
RESEARCH ARTICLE

A reassessment of the early archaeological

record at Leang Burung 2, a Late Pleistocene

rock-shelter site on the Indonesian island of

Sulawesi

Adam Brumm1*, Budianto Hakim2, Muhammad Ramli3, Maxime Aubert1,4, Gerrit D. van den

Bergh5, Bo Li5, Basran Burhan6, Andi Muhammad Saiful2, Linda Siagian7, Ratno Sardi2,

Andi Jusdi8, Abdullah8, Andi Pampang Mubarak8, Mark W. Moore9, Richard G. Roberts5,10,

Jian-xin Zhao11, David McGahan1, Brian G. Jones12, Yinika Perston9, Katherine Szabó5,
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Abstract

This paper presents a reassessment of the archaeological record at Leang Burung 2, a key

early human occupation site in the Late Pleistocene of Southeast Asia. Excavated originally

by Ian Glover in 1975, this limestone rock-shelter in the Maros karsts of Sulawesi, Indone-

sia, has long held significance in our understanding of early human dispersals into ‘Walla-

cea’, the vast zone of oceanic islands between continental Asia and Australia. We present

new stratigraphic information and dating evidence from Leang Burung 2 collected during the

course of our excavations at this site in 2007 and 2011–13. Our findings suggest that the

classic Late Pleistocene modern human occupation sequence identified previously at

Leang Burung 2, and proposed to span around 31,000 to 19,000 conventional 14C years BP

(~35–24 ka cal BP), may actually represent an amalgam of reworked archaeological
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materials. Sources for cultural materials of mixed ages comprise breccias from the rear wall

of the rock-shelter–remnants of older, eroded deposits dated to 35–23 ka cal BP–and cul-

tural remains of early Holocene antiquity. Below the upper levels affected by the mass loss

of Late Pleistocene deposits, our deep-trench excavations uncovered evidence for an ear-

lier hominin presence at the site. These findings include fossils of now-extinct proboscide-

ans and other ‘megafauna’ in stratified context, as well as a cobble-based stone artifact

technology comparable to that produced by late Middle Pleistocene hominins elsewhere on

Sulawesi.

Introduction

Leang Burung 2 is a limestone rock-shelter site [1] on the Indonesian island of Sulawesi, the

largest and oldest island within the oceanic archipelago (‘Wallacea’) separating continental

Asia (Sunda) from the Pleistocene low-sea level landmass of Australia-New Guinea (Sahul)

(Fig 1). This Wallacean island, renowned for its unique biodiversity and particularly high rate

of species endemism, for instance among mammals [2, 3], is generally assumed to have been a

key stepping-stone on one of the two most likely early human dispersal routes from the edge

of Sunda to the northern fringes of Sahul [4]. Modern humans (Homo sapiens) may have made

first landfall on Sulawesi by 50,000 years ago (50 ka) [5], and perhaps by as early as 65 ka [6],

based on early colonization dates for Australia.

Two recent archaeological discoveries have brought the early human prehistory of Sulawesi

to world attention. First, uranium-series (U-series) dating of coralloid speleothems overlying

hand stencils and animal paintings in the limestone karsts of Maros, in the south of the island

[7], demonstrated that Sulawesi’s rock art dates back to at least 40 ka [8], and is thus compati-

ble in age with the world’s earliest dated cave paintings, at El Castillo in northern Spain [9].

Second, deep-trench excavations at the open site of Talepu in the Walanae Depression, a fault-

bounded sedimentary valley in the interior of the southern peninsula (Fig 1), revealed in situ
stone artifacts in fossil-bearing strata dated to ~194–118 ka [10]).

The antiquity of the Talepu artifacts implies that the first colonizers of Sulawesi were either

Asian Homo erectus, members of the Homo floresiensis lineage, Denisovans, or an as-yet

unknown group of archaic hominins [10]. Concerning H. floresiensis, it has been hypothesized

that the founding population that gave rise to this endemic Late Pleistocene hominin of Flores

originated on Sulawesi, and thus that hominin occupation of the latter island dates back at

least several hundred millennia [11]. It follows that the Talepu tool-makers may have been

close evolutionary cousins of H. floresiensis. Alternatively, recent work suggests our species

had emerged in northern Africa by ~300 ka [12], while some archaeological and genomic data

imply that H. sapiens was established in eastern Asia [13], and possibly Sunda (Java; [14]), by

120 ka (see also [15, 16]. It is therefore at least conceivable, based on currently available evi-

dence, that the early Middle Pleistocene inhabitants responsible for tool manufacture at Talepu

were early members of our species that had dispersed from Africa and spread into Wallacea

long before the Late Interglacial [10].

Prior to these discoveries, the earliest record of a human presence on Sulawesi came from

Ian Glover’s [1] excavations at the Maros rock-shelter Leang Burung 2 (Fig 1). Over the course

of a single field season at this site in 1975, Glover excavated a series of 1 x 1 m squares, with the

deepest reaching a depth of ~3.6 m. Excavations were discontinued before bedrock or sterile

deposits were reached. Glover’s [1] earliest radiometric determination– 35.9–34.5 thousand
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calibrated radiocarbon years before present (35.9–34.5 ka cal BP [GrN-8649])–came from a

sedimentary unit overlying a deep and then-undated layer of compact, yellow-brown clay at

the trench base, Layer I (Fig 1). Immediately above Layer I, Glover [1] inferred the presence of

a complex lithic technology (systematic macroblade manufacture) that, despite decades of sub-

sequent research in Southeast Asia, remains unique in its temporal and regional context. Nota-

bly, excavations below this level in Layer I yielded cultural remains that contrasted sharply

with those in overlying layers, inferred to span 31–19 thousand conventional 14C years BP,

which when calibrated is around 35–24 ka cal BP [1]. The stone technology was different, and

the Layer I fauna was dominated by two endemic and still-extant large-bodied mammals that

were rare to absent in overlying deposits: the dwarf bovid anoa (Bubalus sp.), and the babirusa

(Babyrousa sp.) [17, 18] (Fig 2).

It is also noteworthy that Glover’s [1] interpretation of the formation history of the site sug-

gested that the Late Pleistocene deposit had been severely undermined by sink action, leading

to significant slumping and deformation of archaeological layers across the excavated areas of

Fig 1. Study locality and context. Map of the Indonesian island of Sulawesi (a) showing the location of the Late Pleistocene rock-shelter site, Leang Burung 2 (b); the

Holocene cave site, Ulu Leang 1, is located around 1.5 km to the north (c), plan view of Ian Glover’s 1975 excavations at Leang Burung 2; (d) stratigraphic profile of the

south wall of the 1975 trench (redrawn from Fig 3 in [1]). Calibrated 14C ages are reported at the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0193025.g001
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Fig 2. Faunal distributions recorded by Glover’s 1975 excavations at Leang Burung 2. Data source: Glover’s 1975 excavations [1], as reported by Clason [17]. Fauna

codes: 1, Strigocuscus celebensis (ground cuscus); 2, Ailurops ursinus (bear cuscus); 3, flying fox; 4, Macaca sp. (macaque); 5, Homo sapiens; 6, Carnivora (unident.); 7,

rodent; 8, Sus celebensis (Celebes warty pig); 9, Sus. sp; 10, Sus/Anoa; 11, Sus/babirusa; 12, Babirusa; 13, Anoa; 14, Sus/Babirusa/Anoa size (unidentified); 15, bear cuscus/

macaque size (unidentified); 16, rodent size (unidentified); 17, bird (unidentified); 18, terrapin/tortoise; 19, reticulated python; 20, snake (unidentified); 21, fish

(unidentified); 22, crayfish (unidentified). Clason’s [17] Table 1 lists Layer I and Layers IV-V as containing one and two Sus scrofa specimens, respectively. We follow

Simons and Bulbeck [18] in regarding these identifications as implausible, and thus have included them in Clason’s [17] Sus celebensis tally for those layers. We also

excluded Clason’s [17] "?" category, which dominates percentages for each layer. According to Table 1 in Clason’s [17] report, a single element attributed to Homo
sapiens was identified in the Layer I faunal assemblage; however, this specimen is not described elsewhere in Clason’s [17] paper and there is no further reference in the

literature to human skeletal material from Leang Burung 2.

https://doi.org/10.1371/journal.pone.0193025.g002
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the site. Glover’s work at Leang Burung 2, and wider research in Maros [19, 20], led him to

conclude that extensive disturbances of caves and shelters had rendered the karsts a very chal-

lenging, and perhaps unproductive, region from an archaeological perspective. This may be at

least part of the reason for the long hiatus in research efforts by non-Indonesian archaeologists

in the limestone karsts of Maros from the mid-1970s until the early 2000s [21].

Glover [1] did not recover any Pleistocene human skeletal remains from Leang Burung

2 –nor did his excavations reach bedrock or culturally-sterile archaeological deposits. Con-

cerning the latter, his excavations clearly raised the possibility that deeper excavations at Leang

Burung 2 might reveal important new insight into the early human settlement of Sulawesi. For

instance, plumbing the depths of Layer I, and any intact Pleistocene strata below, could reveal

not only whether pre-modern hominins had indeed reached Sulawesi, but whether this popu-

lation persisted on the island for long enough to have encountered early modern humans, and

when and why these hominins became extinct or locally extirpated.

The cultural horizon in Layer I, assumed by Glover [1] to pre-date 40 ka, could also provide

the first clues for understanding what happened to Sulawesi’s ‘megafauna’ once modern

humans were introduced to this insular island ecosystem, with its unbalanced and highly dis-

tinctive suite of Wallacean land mammals [2, 3]. In the Walanae Depression, fossil-bearing

strata of Early Pleistocene age have yielded remains of two distinct dwarfed or ‘pygmy’ probos-

cideans (Stegodon sompoensis and Stegoloxodon celebensis) and a large-sized Stegodon [22, 23].

By the Middle Pleistocene, however, only two proboscideans seem to have existed on Sulawesi,

a large to intermediate-sized Stegodon, and an advanced, high-crowned elephant [23]. No well-

documented traces of these taxa had ever been found in the Maros karsts or in secure contexts

outside the fossil record of the Walanae Depression, so it had remained unclear when and how

these proboscideans–and the island’s other extinct endemic ‘megafauna’ taxa, such as the

archaic suid Celebochoerus [24]–had met their demise.

Despite the potential of Leang Burung 2, however, and notwithstanding the enduring

importance of this site in regional archaeological syntheses (e.g. [25, 26]), most authorities

have paid scant attention to the implications of the undated, culturally distinct occupation

layer (Layer I) identified by Glover at the base of his 1975 trench (but see [18]).

In 2007, in an initial effort to redress this issue, and as part of a wider program of research

into the evolutionary origins and dispersal of the H. floresiensis lineage, the late Professor

Michael ‘Mike’ Morwood’s team conducted the first excavations at Leang Burung 2 in over

three decades. These pilot investigations were followed by three separate and larger scale exca-

vation seasons at Leang Burung 2, carried out between 2011 and 2013. The objectives of this

new research program at the rock-shelter were as follows:

1. To reassess Glover’s [1] interpretation of the stratigraphic and cultural evidence in the

uppermost deposits at Leang Burung 2, including his documentation of a distinctive Late

Pleistocene occupation sequence spanning 35–24 ka cal BP, and to evaluate his model of

site formation history that outlined evidence for large-scale undermining and warping of

stratified deposits due to subterranean sinkhole action;

2. to vertically extend Glover’s 1975 excavations into Layer I in order to identify the base of

this undated sedimentary unit and to establish a chronology for it;

3. in the event that Layer I did not terminate at bedrock, to continue excavations of deposits

encountered below this layer down to bedrock or culturally-sterile strata in order to assess

the record for stratigraphically earlier evidence of human habitation;

We report the results of our investigation in this paper.
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Research background

The limestone tower karst region of Maros and the adjoining Pangkep district to the north are

located on an alluvial plain close to the western shoreline of Sulawesi’s southwestern peninsula

[27] (Fig 1). Hereafter, we will refer to this karst landscape as a whole as Maros-Pangkep (or

the Maros-Pangkep karsts), whereas individual karst valleys or regions (e.g., Maros) are

named separately.

