that carried shRNAs specific for human
ASCL1 or EZH2 were inserted into the lentiviral destination
vector, pCS-RfA-EG. The shRNA target sequences for
gene knockdowns were obtained from Dharmacon siDESIGN
Center (GE Healthcare, Piscataway, NJ, USA; Supplementary
Table S5). Lentiviral vectors were produced as described pre-
viously [53]. Culture supernatant was concentrated with Lenti-X
Concentrator (Clontech, Palo Alto, CA, USA), then used for
lentiviral vector infections.

siRNA
An Accell-siRNA SMARTpool specific for human ASCL1

was purchased from Dharmacon (GE Healthcare), and recon-
stituted in 1× siRNA buffer (100 μM, GE Healthcare). The
siRNA target sequences are shown in Supplementary Table S6.
Cells were treated with siRNA at a final concentration of 1 μM.

Cell cycle analysis
After washing with phosphate-buffered saline, cells were

fixed with ice-cold 70% EtOH in phosphate-buffered saline

SCLC cellsNormal lung epithelial cells
TGF-β TGF-β

TβRI
(ALK-5)

TβRI
(ALK-5)

TβRII TβRII

ASCL1

apoptosis
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open chromatin

PRC2

Smad2/3

Smad4

Smad2/3
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EZH2

SUZ12 EED
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Smad2/3
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Smad2/3
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Figure 8 Disruption of TGF-β-mediated tumor suppression in SCLC cells. (a) In normal lung epithelial cells, TGF-β induces
apoptosis through the suppression of ASCL1 expression in a Smad-dependent manner. (b) In SCLC cells, high EZH2 expression
attenuates TβRII expression through histone H3K27 tri-methylation. Disruption of TGF-β signaling elevates ASCL1 expression,
which in turn protects SCLC cells from apoptosis. SCLC, small cell lung cancer; TGF-β, transforming growth factor-β.
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and stored for more than 16 h at − 20 °C. The fixed cells
were resuspended in phosphate-buffered saline containing
0.25 mgml− 1 RNase A, and then incubated at 37 °C for 1 h.
Cells were labeled with 50 μgml− 1 propidium iodide (PI, Life
Technologies) for 30 min at 4 °C; then, cell cycle analysis was
performed with a Gallios Flow Cytometer (Beckman Coulter,
Miami, FL, USA). The distribution of each cell cycle stage was
analyzed with the FlowJo (Tomy Digital Biology, Tokyo,
Japan) Watson Pragmatic cell cycle analysis program.

ChIP-qRT-PCR analysis and ChIP-seq analysis
ChIP was previously described [51, 57]. See also

Supplementary Information. ChIP-qRT-PCR analyses were
performed with the StepOne Plus Real time-PCR System and
FastStart Universal SYBRGreenMaster (Rox) (Roche). Primer
sequences for each gene locus are shown in Supplementary
Table S4.

For ChIP-seq analysis, total amounts of double stranded
DNA were quantified with Qubit dsDNA HS Assay Kits (Life
Technologies). Libraries were prepared with IonXpress Plus
Fragment Library Kit (Life Technologies). Libraries were
quantified with Ion Library Quantification Kit (Life Technolo-
gies). Emulsion PCR and product purification were performed
with Ion PGM Template OT2 400 Kit (Life Technologies). The
amplified samples were sequenced with Ion PGM Sequencer
(Life Technologies) with Ion PGM Hi-Q Sequencing Kit. The
acquired read tags were mapped onto the NCBI hg19 human
genome assembly. Analyses of ChIP-seq data were previously
described [58, 59]. The significant Smad2/3 binding region was
calculated using CisGenome version 2 using default parameters
except for window size (400 bp), cut-off counts (⩾10 reads
(P = 0.023516)), and step size (25 bp). Raw ChIP-seq and peak
call data are available at GEO (GSE63871).

Immunohistochemistry
Immunohistochemistry was previously described [52].

Formalin-fixed, paraffin-embedded human clinical tissues and a
tissue microarray were obtained from patients at the University
of Tokyo Hospital with informed consent. The protocol was
approved by the Research Ethics Committee at the University of
Tokyo, Graduate School of Medicine (approval number:
G2211-(8) and 2381-(4)). Immunohistochemistry was performed
with the Ventana (Roche) or the VECTASTAIN Elite ABC Kit
(Vector Laboratories, Burlingame, CA, USA) for hand-staining.
In hand-staining, sections were deparaffinized in xylene, and
autoclaved in 10 mM citrate buffer (pH 6.0) for 10 min at 121 °C
for antigen retrieval. Endogenous peroxidase was inactivated in
3% H2O2 diluted with methanol for 20min. The sections were
immunostained with primary antibodies, then with secondary
antibody, and subjected to the avidin/biotinylated peroxidase
complex reaction. The immunodetection substrate was 3,3′-
Diaminobenzidine (DAB, Vector Laboratories). Quantification
was performed by counting the number of positive cells in each
sample.

Statistical analysis
Comparisons between samples were performed with the

Student’s t test after the F-test. Comparisons between groups

were performed with the analysis of variance; one-way analysis
of variance (Tukey’s method) was applied to comprehensive
gene expression analyses and immunohistochemical analyses.
The repeated measure analysis of variance was applied to in vivo
experiments. Significant differences were defined as Po0.05.
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