The karst lies between 4˚7’S and 5˚1’S and is formed within the Early/Middle Eocene to

Middle Miocene Tonasa Formation [27]. The topography of this extensive (~400 km2) karst

landscape is dominated by plateau-like hill masses formed by rivers cutting through intersect-

ing joints in the limestone, and, in areas of advanced plateau dissection, classic steep-sided

karst towers surrounded by alluvial plains that extend to the western coastline at an elevation

of ~5 to 30 m a.s.l. [27]. The towers range from 1 to 10 km in diameter and 150 to 300 m in

height. Extensive networks of footcaves developed around the bases as a result of subsurface

weathering. These were exposed by lowering of the alluvial plains, or, alternatively, when uplift

slowed or stopped long enough for laterally migrating rivers to undercut hillslopes [27, 28].

The archaeological potential of the multitude of caves and shelters in the vicinity of the

Leang-Leang valley in the Maros karsts had been noted since the early 1900s [29]. Subsequent

work prior to the outbreak of WWII, and in the final years of the Dutch colonial period, led to

small-scale excavations at several Leang-Leang sites and at other localities in nearby karst

regions [30–32] (see [33–35] for reviews). These early investigations brought to light the first

traces of the so-named ‘Toalean’ culture of Maros and surrounding districts [31, 32]. The Toa-

lean is a regionally unique industry of presumed middle to late Holocene antiquity that is char-

acterized by backed blades, geometric microliths, and ‘Maros points’, small pressure-flaked

projectiles with hollow bases and serrated margins [34, 36, 37].

The Dutch archaeologist, H.R. van Heekeren, visited Leang Burung 2 rock-shelter (called

by him ‘Burung Cave’) in 1950, recording the presence of several hand stencils [31], and brec-

ciated deposits on the rear wall that had been reported previously [38]. Thereafter, the karsts

attracted little scientific interest until the Australian-Indonesian archaeological expedition to

southern Sulawesi in 1969, led by J. Mulvaney and R.P. Soejono [35, 39]. These researchers

excavated Leang Burung 1, a cave site located 150 m from Leang Burung 2, revealing a 4-m-

deep sequence of Holocene deposits. Glover, also a member of this expedition, conducted a

single excavation season at Leang Burung 2 as part of his own Maros-based field research pro-

gram [1, 19, 20, 36], which concluded in the late 1970s.

Leang Burung 2 is one of many sheltered areas at the foot of tall, precipitous limestone cliffs

lining the western flanks of a ~270 m-high karst tower, part of the main hill mass forming the

southern side of the Leang-Leang river valley where it abuts the coastal plain of Maros (Fig 3).

Located at the base of an 80 m high overhanging cliff face, the open, well-lighted site is 16 m

long, 7 m wide, and about 20 m high, with a floor surface elevated 3 m above the level of the

adjacent alluvial flats. The floor surface is marked by a large, shallow oval pit. According to

Glover [1], this ‘robber’s hole’ was left by local people excavating phosphate-rich soil for sale as

fertilizer, which took place in or around the year 1960.

A notable feature of Leang Burung 2 –and many cave and shelter sites in the Maros-Pang-

kep karsts–is the presence of cemented archaeological deposits, or breccias, attached to the

rear wall of the shelter, as well as to speleothem columns and some large roof-fall boulders

exposed on the surface (often at the dripline; [1, 20]; see also [40]). On the rear wall of the shel-

ter immediately adjacent to the excavated trench is a prominent bank of cemented breccias

perched about 1.5 m above the present-day floor surface. This feature consists of a dense shell

midden deposit capped by a thick layer of flowstone that slopes sharply downwards from the
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rear wall (Fig 4). Nearby, remnants of midden-bearing breccias adhere to the rear wall of the

shelter at heights of up to 4 m above the ground surface.

Glover’s 1975 excavations at Leang Burung 2

Glover’s [1] work at Leang Burung 2 in 1975 involved the excavation of 1 m2 units in a trench

measuring 12 m in length by 1 m in width (Fig 1). The trench (~15 m2) extended southeast to

Fig 3. The cliff-foot rock-shelter at Leang Burung 2. Photographs taken during the 2011 excavation season.

https://doi.org/10.1371/journal.pone.0193025.g003

Fig 4. Cemented archaeological breccias on the rear wall of Leang Burung 2 shelter. (a) Viewed from towards the

front of the shelter, looking from west to east along the 2013 trench–the red arrow points to the main brecciated mass;

the blue arrow points to the capping flowstone; (b) close-up view of the highlighted area shown in panel b.

https://doi.org/10.1371/journal.pone.0193025.g004
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northwest from near the rear wall to just past the dripline. The rearmost two squares adjacent

to the wall were extended northeast, resulting in three additional 1 m2 units.

From top to bottom, Glover’s [1] stratigraphic sequence (Fig 5) is as follows–Layers X and
IX and VIII: recent shallow pit fills and thin deposits; Layer VII: rubbish-filled sinkhole deposit

(~80 x 40 cm, depth >2.9 m); Layer VI: a sterile red earth up to 1.5 m thick [1]; Layer V: a

~200 cm thick series of brown/grey-brown/red-brown lenses and discontinuous inter-finger-

ing layers; Layer IV: a thin (<20 cm) deposit of loose shells in an ashy matrix; Layer II: a 20–30

cm thick chocolate brown deposit containing few shells; Layers III and IIIa: massive, poorly

defined deposits of reddish brown to yellow sediment (III) and chocolate brown sediment

(IIIa), both of which contained few shells; and Layer I: compact yellow-brown clay with negli-

gible shell content.

Glover [1] traced Layer V across nearly the whole trench. However, underlying Layers IV,

II and I were only identified adjacent to the rear wall, whereas Layers III and IIIa, also inferred

to underlie Layer V, were only documented in square D10. The deepest excavations were in

squares F10 (2.5 m depth) and D10 (3.6 m depth). Glover was unable to reconcile the Layers

IV/II/I stratigraphy exposed below Layer V in F10 with the sediments (Layers III/IIIa) also

seen to underlie Layer V in D10. A large roof-fall block in E10 prevented him from joining up

these two squares and thus clarifying a key part of the stratigraphy. In squares F10-H10 and

G8-G10, Layer I was exposed to a depth of about 30 cm and over a surface area of ~4 m2. The

lower boundary of this deposit was not revealed.

Charcoal from basal Layer VI (Fig 1) yielded a 14C age of 1708–1353 yr cal BP (I-9096) [1].

Glover obtained five 14C determinations on shells of the freshwater gastropod Tylomelania
(= Brotia) perfecta from underlying strata [1]. T. perfecta shells from Layers V, IV and II in the

south wall of square G10 returned in-sequence ages (at 95% probability) of 27.7–27.3 ka cal BP

(GrN-8293), 31.1–30.5 ka cal BP (GrN-8650), and 35.9–34.5 ka cal BP (GrN-8649), respec-

tively [1]. Two additional 14C ages on T. perfecta shells, one from the boundary between Layers

IV and V (square H9), and another from Layer IIIa (square D10), yielded stratigraphically

inconsistent ages of 32.6–31.4 ka cal BP (GrN-8292) and 24.9–23.6 ka cal BP (BM-1492),

respectively [1]. No radiometric dates were obtained for Layer I owing to a lack of shell and

other dateable materials.

Glover [1] claimed that ceramics and diagnostic Toalean tool types were absent below Lay-

ers IX, X, VIII and VII, and sterile Layer VI. Layers V, IV, II and III/IIIa yielded broadly

Fig 5. Stratigraphy revealed by Glover’s 1975 trench at Leang Burung 2. As viewed after emptying backfill in 2012; (a) north wall of square H9 and east wall of

square G8; (b) south wall of Glover’s 1975 trench, squares E10 to G10.

https://doi.org/10.1371/journal.pone.0193025.g005
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similar lithic and faunal assemblages. Glover’s [1] analysis of the stone-flaking technology

from these layers (see also [41]) indicates a relatively straightforward approach to lithic reduc-

tion based on hard-hammer knapping, and, less commonly, bipolar reduction. Small morpho-

logically undifferentiated flakes dominated the assemblage. Very few flakes were retouched

and only a small number of simple, intensively reduced cores (0.5%) were recovered. The most

technologically and typologically distinctive implements in the assemblage were Levallois-like

macroblades (n = 7) with facetted platforms, recovered in situ from Layers V, III and II [1].

Layer I yielded a total of 50 stone artifacts, only brief descriptions of which are published.

The most common stone type (96.7%) in Layers II, IV and V was high quality chert [1].

Lithic assemblages in Layers III and IIIa/b were also dominated by chert (95.7%). By contrast,

59% of artifacts in Layer I were manufactured from chert, with the proportions of limestone

(31%) and quartz (10%) much higher than in overlying layers [1].

Glover [1] recovered ochre fragments from Layers II, IV-V, and V, including two utilized

(faceted/scored) pieces in Layer V. Edge-glossed flakes (n = 31) were found in Layers II and

above [1]. Wear traces on these artifacts were attributed processing of silica-rich plants for

craft activities ([1]; see also [42]).

Glover’s [1] report provides limited detail on the faunal assemblages from Leang Burung 2.

An accompanying paper [43] describes the shell analysis. Of the four edible species of shellfish

in the deposit, T. perfecta [44] was dominant [43]. No evidence for exploitation of marine/estu-

arine species was reported [1, 43]. Layer I yielded negligible amounts of complete or even frag-

mentary shell [43, 45].

Vertebrate fossil remains at the site were generally in highly fragmentary condition, the

majority were unidentifiable, and most exhibited signs of burning [17]. Most identifiable ele-

ments were in Layer I. Compared with Layer I, the assemblages in Layers II, IV, and V layers

are notable for their high proportions of diagnostic Sus celebensis (Celebes warty pig) remains

and rodent elements, and the minimal representation of identifiable elements of babirusas

(n = 4, Layer IV) and anoas (n = 3, Layer II) (Fig 2).

Glover [1] postulated that Pleistocene deposits at Leang Burung 2 had undergone major

post-depositional disturbances. He observed that the upper Layer I boundary and upper and

lower boundaries of Layers II and IV dip sharply downwards (45˚) from the rear of the shelter

towards the front, ‘an inclination quite opposed to the trend of the modern surface and upper

layers’ ([1], 11). In other areas he noted ‘the erratic and often sudden dipping of layers. . . (e.g.

unit IIa. . .)’ ([1], 11). Excavations in H10 adjacent to the shelter wall also revealed the presence

of ‘a sink developing below the deposit’ ([1], 7) (Fig 1). In addition, the presence of partly

cemented archaeological deposits fixed to the rear wall of the shelter was interpreted to to indi-

cate that a large portion of the uppermost stratigraphy had been scoured out.

Similar high-level cemented breccias were noted at Ulu Leang 1 [36], where patches of

cemented breccias are located 1–2 m above the present floor surface [20]. Glover [36] initially

hypothesized that an earlier sedimentary deposit had been all but rinsed out from Ulu Leang 1,

leaving only remnants in the form of the cemented wall breccias. A subsequent phase of depo-

sition then led to the accumulation of the soft floor deposits. However, 14C dating of charcoal

from a patch of breccia located 70 cm above the present-day floor surface suggested to Glover

[20] that the cemented deposit, and the upper part of the unconsolidated floor deposit below,

were essentially the same age. Thus, he rejected the notion that there had been two separate

phases of deposition [20], instead formulating the idea that erosion and undermining of the

deposit from below, owing to karstic sink action, had led to subsidence. A similar process

must have occurred at Leang Burung 2, Glover [1] argued. However, he inferred that the

impact of karstic undermining on the Late Pleistocene strata at Leang Burung 2 had been

more pronounced: ‘But, whereas at Ulu Leang 1 the deposits appear to have fallen evenly and
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parallel with the original surface, at Leang Burung 2 small sinks have formed in the cave floor,

causing dramatic warping and local subsidence’ ([38], 311).

Glover [1] was unable to obtain any radiometric dates for the extensive high-level cemented

breccias at Leang Burung 2. He claimed that samples of artifacts and faunal remains collected

from these breccias were broadly similar to those excavated from the stratified floor deposits.

No Toalean implements or ceramics were found. Noting that breccias were located at heights

of up to 4 m above the shelter floor, Glover argued that they must represent the remnants of

deposits that accumulated during the final phase of site occupation, and which had been

almost completely scoured out by natural erosional processes–‘My expectation is that [the age

of the breccias] should fall between 12000 and 8000 BP’ ([1], 17).

Results

Our pilot excavations at Leang Burung 2 in 2007 involved emptying backfill from squares E10

to G10 of the 1975 trench, where Glover [1] had obtained the oldest 14C date from the site and

where he had traced Layer I to its deepest point ~2.6 m below the surface in the adjacent square

F10. In 2011–13, our excavations below this level revealed the base of Layer I for the first time.

Further deep-trench excavation over the course of these field seasons succeeded in extending

Glover’s deepest excavated square (D10) from 3.6 m to 6.2 m depth (Fig 6). Excavations in

2011–13 also provided the opportunity to recover lithic and faunal assemblages from the

uppermost strata and to evaluate Glover’s interpretation of the time depth of this distinctive

occupation sequence. We will describe the results of the latter research first, then move to a

discussion of our investigation of Layer I and underlying strata.

Archaeological and paleontological assemblages excavated from Leang Burung 2 in 2007

and between 2011 and 2013, and which form the basis of the current study, are under the per-

manent curation of Indonesian authorities at Pusat Penelitian Arkeologi Nasional (ARKE-

NAS) in Jakarta and Makassar Balai Arkeologi. The material is available for analysis. Requests

to access material for study, including databases and catalogs of finds, should be directed to

the directors of ARKENAS and Balai Arkeologi Makassar.

Evaluating Glover’s model of human occupation at the site 35–23 ka cal BP

Our 2011 excavations in squares A11-D11 (Fig 6) demonstrated that Glover’s [1] descriptions of

the stratigraphic sequence and the archaeological inventory in the upper part of the deposit, below

the recent disturbed layers, are broadly correct. We recovered the same types of findings reported

by Glover [1] during our own excavations of Layers V, IV, II and III/IIIa-b (Fig 7). This includes:

a chert-based lithic technology featuring edge-glossed flakes (Fig 7K and 7L) and macroblades

(Fig 7G); evidence for pigment use (i.e., facetted and scored haematite pieces, and ochre residues

on stone tools; Fig 7H and 7I); abundant signs of burning, as reflected by heat-affected stone arti-

facts, bones and shells, indicating an intensive use of fire; profuse quantities of freshwater gastro-

pods (mostly T. perfecta), occurring in loose, midden-like concentrations (e.g., Layer IV) or as

isolated findings; a relatively small, heavily fragmented vertebrate faunal assemblage characterized

by a wide range of species, including S. celebensis, rodents, birds, bats, snakes, and freshwater

aquatic fauna (i.e., fish, eels, crabs, and turtles)–of note was the predominance of bone fragments

from small-bodied vertebrates, corresponding in size to monkeys (Macaca sp.; Fig 7A and 7D),

cuscuses (Ailurops sp. and the smaller Strigocuscus celebensis) and civets (probably Macrogalidia
muschenbroeckii). Based on our findings, we conclude that remains of larger-bodied mammals are

far less common, and elements of anoas and babirusas, are very rare.

(a) Macaca sp. mandible, spit 31 (Layer II); (b-c) Ailurops ursinus (bear cuscus) phalanges;

b, spit 42 (Layer II), c, spit 17 (Layer V); (d) Macaca sp. radius fragment (burnt), spit 46 (Layer

A reassessment of the early archaeological record at Leang Burung 2

PLOS ONE | https://doi.org/10.1371/journal.pone.0193025 April 11, 2018 10 / 43

https://doi.org/10.1371/journal.pone.0193025


II); (e) Tylomelania (= Brotia) perfecta shell (burnt), spit 19 (Layer II); (f) bird bone (burnt),

spit 45 (Layer II); (g) chert macroblade point, spit 45 (Layer II); (h) utilised (faceted and

scored) ochre piece, spit 45 (Layer II); (i) ochre ‘crayon’, spit 39 (Layer II); (j) chert flake with

ochre residues, spit 30 (Layer II); (k-l) chert artifacts with silica gloss (highlighted by arrows);

k, spit 18 (Layer V), l, spit 19 (Layer V); (m-n) chert bipolar cores; m, spit 19 (Layer V), n, spit

15 (Layer V); (o) retouched chert flake, spit 19 (Layer V); (p) single platform chert core, spit 45

(Layer II); (q) chert radial core, spit 13 (Layer V). Scale bars are 10 mm. Glover’s [1] excava-

tions in square D10 had terminated in reddish brown Layer IIIa, which contained chert arti-

facts and shells, and thus was attributable to the same cultural sequence documented in

overlying layers (assumed by Glover [1] to precede deposition of Layer I). Our excavations in

squares D10-D11 showed that similar findings occurred in this deposit to a depth of nearly 5

m, at which point Layer I was encountered.

Fig 6. South wall stratigraphic profile at Leang Burung 2 (2011–13 excavations). The South Wall section illustrated here comprises a composite of two separate

stratigraphic exposures, the southern trench faces of excavation squares E10-I10 and A11-E11, respectively, which are situated a distance of 1 m apart. With regards to
14C ages, all of the dated samples comprise freshwater gastropod (Tylomelania perfecta) shells; only dated shells collected in situ from the deposit are shown projected

onto the stratigraphic profiles. The sampling locations for pIRIR samples LB2-OSL12 (Layer A) and LB2-OSL13 (Layer B) are not illustrated on the south wall profiles

because they were collected from different trench faces.

https://doi.org/10.1371/journal.pone.0193025.g006
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In 2012, by removing a series of large roof-fall blocks and a fallen stalactite that had

obstructed Glover’s [1] excavations, we were able to show that the strata documented in 1975

at the base of square D10 (Layers III/IIIa-b) comprise a single deposit that is laterally continu-

ous with Layer II to the east (Fig 6). We refer to this single, extensive sedimentary unit as Layer

II. Layer II dips steeply downward from the rear wall of the shelter and starts to level out and

thicken very considerably in the central floor area, before sloping up sharply and reducing in

thickness to the west, where it eventually pinches out below Layer V (Fig 6). The thin, steeply

dipping layer of loose shells contained in a grey ashy matrix (Layer IV) accumulated atop

Layer II on the eastern slope of the channel-like trough. Layer V infills this depression and

forms the topmost stratum within the sequence. Layer V is massive, but with numerous dis-

crete and discontinuous shell lenses, rubble deposits, and other diffuse layers. Clasts (rock and

shell) are imbricated and the sediments generally are poorly sorted, which may be suggestive

of material slumping or washing downslope with varying degrees of flow intensity (slopewash

deposition). Layer IV and II appear to have been compressed and plastically deformed in

places by the impact of large roof-fall blocks collapsing from overhead cliffs onto the shelter

floor, resulting in small faulted movements (Fig 6).

Based on the new stratigraphic details revealed by our 2011–13 excavations, it is now evi-

dent that Layer II overlies Layer I in the east (from the shelter wall to the central floor area)

and Layer V in the west (at the front of the shelter) (Fig 6). There is a sharply defined boundary

between Layer I and overlying Layer II, possibly suggesting a depositional hiatus separates

these two units, while the interface between Layers V and I in the west is much less distinct.

We also observed that Layer I occurs directly below Layer V in the westernmost part of the

trench (squares A10-A11). It is now possible to interpret Layer II as a slopewash deposit that

accumulated in a deep, channel-like depression or trough that had formed in underlying Layer

I between the bedrock shelf and overlying roof-fall blocks near the rear wall and the massive

block pile ‘dam’ fronting the shelter. In squares E10/11, we documented evidence for inter-fin-

gering at the interface between Layers II and I. This observation suggests that during deposi-

tion of Layer II on the steeply sloping upper surface of underlying Layer I there was some sort

of disturbance, such as a block fall or slump on slope, which resulted in wedge-like sections or

lenses of Layer I becoming reworked and incorporated into Layer II. Such features may explain

why Glover [1] reported the presence of a small number of finds characteristic of Layer II (i.e.,

chert implements) in the upper part of Layer I.

We carried out an intensive program of radiometric dating in an effort to test the chrono-

logical framework proposed by Glover [1] for the upper levels (Layers V, IV and II). No char-

coal or other carbonized plant material was recovered from the Leang Burung 2 deposits

during the 2007/2011-13 excavations. Freshwater gastropod shells were the only materials

available for radiocarbon dating (see Methods). As a result of the 2007 work, three accelerator

mass spectrometry (AMS) 14C dates were obtained on fragments of freshwater shells collected

from Layers IV and II, and at the interface between Layers II and I (Fig 8). Furthermore, a

total of 23 new AMS 14C dates were run on freshwater shells (T. perfecta) recovered during the

2011 fieldwork season. Shells dated by the Radiocarbon Dating Laboratory at the University of

Waikato (laboratory code prefix: Wk) and the AMS facility at the Australian Nuclear Science

and Technology Organisation (ANSTO) (laboratory code prefix: OZ) were tested for second-

ary recrystallization using the Feigl method [46], while shells dated at the AMS facility at The

Australian National University (laboratory code prefix: SANU) were analyzed using X-ray Dif-

fraction (XRD) to check that the samples contained less than 0.3% calcite. Pretreatment, CO2

Fig 7. Faunal remains and artifacts excavated from the upper levels of square D11 at Leang Burung 2 in 2011.

https://doi.org/10.1371/journal.pone.0193025.g007
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extraction and graphitisation methods for shells dated at ANSTO and The Australian National

University followed procedures outlined in [47] and [48], respectively. Conventional 14C ages

were calibrated using the ShCAL13 southern hemisphere calibration curve [49]. For further

details on 14C dating methods see Table 1.

Of the 23 new AMS 14C dates run on freshwater shells (T. perfecta), 21 shells derived from

the excavated floor deposits, while two were collected from the brecciated wall deposits. Shells

sampled from the excavations came from square D11, with the exception of one specimen,

which was collected from below a roof-fall slab in square B11. We dated a total of six shells

from Layer V and 15 shells from underlying Layer II. The assemblage of 21 dated shells spans a

vertical distance of about 3.4 m, with the highest dated specimen in the sequence occurring at

1.6–1.7 m below the surface in Layer V, and the lowest dated specimen at ~5 m depth near the

bottom of Layer II. We also dated a shell from Layer B which we suspected at this point was

intrusive. For the first time, we also obtained radiometric dates for the cemented bank of brec-

cia suspended on the wall above the shelter floor, carrying out AMS 14C dating on four fresh-

water shells collected from these remnant archaeological deposits.

Combined together, the three sets of radiocarbon dates on freshwater shells now available

for the stratified deposits excavated at Leang Burung 2 in 1975, 2007 and 2011–13 display a

range of age reversals and irregularities (Table 1). The shells from the stratigraphically youn-

gest layer (V) are generally younger than those from the stratigraphically oldest layer (II).

Fig 8. South wall stratigraphic profile at Leang Burung 2 (2007 excavations). Calibrated 14C ages are reported at the 95%

confidence interval (see Table 1).The 14C dating results are presented in Table 1. All of the dated shells are Late Pleistocene in

age, with two exceptions: a shell from Layer II (spit 48) yielded an unexpectedly young age of 9–8.6 ka cal BP (OZO824), while

the suspected intrusive shell from Layer B (spit 58) was similar in age (9.6–9.5 ka cal BP, Wk33233). We regard both shells as

having been displaced from stratigraphically higher contexts, most likely during the excavations.

https://doi.org/10.1371/journal.pone.0193025.g008
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However, a pattern of age inversions is evident within and between the various depositional

horizons. For instance, two shells collected from spits 23–24 in Layer V (~220–240 cm below

surface) yielded inverted 14C ages of 30.6–29.5 ka cal BP (OZO822) and 26–25.6 ka cal BP

(Wk33218), respectively. Dates on two shells (Wk33228 and Wk33229) from Layer II (spits

42–44) fall within broadly the same temporal range (~29 ka cal BP) of dated shells (Wk33217

and OZO822) from spit 23 in overlying Layer V. The similarity in age is despite these two sets

of specimens being separated from each other in the deposit by a vertical distance of ~200 cm.

In contrast, 14C determinations on shells from the breccias display a coherent pattern of

increasing age with depth (Table 1). A freshwater shell collected (in 2007) from near the base

of a breccia outcrop 368 cm east of square F10, and at a height of 150 cm above the present-

day floor surface of the shelter, yielded an age of 35.1–33.9 ka cal BP (Wk22791), while a shell

from a breccia located higher up on the face of the rock wall (340 cm above the floor and 160

Table 1. Radiocarbon ages of shells and other materials from Leang Burung 2.

Year Lab Codea,b,c Layer Sq Spit/Depth below datum (BD) Material Conventional 14C age BPd Calibrated age BP

(95% confidence)e

1975 BM-1492 IIIa D10 - Tylomelania perfecta 20,150 ± 250 24,946–23,590

1975 GrN-8293 V G10 - T. perfecta 23,300 ± 140 27,744–27,275

1975 GrN-8650 IV G10 - T. perfecta 26,650 ± 200 31,131–30,505

1975 GrN-8292 IV-V H9-1 - T. perfecta 28,150 ± 200 32,629–31,400

1975 GrN-8649 II G10 - T. perfecta 31,260 ± 330 35,878–34,526

1975 I-9096 VI A-2(10) - Charcoal 1,665 ± 80 1708–1353

2007 Wk22648 IV G10 155 cm BD Shell 28,907 ± 281 33,715–32,096

2007 Wk22649 II E10 264 cm BD Shell 28,386 ± 250 33,012–31,510

2007 Wk22647 II/I E10 276 cm BD Shell 31,415 ± 365 36,075–34,621

2011 Wk33214 V D11 Spit 17 T. perfecta 22,917 ± 120 27,505–26,928

2011 Wk33215 V/II D11 Spit 21 T. perfecta 23,406 ± 127 27,781–27,365

2011 Wk33216 V D11 Spit 22 T. perfecta 21,051 ± 103 25,630–25,082

2011 Wk33217 V D11 Spit 23 T. perfecta 24,928 ± 156 29,350–28,579

2011 OZO822 V D11 Spit 23 T. perfecta 25,860 ± 200 30,623–29,488

2011 Wk33218 V D11 Spit 24 T. perfecta 21,560 ± 103 26,014–25,616

2011 Wk33219 II D11 Spit 28 T. perfecta 24,461 ± 148 28,786–28,076

2011 Wk33220 II D11 Spit 29 T. perfecta 28,483 ± 238 33,136–31,602

2011 Wk33221 II D11 Spit 33 T. perfecta 29,536 ± 276 34,162–33,060

2011 Wk33222 II D11 Spit 34 T. perfecta 27,323 ± 206 31,478–30,931

2011 OZO823 II D11 Spit 34 T. perfecta 30,620 ± 430 35,414–33,845

2011 Wk33223 II D11 Spit 37g T. perfecta 29,636 ± 273 34,262–33,198

2011 Wk33227 II D11 Spit 40g T. perfecta 30,581 ± 310 35,065–33,955

2011 Wk33228 II D11 Spit 42g T. perfecta 25,346 ± 163 29,813–28,909

2011 Wk33229 II D11 Spit 44g T. perfecta 25,254 ± 166 29,680–28,829

2011 Wk33224 II D11 Spit 45g T. perfecta 31,015 ± 329 35,613–34,260

2011 Wk33225 II D11 Spit 46g T. perfecta 28,570 ± 240 33,285–31,695

2011 Wk33226 II D11 Spit 47g T. perfecta 27,984 ± 241 32,535–31,243

2011 OZO824 II D11 Spit 48 T. perfecta 7990 ± 70 8998–8605

2011 Wk33230 II D11 Spit 49g T. perfecta 29,555 ± 271 34,174–33,095

2011 Wk33855 II B11 ~540 cm BD T. perfecta 28,693 ± 140 33,294–32,110

2007 Wk22792 Brf - 3.4 m above floor level Shell 18,987 ± 80 23,056–22,537

2012 SANU-34507 Brf - 3.2 m above floor level T. perfecta 20,990 ± 160 25,685–24,747

2012 SANU-34506 Brf - 1.6 m above floor level T. perfecta 27,640 ± 320 32,345–30,985

(Continued)
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cm south of square F10) was dated to 23.1–22.5 ka cal BP (Wk22792). These results indicate a

Late Pleistocene antiquity for the cemented breccias, demonstrating that they are substantially

older than Glover [1] had anticipated (see above). Indeed, the 14C chronology from the brec-

cias provides the first evidence that Glover’s [1] hypothesis about the age of these cemented

deposits on the rear wall is in need of reassessment: rather than being younger than the 14C-

dated floor deposits far below, the breccias fall within broadly the same time range.

With regards to the 14C chronology, the pattern of age reversals in the shells from the exca-

vated floor deposit may be explicable given the depositional context. T. perfecta shells are

small, highly mobile objects that are susceptible to post-depositional movement from one

stratigraphic context to another. Shell midden deposits are also complex features prone to pro-

cesses of deflation, erosion, and natural and anthropogenic disturbances that may lead to the

conflation of shells of mixed age populations into a single deposit (i.e., time-averaging) and the

redistribution of midden materials in archaeological sites [50]. Hence, a plausible argument

can be made that the pattern of age reversals is owing to, say, deflation of nearby middens of

Late Pleistocene antiquity and the subsequent redeposition of shells of different ages into Lay-

ers V, IV and II, which were accumulating within the shelter over roughly the same time

period. However, this interpretation is inconsistent with the observation that 14C determina-

tions on shells from the high-level breccias on the rear wall of the shelter in immediate proxim-

ity to the excavated trench display a coherent pattern of increasing age with depth (Table 1).

Attaining a larger sample of dated shells from the breccias could alter this picture; for now,

Table 1. (Continued)

Year Lab Codea,b,c Layer Sq Spit/Depth below datum (BD) Material Conventional 14C age BPd Calibrated age BP

(95% confidence)e

2007 Wk22791 Brf - 1.5 m above floor level Shell 30,597 ± 323 35,114–33,946

a Shells dated by the Radiocarbon Dating Laboratory at the University of Waikato (laboratory code prefix: Wk) were processed as follows (F. Petchey, pers. comm.):

physical pretreatment involved cleaning surfaces and washing the samples in an ultrasonic bath; the samples were tested for secondary recrystallization using the Feigl

method [46]. With regards to the latter, staining showed that all the shells were aragonite, with the exception of Wk22648 and Wk22649; both of these samples collected

in 2007 contained a mixture of calcitic and aragonitic shells, with the change to calcite in some instances possibly owing to burning–the calcitic shells were removed and

only those identified as aragonite by the staining test were selected for 14C dating. Chemical pretreatment involved acid washing with 0.1N HCl, after which the samples

were rinsed and dried.

b Shells dated by the AMS facility at the Australian Nuclear Science and Technology Organisation (ANSTO) (laboratory code prefix: OZ) were pretreated as follows (F.

Bertuch, pers. comm.): samples were cut in half and surface-drilled to remove any dirt/secondary carbonate material, after which they were ultrasonicated in water for

two periods of 5 min duration in order to remove dirt/dust; this was followed by a surface etch by ultrasonicating the shells in 0.5M HCl for 2 min (50–80% of surface

removed) and staining with Feigl solution [46]–the shells turned entirely black, indicating that they were composed of aragonite and no secondary calcite was present–

staining was removed from shells with dilute HCl and then rinsing with water; shells were then loaded into hydrolysis vials with H3PO4, the vial evacuated, and then a

further 10 min acid etch was performed, with the resulting CO2 discarded (to ensure no extraneous carbon was picked up during processing); the sample was then

completely hydrolysed; finally, CO2 was extracted and then graphitized by reducing the CO2 over an iron catalyst (600˚C) using hydrogen. Pretreatment, CO2 extraction

and graphitisation methods followed procedures outlined in [47].

c Shells dated by the AMS facility at The Australian National University (laboratory code prefix: SANU) were pre-treated as follows: to remove potentially altered

material, the surface and any soft material was removed with a drill, and 10% weight was removed in HCl. XRD was used to check that the samples contained less than

0.3% calcite and the clean material was graphitized and dated by AMS following procedures outlined in [48]. SANU-34507 contains <0.3% calcite. In the case of SANU-

34506, however, XRD showed that the cleaned carbonate contained 0.7 ± 0.3% calcite. This suggests that the resultant 14C age determination might be slightly affected

by the calcite (i.e., the date may be too young)–we note, however, that the date for SANU-34506 is stratigraphically consistent with bracketing 14C ages.

d Uncertainties reported at 95% confidence interval.

e Conventional 14C ages were calibrated using the ShCAL13 southern hemisphere calibration curve [49].

f Br: Brecciated deposit affixed to rear wall of shelter.

g Dated shell collected from wet-sieve residue.

https://doi.org/10.1371/journal.pone.0193025.t001
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however, dated shells from the breccia display a positive age to depth relationship that is not

evident in the excavated archaeological deposits–an observation that requires an explanation.

Also noteworthy is the close correlation between the shell-based 14C chronology of the

brecciated deposits on the rear wall and the temporal range of shells from Layers V, IV and II

(Table 1). It remains uncertain precisely when the remnant brecciated deposits were lithified

or cemented in situ; that is to say, it is clear that the dated shells were present in sediments

abutting the rear wall between approximately 35 and 23 ka cal BP, but when in time these

deposits became indurated by the flow or seepage of calcium carbonate-enriched water is

unknown.

The pattern of age reversals in the dated shells (Table 1) and the presence of a cemented,

shell-rich deposits falling within precisely the same time range on the rear wall immediately

above the shelter floor, raises two possibilities: (1) the rear wall breccias were previously lat-

erally continuous with Layers V, IV and II within the shelter floor, and the portion of the

deposit that once connected these units was subsequently lost due to erosion or recent anthro-

pogenic disturbances (e.g., soil extraction by locals). This scenario would imply that the oldest

shell-bearing strata at Leang Burung 2 (Layers II and V) once comprised a steeply inclined

accumulation of midden deposits akin to the sloping flank of a massive shell mound (e.g.,

[51]), which had banked up against the shelter wall and attained a vertical height of at least 7

m; (2) the breccias represent the remnants of an older series of floor deposits that accumulated

~35–23 ka cal BP and were afterwards scoured out of the site by erosion; thereafter, formation

of the Layers II-V stratigraphy commenced in the shelter floor and involved the incorporation

of redeposited shells and other materials eroding from the breccias.

According to the second scenario–the basic premise of which Glover [1] had, in fact, ini-

tially considered and rejected as a possibility (see also [40])–the earliest phase of deposition of

sediments comprising the stratigraphically oldest layer within the dated sequence of floor

deposits (Layer II) would post-date 23.1–22.5 ka cal BP (Wk22792), which is the latest known

formation phase of the cemented breccias on the wall. In other words, archaeological deposits

at Leang Burung 2 long thought to date to between 31,000 to 19,000 conventional 14C years BP

(35–24 ka cal BP) on the basis of Glover’s [1] investigations, could be post-LGM in age.

In an attempt to clarify the depositional ages of the in situ rock-shelter deposits, we con-

ducted the post-infrared infrared stimulated luminescence (pIRIR290) dating procedure on

feldspar samples collected in 2012 from Layer II (LB2-OSL4) and Layer V (LB2-OSL3).

Mineralogy analysis of the sediments from Leang Burung 2 suggests that a high percentage

of sanidine feldspars in the mineral composition of the sediments from this site. Thus, for

the internal dose rate calculation, a K concentration of 10 ± 2% was assumed based on the the-

oretical K concentration of 10.69% for sanidine [52, 53], while a Rb concentration of 400 ±
100 ppm was assumed [54]. For further information on the pIRIR290 dating procedure used,

see the Methods section and Table 2.

The luminescence dating results are presented in Table 2. Similar to the 14C chronology,

the sequence of pIRIR age assessments generated from the 2012 samples is stratigraphically

inverted. The fading corrected age for the topmost sample (LB2-OSL3) is 37 ± 3 ka, whereas

the underlying sample from Layer II (LB2-OSL4) yielded a fading uncorrected age of 25 ± 3

ka. The fading corrected age (37 ± 3 ka) for the topmost sample, LB2-OSL3, collected from

Layer V, is inconsistent with the hypothesis that this layer caps a sequence of strata (Layers

II-V) that accumulated after deposition of the stratigraphically youngest 14C-dated shell (23.1–

22.5 ka cal BP, Wk22792) from the overhead breccias. The anomalous result for LB2-OSL3

may be owing to insufficient bleaching of the dated feldspar grains. We did not conduct a fad-

ing test on LB2-OSL4 (Layer II), so the fading-uncorrected age of ~25 ka should be regarded

as a minimum age–one that is also inconsistent with the aforementioned hypothesis.
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We also undertook laser ablation U-series dating of faunal remains (N = 4) from Layer II,

and solution U-series dating of five straw stalactites (‘soda straws’) recovered in situ from this

deposit (see Methods). Results are presented in Tables 3 and 4, respectively. The earliest mini-

mum U-series age for a fossil from Layer II is ~16 ka, while the youngest minimum age is

7.7 ± 0.2 ka (Table 3). The straw stalactites from Layer II are consistently early Holocene in

age, with estimates ranging from ~10.2 to 8.4 ka. U-series dates for straw stalactites should

generally be regarded as maximum ages for the stratigraphic contexts in which the samples are

found [55]. However, owing to their rapid growth and limited life cycles, straw stalactites may

also potentially provide ages that are close to the time of sediment deposition [55].

U-series age assessments for the straw stalactites are consistent with the hypothesis that the

deposition of Layer II and overlying strata post-dates the erosion and mass loss of an older

series of unconsolidated archaeological deposits at the site that spanned around 35–23 ka cal

BP, and which are now represented only by cemented breccias adhering to the the rear wall of

the shelter. Furthermore, the straw stalactite chronology suggests that deposition of Layer II

commenced sometime after about 10.2 ka. There is a discrepancy between the oldest mini-

mum U-series ages for bone fragments from Layer II (LB2/M10/B1-2 and LB2/M11/B1-2–

13.6 ± 0.4/13.2 ± 0.4 ka and ~16 ka, respectively) and the postulated timeframe of<10.2 ka

for the initial accumulation of Layer II. This suggests that the erosion and mass loss of archaeo-

logical deposits spanning 35–23 ka cal BP took place between approximately 13.6–13.2 ka and

10.2 ka.

Depth, age, and cultural contents of Layer I

Based on our excavations in 2007 and 2011–13, it now evident that Glover’s Layer I is a mas-

sive weathered soil profile that is at least 3 m thick and which accumulated against the rear

Table 2. Burial depths, grain sizes, water contents, dosimetry data, De and pIRIR ages for the feldspar samples collected from Leang Burung 2.

Sample Depth Grain

size

(μm)

Water

Content

(%)a

Gamma dose

rate (Gy/ka)

Ext. beta dose

rate (Gy/ka)

Int. beta

dose rate

(Gy/ka)b

Cosmic ray

(Gy/ka)

Total dose

rate (Gy/ka)

De (Gy)a Age (ka)

Fading

uncorr.

Fading

corr.

Fading

uncorr.

Fading

corr.

LB2-OSL3

(Layer V)

160 180–

212

20 ± 5

(18)

0.782 ± 0.012 1.115 ± 0.076 0.67 ± 0.15 0.08 ± 0.01 2.65 ± 0.12 103.6 ± 7.9 105 ± 5 37 ± 4 37 ± 4

LB2-OSL4c

(Layer II)

197 180–

212

20 ± 5

(20)

0.807 ± 0.009 1.025 ± 0.09 0.67 ± 0.15 0.08 ± 0.01 2.58 ± 0.13 70.8 ± 7.6 - 25 ± 3 -

LB2-OSL6

(Layer I)

248 90–180 20 ± 5

(20)

1.216 ± 0.007 1.290 ± 0.084 0.48 ± 0.13 0.07 ± 0.01 3.06 ± 0.12 47.9 ± 10.1 148 ± 38 13 ± 3 45 ± 10

LB2-OSL10

(Layer I)

478 180–

212

20 ± 5

(20)

1.028 ± 0.013 1.156 ± 0.074 0.67 ± 0.15 0.06 ± 0.01 2.91 ± 0.12 61.0 ± 6.7 111 ± 22 18 ± 2 35 ± 4

LB2-OSL11

(Layer A)

536 90–212 20 ± 5

(12)

1.063 ± 0.010 0.915 ± 0.070 0.53 ± 0.15 0.05 ± 0.01 2.57 ± 0.14 43.7 ± 8.3 195 ± 48 14 ± 3 72 ± 15

LB2-OSL12

(Layer A)

532 90–212 50 ± 10

(54)

1.275 ± 0.005 2.070 ± 0.190 0.53 ± 0.15 0.05 ± 0.01 3.94 ± 0.23 110.0 ± 10.1 147 ± 21 26 ± 3 35 ± 4

LB2-OSL13

(Layer B)

563 180–

212

50 ± 10

(48)

2.380 ± 0.010 2.270 ± 0.230 0.67 ± 0.15 0.05 ± 0.01 5.38 ± 0.25 112.1 ± 8.8 128 ± 11 19 ± 2 22 ± 2

a The water content of 20 ± 5% was estimated based on field values shown in the brackets.

b Mineralogy analysis of the sediments from Leang Burung 2 suggests that a high percentage of sanidine feldspars in the mineral composition of the sediments from this

site. Thus, for the internal dose rate calculation, a K concentration of 10 ± 2% was assumed based on the theoretical K concentration of 10.69% for sanidine [52, 53],

while a Rb concentration of 400 ± 100 ppm was assumed [54].

c The equivalent doses were estimated using the sensitivity-corrected pIRIR 290˚C signal. All the equivalent doses were corrected for residual doses obtained from

bleached aliquots (see text). A fading test was not conducted on LB2-OSL4, and hence the fading-corrected De values are not available for this sample.

https://doi.org/10.1371/journal.pone.0193025.t002
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wall of the rock-shelter and atop a >2 m-high pile of limestone roof-fall slabs and angular

blocks at the front of the shelter (Fig 6). Layer I directly abuts the rear wall of the rock-shelter

from a depth of around 5 m to, essentially, the modern ground surface of the shelter. This

deposit can be traced laterally from the shelter wall to the dripline. Near to the rear wall, this

sedimentary unit is yellowish brown at the top and becomes conspicuously browner and more

clayey with depth, with the former representing the weathered upper zone of the latter. The

presence of clay-rich pockets or lenses within the upper zone is probably due to deposition in

wetter conditions, leading to greater compaction of the sediments. Layer I contains large

amounts of small, highly fragmentary bones and teeth, but very few stone artifacts. A sandy

Table 3. Laser ablation U-series dating results for fossil faunal remains from Leang Burung 2.

Sample#a Layer Depth (cm) U (ppm) 230Th/238U 234U/238U CS Age (ka)

LB2/M10/B1

LB2/M10/B2

II 210–220 cmb 90.2 ± 14.9

94.1 ± 29.0

0.1400 ± 0.0042

0.1370 ± 0.0035

1.1943 ± 0.0085

1.1947 ± 0.0083

13.6 ± 0.4

13.2 ± 0.4

LB2/M6/B1

LB2/M6/B1

II 365 cmc 171 ± 9

164 ± 9

0.0896 ± 0.0019

0.0909 ± 0.0019

1.1983 ± 0.0079

1.1994 ± 0.0083

8.5 ± 0.2

8.6 ± 0.2

LB2/M7/B1

LB2/M7/B2

II 369 cmc 122 ± 7

129 ± 6

0.0815 ± 0.0020

0.0812 ± 0.0021

1.1903 ± 0.0082

1.1904 ± 0.0080

7.7 ± 0.2

7.7 ± 0.2

LB2/M11/B1

LB2/M11/B2

II 410–420 cmb 125 ± 38

126 ± 39

0.1641 ± 0.0034

0.1646 ± 0.0035

1.1973 ± 0.0079

1.1934 ± 0.0081

16.0 ± 0.4

16.1 ± 0.4

LB2/M1/T1 I 180–190 cmb 206 ± 87 0.0865 ± 0.0018 1.2031 ± 0.0078 8.1 ± 0.2

LB2/M4/B1

LB2/M4/B2

I 280–290 cmb 319 ± 6

325 ± 6

0.0762 ± 0.0016

0.0778 ± 0.0016

1.1757 ± 0.0076

1.1764 ± 0.0075

7.3 ± 0.2

7.5 ± 0.2

LB2/M5/B1

LB2/M5/B2

I 307 cmc 210 ± 22

226 ± 20

0.0870 ± 0.0018

0.0829 ± 0.0018

1.1705 ± 0.0077

1.1736 ± 0.0080

8.4 ± 0.2

8.0 ± 0.2

LB2/M2/B1

LB2/M2/B2

I 356 cmc 141 ± 10

134 ± 16

0.1047 ± 0.0022

0.1073 ± 0.0023

1.1789 ± 0.0081

1.1778 ± 0.0077

10.1 ± 0.2

10.4 ± 0.2

LB2/M3/B1

LB2/M3/B2

I 365 cmc 114 ± 10

112 + 14

0.1693 ± 0.0035

0.1723 ± 0.0035

1.1701 ± 0.0076

1.1708 ± 0.0076

17.0 ± 0.4

17.3 ± 0.4

LB2/M9/B1

LB2/M9/B2

I 460–470 cmb 114 ± 2

111 ± 8

0.1157 ± 0.0024

0.1170 ± 0.0025

1.1700 ± 0.0077

1.1707 ± 0.0076

11.3 ± 0.3

11.5 + 0.3

3014 Dentine

3014 Enamel

I 489 cmc 362±16

10.3±14.1

0.1229 ± 0.0020

0.1111 ± 0.0050

1.0635 ± 0.0057

1.0545 ± 0.0137

13.4 ± 0.2

12.1 ± 0.6

3015A

3015B

A 494 cmc 296 ± 14

380 ± 35

0.0820 ± 0.0015

0.0858 ± 0.0015

1.0517 ± 0.0058

1.0512 ± 0.0057

8.8 ± 0.2

9.3 ± 0.2

LB2/M8/T1 A 495 cmc 143 ± 42 0.0965 ± 0.0020 1.1890 ± 0.0078 9.2 ± 0.2

3011A Dentine

3011A Enamel

3011B Dentine

3011B Enamel

A 490–500 cmb 111 ± 18

10.1 ± 7.8

112 ± 7

1.73 ± 0.77

0.6729 ± 0.0111

0.4000 ± 0.0106

0.6200 ± 0.0100

0.4897 ± 0.0433

1.1329 ± 0.0066

1.1470 ± 0.0084

1.1323 ± 0.0062

1.1014 ± 0.0183

96.0 ± 2.7

46.3 ± 1.6

84.8 ± 2.2

63.4 ± 7.7

3016A

3016B

A 500–510 cmb 339 ± 40

446 ± 23

0.1035 ± 0.0017

0.1013 ± 0.0027

1.0537 ± 0.0059

1.0533 ± 0.0060

11.3 ± 0.2

11 ± 0.3

a Sampled materials: #3011A-B (Suidae molar encased within thick calcrete nodule); #3014–16 (Suidae molar); LB2/M1/T1 (proboscidean lamella fragment); LB2/M2/

B1-B2 (Suidae mandible fragment [joint] partly encased within thick calcium carbonate/sandy matrix); LB2/M3/B1-B2 (proximal femur or tibia diaphysis fragment

from a large mammal—‘pygmy’ proboscidean?); LB2/M4/B1-B2 (long bone fragment from large to medium-sized mammal; partly encrusted with thick covering of hard

beige matrix/carbonate); LB2/M5/B1-B2 (distal ulna fragment, probably pig; whitish colour, partly covered with hard beige matrix); LB2/M6/B1-B2 (proximal humerus

diaphysis fragment from small-sized mammal, possibly Ailurops ursinus; brown-greyish, encrusted, poor preservation; burnt. Treated with acetic acid); LB2/M7/B1-B2

(radius of possible Macaca sp. or A. ursinus—small to medium-sized mammal); LB2/M8/T1 (Bubalus sp. molar [lope]; partly encrusted with hard sandy beige-coloured

matrix); LB2/M9/B1-B2 (humerus fragment, Suidae); LB2/M10/B1-B20 (skull fragment of unknown taxa); LB2/M11/B1-B2 (unidentified long bone fragment from a

medium-sized mammal).

b Sample either excavated in situ by 10 cm-thick spit, but not 3D-plotted, or recovered from wet-sieve residue from that spit.

c Sample location/depth 3D-plotted in situ.

https://doi.org/10.1371/journal.pone.0193025.t003
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yellow interval at the base of Layer I adjacent to the rear wall contains a dense concentration of

fossil fauna, including anoa molars and a near-complete babirusa upper incisor.

Layer I yielded a small assemblage of minimally reduced limestone and volcanic flakes.

Ochre and shells, furthermore, are absent, and the faunal assemblages, while dominated by

bone fragments from vertebrate mammals equivalent in size to macaques and A. ursinus, fea-

tures relatively high proportions of remains from larger-sized animals, including diagnostic

elements from babirusas and anoas. Remains from the latter mammals, the largest of the exist-

ing Sulawesian endemics, were distinctly rare to absent in overlying deposits, where the only

large animal represented in significant quantities is S. celebensis.
Importantly, excavations in Layer I also yielded the first evidence for the presence of extinct

‘megafauna’ at Leang Burung 2. A number of proboscidean molar fragments were recovered

in situ below Layer V in square B10 (spits 18–19). The Layer I specimens represent six molar

plate fragments, and a single plate (Fig 9), all from milk molars, judging from the limited

enamel thickness (1.4–2.5 mm). The enamel is double layered, with the inner enamel layer

about two-thirds or more of the total enamel thickness. In longitudinal cross-section, the plates

were clearly not wedge-shaped, and this characteristic, combined with the relatively thin outer

enamel layer, suggests that the milk molars belong to a member of the genus Elephas or Palaeo-
loxodon, and not to Stegodon. The height of the largest fragment amounts to 32 mm, giving an

indication of the minimum crown height. The base of the single plate is not preserved, so the

degree of hypsodonty could not be established. To our knowledge, the proboscidean molar

fragments from Layer I represent the only published evidence available thus far for the pres-

ence of proboscidean fauna in association with stone tools and other human occupation

remains in an excavated cave or rock-shelter deposit on Sulawesi.

Below, we report the results of our efforts to obtain a reliable chronology for the Layer I cul-

tural horizon and associated findings.

Evidence for human occupation below Layer I

The 2011–13 excavations at Leang Burung 2 resulted in the discovery, beneath Layer I, at a

depth of about 4.5 m to 5 m below the surface, of a sedimentary horizon that had not been

encountered during the 1975 and 2007 excavations (Figs 6 and 10). This newly identified

deposit is up to 90 cm in thickness and comprises a dark brown sandy soil (Layer A) with

abundant angular limestone roof-fall fragments. Excavations in Layer A yielded 250 flaked

Table 4. Results of U-series dating of straw stalactites from Leang Burung 2.

Sample Name Context

(layer)

U (ppm) (230Th/ 232Th) Uncorr. Age (ka) ± 2σ Corr. Age (ka) ± 2σ Corr. Initial (234U/ 238U) ± 2σ

STRAW-02 Layer II 4.7612 60.68 9.816 0.048 9.7 0.1 1.0532 0.0010

STRAW-03-R1 Layer II 3.3805 9.30 11.592 0.078 10.6 0.5 1.0539 0.0009

STRAW-03-R2 Layer II 3.3368 9.69 11.606 0.055 10.7 0.5 1.0524 0.0010

STRAW-04 Layer II 3.4314 50.80 9.924 0.070 9.8 0.1 1.0526 0.0009

STRAW-05-R1 Layer II 4.5906 33.82 8.740 0.054 8.5 0.1 1.0528 0.0010

STRAW-05-R2 Layer II 4.2797 36.89 9.208 0.051 9.0 0.1 1.0534 0.0008

STRAW-06B-R1 Layer II 2.5580 141.42 9.340 0.078 9.3 0.1 1.0478 0.0010

STRAW-06B-R2 Layer II 2.5776 37.61 9.564 0.091 9.4 0.1 1.0487 0.0012

STRAW-08-R1 Layer A 0.5119 10.10 50.8 0.3 47.5 1.7 1.0146 0.0014

STRAW-08-R2 Layer A 0.5050 9.14 51.4 0.3 47.7 1.9 1.0155 0.0013

STRAW-06A Layer II 4.5049 150.81 9.770 0.058 9.7 0.1 1.0445 0.0006

https://doi.org/10.1371/journal.pone.0193025.t004
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stone artifacts (Figs 11–13) and a large faunal assemblage dominated by fossil remains of

rodents (most of which probably reflect natural biota), but with relatively high proportions of

diagnostic remains of anoas, and large quantities of small unidentifiable bone fragments

belonging to large-bodied vertebrate mammals (e.g., anoas, Sus sp. and babirusa; Fig 14).

Three refitting fragments of a 15 cm-long Babyrousa sp. lower canine were recovered (Fig

14D). The deposit contained no in situ shell. Most of the faunal elements in Layer A were

heavily mineralized. Although there is no sharp boundary between Layer I and Layer A, there

is a discernable difference in terms of the increase in the amount of sticky clay in Layer A.

The stone-flaking technology evident in Layer A is markedly different from the distinctive,

chert-based technology documented by Glover [1], and by us, higher in the sequence in Layers

V, IV, II and III/IIIa-b, which post-dates 35 ka cal BP. The Layer A artifacts reflect a highly

expedient approach to lithic reduction. Local limestone cobbles were knapped by hard-ham-

mer percussion. The resultant cores and flaked cobbles are generally large in size, measuring

up to 16 cm long and weighing up to 3.5 kg (average maximum dimension = 85.8 ± 36.4 mm),

and minimally reduced, with an average of 7 ± 4 flake removals. One cobble has two unifacially

retouched sides that converge to form a ‘pick’-like projection (Fig 13C). Some large flakes

(N = 3) were irregularly retouched. In terms of other stone tool assemblages from Sulawesi,

the Layer A artifacts are most similar to the late Middle Pleistocene implements from Talepu

[10]. They are also strongly reminiscent of patinated, water-rolled stone tools of the ‘Cabenge’

industry, which occur alongside fossils of Stegodon and other extinct endemics on the surfaces

of open-sites in the Walanae Depression [56] (see also [57, 58]). For example, the large

Fig 9. Elephantinae (genus and species indeterminate) molar plate fragment excavated from Layer I at Leang Burung 2. Scale bar is 10 mm.

https://doi.org/10.1371/journal.pone.0193025.g009
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unifacially flaked pick-like tool from Layer A at Leang Burung 2 is comparable in form to a

Cabenge pointed uniface [57, 58].

Below Layer A, cultural deposits continued in the form of small numbers of in situ lime-

stone artifacts, and relatively plentiful vertebrate faunal remains (Fig 14G), in a horizontally-

inclined, brownish grey to reddish brown silty clay (Layer B) (Fig 6). Underlying this oxidized

pond deposit is a flat-lying, blue-grey to olive silty clay (Layer C) containing occasional verte-

brate fossils, mostly from rodents and rodent-sized animals, but including some diagnostic

anoa fossils. The latter deposit occurred right to the base of the 2011 trench (6.2 m depth in

square D10), at which point excavations were discontinued due to groundwater intrusion.

Teeth from extinct juvenile sharks and other tropical inshore marine species were recovered

from Layers B-C. These fossils had most likely eroded from the limestone bedrock of the

Tonasa Formation (J.CA. Joordens, pers. comm., 2015).

Fig 10. The deep deposits at Leang Burung 2 (Layers A to C). The photograph, taken during the 2011 excavations, is

of the north wall of square D10 and the section covers a depth of approximately 5 m to 6.2 m below the surface.

https://doi.org/10.1371/journal.pone.0193025.g010
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Chronology of Layer I and underlying deposits

Our attempts to establish a chronology for Layer I and the newly identified strata below (Lay-

ers A-C) have relied on luminescence dating of sediments, U-series analysis of faunal remains,

and U-series analysis of straw stalactites, owing to the lack of charcoal, shells, and other

organic matter within these contexts. Concerning the latter, little nitrogen (<0.1%) was pre-

served in the dentine from a sample of teeth found in Layer I (n = 1), Layer A (n = 4), and

Layer B (N = 5), suggesting that there was no collagen present in these specimens [59].

If deposition of Layer I (and any underlying strata) post-dated the erosion of the shell-rich

breccias, then our excavations in these layers should have recovered consistent evidence for

the presence of in situ shells, chert artifacts, and other findings characteristic of the post 35 ka

cal BP assemblages. This was not the case, however; indeed, strong vertical patterning in cul-

tural and faunal assemblages means that the archaeological findings from Layer I and below

are straightforward to distinguish from those recovered from Layers II and above. As already

noted, the chert-based lithic technology (and the use of chert as a raw material) is restricted to

the upper levels (Layers V, IV and II), whereas the lower levels (Layers I and A) contain a dis-

tinct, Talepu-like technology that predominately involves the use of dense limestone as raw

lithic material. Moreover, diagnostic remains of anoas and babirusas are generally confined to

the lower levels (Layers I and below). The concentration of vertebrate faunal remains at the

base of the excavated sequence (Layers A-C) is much higher than in the upper levels excavated

by us (i.e., Glover’s Layers V, IV, II, I and III/IIIa-b). For instance, the Minimum Number of

Individual Specimens (NISP) reaches up to 350 specimens per spit in the lower, newly identi-

fied units, whereas in the overlying strata it reaches a maximum of only 80 specimens per spit

(spit 46, 450–460 cm below the surface, Layer II).

Fossilization also appears to be different in Layers A-C. The bone of fossil fragments from

these lower levels is often poorly preserved, multicolored (white, beige, grey and brown), and

exhibits black superficial staining (probably manganese coatings), variable degrees of abrasion,

and, almost invariably, dissolution pitting. Many skeletal elements demonstrate hairline crack-

ing with exfoliation of cortical bone surfaces. Almost all the fragments from the lower levels

are partially or entirely covered with yellow-brown calcrete. Calcrete precipitation has further

damaged the bone by causing cracks. In the upper levels (Glover’s Layers V, IV, II, I and III/

IIIa-b), bone preservation is generally much better, although breakage and fragmentation is

comparable with lower levels. Cortical bone exfoliation occurs, but strong dissolution pitting is

less frequent. Instead of irregular calcrete attachments, bones from the upper levels are often

entirely covered with a thick encrustation of brownish-grey calcite. The bone typically has an

even coloration (i.e., white, dark brown, bluish grey, grey, or salmon in hue), except when it

has been burnt. Unlike specimens in Layers A-C, which display no indications of exposure to

heat, bone from the upper levels frequently (~15%) shows clear signs of burning, as evidenced

by polygonal hairline cracks and charred, black coloration. Some burnt bones from Layers

II-V show sharp color transitions in cross-section, the inner part being evenly grey colored

and the outer zone white and calcined. Other specimens are entirely calcined, leaving a white,

porcelain-like texture.

The bone and tooth samples sectioned for U-series dating (see below) also exhibit distinct

internal coloring corresponding to their specific depositional context. Fossils from Layer I and

A display a white internal color, whereas those from Layer II have a darker, chocolate-coloured

Fig 11. Stone artifacts from the deep deposits at Leang Burung 2. (a) limestone core, square D10, spit 54 (Layer A); (b) limestone core,

square D11, spit 55 (Layer A/B); (c) retouched limestone flake, square D11, spit 47 (Layer I); (d) multiplatform limestone core, square

D11, spit 55 (Layer A); (e) limestone flake, square D11, spit 50 (Layer A). Scale bars are 10 mm.

https://doi.org/10.1371/journal.pone.0193025.g011

A reassessment of the early archaeological record at Leang Burung 2

PLOS ONE | https://doi.org/10.1371/journal.pone.0193025 April 11, 2018 24 / 43

https://doi.org/10.1371/journal.pone.0193025.g011
https://doi.org/10.1371/journal.pone.0193025


Fig 12. Stone artifacts from the deep deposits at Leang Burung 2. (a) limestone radial core, square D10, spit 52 (Layer A); (b) large single platform limestone core,

square D10, spit 52 (Layer A). Scale bars: a, 10 mm, b, 50 mm.

https://doi.org/10.1371/journal.pone.0193025.g012
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internal bone structure. This suggests distinct burial histories for these fossils, adding further

weight to the notion that there is minimal evidence for mixing across the main upper and

lower stratigraphic levels identified thus far at Leang Burung 2.

Given these observations, we argue that Layers I and A-C must have been deposited prior

to the formation and subsequent erosion of the overlying shell-rich strata that are now repre-

sented only by the remnant, cemented breccias on the rear wall. We can therefore nominally

infer a minimum age of at least ~35 ka cal BP for uppermost Layer I.

The 2007 investigations involved the first attempt to establish a luminescence chronology

for Layer I. Owing to the limitation of the radiocarbon barrier at ~40 ka, and the nature of the

quartz in this volcanic province, the red thermoluminescence (red TL) dating technique was

used (see Methods). Red TL dating of volcanic quartz grains from Layer I (Fig 6) yielded three

Late Pleistocene age estimates (Table 5), including a possible age of ~82 ka for Layer I at a

depth of 4.4 m. Due to limitations of the red TL technique, these results should be regarded as

maximum ages only for sediment deposition. It should also be noted that the three red TL age

estimates all overlap at the 2-sigma (σ) interval, or 95% probability.

Subsequently, the pIRIR290 dating procedure was conducted on sediment samples collected

in 2012 from Layer B (LB2-OSL13), Layer A (LB2-OSL12 & LB2-OSL11), and Layer I (LB2-

OSL10 & LB2-OSL6) (see Methods). Samples LB2-OSL6 and LB2-OSL10 from Layer I yielded

internally consistent ages of ~45–35 ka and have lower age limits at 2σ of ~27–25 ka (Table 2).

Significant age inversion was seen for the other sample from Layer A (LB2-OSL12), and from

the lowermost sample (LB2-OSL13), which was collected from underlying Layer B. These age

inversions are likely due to very high levels of uranium (>10 ppm) towards the base of the

trench, as reflected by the abnormally high environmental dose rates for these two samples

compared with the others. For example, the dose rate dramatically increases from ~2.6 Gy/ka

for sample LB12-OSL11 to ~4.0 Gy/ka and ~5.4 Gy/ka for LB12-OSL12 and LB12-OSL13,

respectively. Given the similar De values for these samples, it is possible that the high environ-

mental dose rates for the deepest samples are affected by recent uptake of U. Laser ablation

U-series analysis of fossils suggests a complex history of U mobilization in buried faunal remains

(see below). Hence, anomalies in the ages from the two samples LB2-OSL12 and LB2-OSL13

could be a consequence of the presence of a fluctuating, U-enriched groundwater table, which has

complicated our efforts to accurately and reliably estimate external dose rates for the deposit.

If a recent uptake of U from groundwater for the two samples (LB2-OSL12 and–OSL13) is

assumed, and we use the weighted mean dose rate (2.77 ± 0.22 Gy/ka) for those from the

upper samples as ‘effective dose rates’, the ‘dose-rate corrected’ ages for the LB2-OSL12 and

LB2-OSL13 are 51 ± 6 and 44 ± 5 ka, respectively, which are statistically indistinguishable

from each other and the age of LB2-OSL11. We therefore argue that the ‘dose-rate corrected’

ages are more reliable and can be tentatively taken to estimate the ages of the two lowermost

samples (LB2-OSL12 and LB2-OSL13). However, further confirmation of these age estimates

is needed in order to model the open-system geochemistry that may be confounding the

results of luminescence dating. Acquiring more information on the recent hydrology at Leang

Burung 2 may also help to clarify matters, as may carrying out further experimental work that

is beyond the scope of the present study.

We also conducted laser ablation U-series analyses on a total of 11 fossil specimens exca-

vated in 2011 and 2012 from Layer I (n = 7) and Layer A (n = 4). The resultant data are shown

Fig 13. Stone artifacts from the deep deposits at Leang Burung 2. (a) limestone flake, square D10, spit 51 (Layer A); (b) limestone flake,

square D11, spit 48 (Layer A); (c) unifacially retouched limestone cobble ‘pick’, square D10, spit 55 (Layer A). Scale bars: a-b, 10 mm, c,

50 mm.

https://doi.org/10.1371/journal.pone.0193025.g013
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Fig 14. Fossil fauna from the deep deposits at Leang Burung 2. (a) Anoa (Bubalus sp.) molar, square D11, spit 45 (Layer I/A); (b) anoa

molar, square D11, spit 50 (Layer A); (c) Suidae M3, square D11, spit 51 (Layer A); (d) babirusa (Babyrousa sp.) lower canine (Layer A); (e)

anoa molar, square D11, spit 51 (Layer A); (f) Suidae molar, square D10, spit 51 (Layer A)–NB: this tooth is U-series sample #3011A/B,

which yielded a minimum age of 113 ± 10 ka (see Table 3); (g) anoa molar fragment, square D11, spit 60 (Layer B). Scale bars: a-c, e-g, 10

mm, d, 50 mm.

https://doi.org/10.1371/journal.pone.0193025.g014
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in Table 3. The dated specimens are all at least early Holocene to Late Pleistocene in age. Aside

from one specimen from Layer A (sample #3011A-B), which we will discuss below, the oldest

minimum age for sampled faunal remains in the deposit is ~17 ka (Layer I). It should be

recalled that teeth and bone are open systems, and thus, the U/Th measurements can only pro-

vide minimum age estimates for these specimens [60]. The proboscidean molar fragment from

Layer I yielded a minimum U-series age of 8.1 ± 0.2 ka, a result that is very likely to underesti-

mate its true age, and that of the most recent appearance of endemic proboscidean fauna on

Sulawesi, by a significant margin.

It seems plausible to argue that the predominately young minimum U-series ages for the

faunal remains buried at Leang Burung 2 reflect climatic changes in the post-LGM period.

High-resolution palaeoclimate records derived from lake sediment cores in central Sulawesi

indicate a very wet climate and closed-canopy rainforest during much of MIS3 (~58 to 30 ka;

[61, 62]). This was followed by the abrupt onset of a period of severe drying (~33–16 ka) in the

transition to the LGM [61]. Biomarker records (δ13CWAX) from lake sediments suggest grass-

land and open-canopy forest expanded during a more arid and seasonal MIS2. A return to

wetter and more humid conditions is evident by ~15 ka during the transition to the intergla-

cial, with the δ13CWAX reaching its Holocene average at around 11 ka [61]. There is evidence

for a major increase in regional rainfall by 12–10 ka (e.g., [61]). In sum, we propose that the

relatively young minimum ages for faunal remains at Leang Burung 2 may reflect greater U

solubility and mobilisation during times of increased precipitation following the LGM, per-

haps owing to a rise in the U-enriched groundwater table at the site.

Only one fossil in the dated assemblage, a suid molar from Layer A (sample #3011A-B),

appears to preserve the isotopic signature of pre-LGM U-uptake (Table 3). The best age esti-

mate for this sample comes from averaging the isotopic data from the dentine and attributing

the variations to micro-migration. Utilizing the DAD diffusion model [63], the minimum age

for this tooth would be ~100–80 ka. This suid molar was encased within a thick covering of

indurated calcrete that appears to have shielded the specimen from further uptake (or loss) of

Table 5. Results of red TL dating of mineral grains from Leang Burung 2 (2007 field season).

Sample Sample Field gamma Beta Cosmic-ray Water Total Signalf Equivalent Age

codea Depth dose rate dose rate dose rate content dose rate dose

(m) (Gy kyr-1)b (Gy kyr-1)b (Gy kyr-1)c (%)d (Gy kyr-1)e (Gy)g (kyr)h

SLBG2-1 3.00 1.430 ± 0.022 1.465 ± 0.067 0.080 ± 0.008 20 / 15 ± 5 3.01 ± 0.18 Red TL U 317 ± 17 106 ± 9

Red TL B 121 ± 36 40 ± 12

SLBG2-2 3.60 1.430 ± 0.022 1.205 ± 0.067 0.078 ± 0.008 20 / 15 ± 5 2.75 ± 0.16 Red TL U 339 ± 17 123 ± 10

Red TL B 208 ± 44 76 ± 17

SLBG2-3 4.40 1.430 ± 0.022 1.554 ± 0.059 0.075 ± 0.007 18 / 12 ± 4 3.09 ± 0.15 Red TL U 336 ± 17 119 ± 8

Red TL B 252 ± 63 82 ± 21

a Samples processed using the 90–125 μm size fraction.

b U, Th and K concentrations measured using a portable gamma-ray spectrometer at field water content to estimate the field gamma dose rate

combined with beta counting measurements of dried and powdered sediment samples in the laboratory.

c Time-averaged cosmic-ray dose rates (for dry samples), each assigned an uncertainty of ± 10%.

d Field/time-averaged water contents, expressed as (mass of water/mass of dry sample) x 100. The latter values were used to calculate the total dose rates and ages

e Mean ± total (1σ) uncertainty, calculated as the quadratic sum of the random and systematic uncertainties.

f Red TL = red thermoluminescence—U, unbleachable signal (i.e., light-insensitive signal, last zeroed when the grains were heated), B, bleachable signal (i.e., light-

sensitive signal, last reset when the grains were exposed to sunlight).

g Equivalent doses include a ± 2% systematic uncertainty associated with laboratory beta-source calibrations.

h Uncertainties at 68% confidence interval.

https://doi.org/10.1371/journal.pone.0193025.t005
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U. Although this fossil has a minimum age of 100–80 ka, the U234/U238 ratio for it differs

markedly from that of other U-series dated fossils within Layer A (Table 3). This suggests that

this suid molar was probably reworked from deeper within the deposit.

We also carried out solution U-series dating on a broken straw stalactite recovered in situ
520–530 cm below the surface in Layer A (n = 1), yielding a U-series age of between 49.6–45.8

ka (Table 4; sample name: STRAW-08-R1/R2)–in this case, the ‘tip’ end of the soda straw was

slightly younger than the opposite end (the ‘base’), confirming the reliability of the U-series

dates. The U-series age for this straw stalactite now provides a maximum age of ~50–46 ka for

Layer A. This age estimate is consistent with the older age limit of the fading corrected pIRIR

age for Layer A (LB2-OSL11), which at 2σ is ~44 ka (see above). It is also consistent with the

argument that deposition of the lower levels (Layers A-C, and also overlying Layer I) pre-dates

the earliest formation of the above-noted unconsolidated archaeological deposits that survive

now only as remnants in the high-level breccias.

Finally, we conducted pollen analyses on a total of 10 sediment samples collected from the

lower (Layers I and A-C) and upper levels (Layers II and V) (Fig 15). Pollen preservation was

generally good and did not vary stratigraphically. The pollen assemblages suggest the continu-

ing presence of forest vegetation (dominated by Arenga sp.) around the site during the deposi-

tion of these units, with only a minor contribution from herbs and ferns. The latter likely

indicates that the forest was a type of rain-green or monsoonal lowland forest. The pollen

assemblages from Leang Burung 2 are consistent with the view that Layers I and A (and possi-

bly B-C) were deposited during wet and humid conditions of MIS3, whereas formation of the

upper sequence (Layers II-V) is a Holocene phenomenon.

Discussion

In this paper, we have reported the preliminary results of our recent archaeological excavations

(2007 and 2011–2013) at Leang Burung 2 rock-shelter. A key finding is that the upper part of

the sedimentary sequence has been affected by a major and previously unrecognized erosion

and re-infilling event that casts doubt on the reliability of Glover’s model of human occupation

at the site 35–24 ka cal BP. We have now identified the base of Layer I below the deepest level

reached by Glover [1] in 1975, but this deposit has thus far provided few opportunities for reli-

able dating. We also recovered evidence for a human presence in stratified and undisturbed

layers below Layer I. These previously undocumented cultural horizons occur below the level

of the disturbance zone affecting the upper strata, and artifacts and faunal remains from these

Fig 15. Results of Leang Burung 2 pollen analysis.

https://doi.org/10.1371/journal.pone.0193025.g015
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deposits differ strikingly from those post-dating 35 ka cal BP. As with Layer I, however, we

have only succeeded in establishing a coarse-grained chronology for these basal cultural levels.

Despite these problems, our excavations well below the lowest point exposed by Glover in

1975 have documented evidence for a long sequence of cultural deposits at Leang Burung 2,

including hitherto unknown and enigmatic indications of a human presence in deep trenches

that still have not reached bedrock.

One of Glover’s [1] most significant finding in 1975 was the identification of a purportedly

Late Pleistocene modern human occupation sequence spanning ~35 to 24 ka cal BP, for which

artifactual evidence was gleaned from the upper levels of the site (Layer II and overlying strata,

Layers IV and V). Our own excavations conducted at this shelter between 2011 and 2013 raise

serious doubts about the proposed antiquity of the sedimentary deposits that yielded evidence

for this cultural phase (hereafter, the ‘Glover complex’). Constructing an accurate and reliable

chronological framework for the site has proved challenging. However, we have now accrued

sufficient evidence to propose the following model–which is invariably provisional–for the

complex depositional history of this rock-shelter site.

As reported above, 14C-dating of freshwater gastropod shells collected from flowstone-

capped breccias perched on the rear wall of the shelter above the present-day ground floor sur-

face suggests that a series of intact occupation strata falling within the time range of ~35 to 23

ka cal BP once existed at this site, but have been almost completely removed by erosion. The

cemented breccias visible at various places on the rear wall of the shelter seem to comprise the

only vestiges of this pre-LGM sedimentary sequence. The majority of shells excavated from

Layers II, IV and V, and certainly those employed by Glover [1] to establish a chronology for

these strata, in our view, more than likely eroded out of the ancient midden-bearing breccias

and become incorporated into these younger accumulating deposits, along with stone artifacts,

bones, and other archaeological materials.

It would appear, therefore, that the ‘Glover complex’ consists of archaeological materials of

mixed ages that were deposited long after the LGM. We can infer that the ‘gutting out’ of the

original sequence of unconsolidated, pre-LGM floor deposits occurred during the terminal

Pleistocene and that subsequent re-infilling of a deep, channel-like erosional feature in Layer I

may have taken place during the early Holocene (~10–9 ka), as suggested by straw stalactite U-

series ages (Table 4). It follows that the key archaeological components of the ‘Glover complex’,

unifacial macroblades with Levallois-like characteristics, and silica gloss residues, as well as

lithic reduction methods attributed to this phase generally, cannot now be conclusively

assigned to the Late Pleistocene period.

However, it seems possible that not all of the archaeological materials within the upper

‘infill’ deposits simply eroded out of the pre-LGM breccias. For instance, with minimal effort

we were able to identify 15 separate lithic conjoin sets in these strata from the assemblage exca-

vated in 2011; in most cases (86.7%), refits were separated by vertical depths of<10 cm, with

the maximum vertical distance between refits being ~21 cm. It is possible that refitting artifacts

eroded out of the pre-LGM breccias and were deposited close to each other within mixed-age

assemblages. It is also plausible, however, that humans were present at the site during the early

Holocene when Layers II, IV and V were accumulating. If so, it is likely that these deposits

formed before the emergence or initial local manifestation of the Toalean, as the characteristic

implements of this Holocene industry (e.g., microliths and Maros points) [34] have never been

found at Leang Burung 2, despite its proximity to a comparatively rich Toalean occupation site

at nearby Leang Burung 1 [34, 35]. Previous research has yielded no evidence for a human

presence in the Maros karsts between the LGM and middle Holocene [21, 64].

Such a scenario would account for the presence of a shell in Layer II dated to 9–8.6 ka cal

BP (OZO824), and one from the lower levels dated to 9.6–9.5 ka cal BP (Wk33233) (Table 1).
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Both shells are very close in age to the five U-series-dated straw stalactites from Layer II, which

range between ~10.7 and 9 ka (Table 4). These two early Holocene shells are most plausibly

interpreted as intrusive cultural materials that became dislodged from the loose and unconsoli-

dated sediments exposed in section in the upper trench walls during the 2011 excavations. The

presence of these erroneously young objects in the deposit is consistent with humans being

present at this site during the early Holocene, but apparently prior to the first appearance of

the Toalean in this region.

Glover [1] interpreted the steeply sloping stratigraphy of Layers IV and II as reflecting sub-

sidence and deformation of the deposit due to undermining by sinkholes from below. How-

ever, our deep-trench excavations revealed no traces of such features. At the base of the

excavated section, Layers B and C comprise horizontally inclined oxidized pond deposits.

These remnant landscape surfaces seem to reflect an early phase in the depositional history of

the site when the shelter floor was periodically inundated by floodplain runoff from a nearby

river. This was followed by lateral migration of the river and associated floodplain away from

the tower base. Sediments derived from local sources then started to accumulate in the shelter,

beginning with Layer A, which is also flat-lying, and then Layer I. Thereafter, Layers II, IV and

V infilled a steep-sided depression in Layer I. It is for this reason, we contend, the latter depos-

its slope downwards from the rear of the shelter towards the front, not because they are for-

merly horizontally inclined deposits that are now slumping into sink holes or otherwise being

warped and deformed by sink action, as had originally been proposed by Glover [1].

An important outcome of our excavations at Leang Burung 2 is the discovery of previously

unknown cultural occupation levels that occur below the maximum depths attained by prior

excavations in 1975. We verified Glover’s [1] observation that Layer I, a massive weathered soil

horizon, contains cultural and faunal remains that contrast strongly with those in post-35 ka

cal BP contexts. Furthermore, the 2011–13 excavations revealed that Layer I lies atop a ~90 cm

thick silty clay (Layer A) from which we recovered stone artifacts and fossils from babirusas,

anoas, and anoa-sized mammals. The strong bias in Layer A towards large-bodied forest-

dwelling taxa is not due to differential preservation, as the recovery of many microvertebrate

remains demonstrates. The poor surface condition of most fossils from Layer A precludes

definitive assessment of the presence or absence of cut-marks and other signs of butchery.

However, it seems unlikely that the abundance of ‘megafauna’ remains is due to carnivore

accumulation, given that the largest non-human predators on Sulawesi were civets and

pythons; moreover, other prolific accumulators of faunal assemblages on the Sunda Shelf, por-

cupines, are widely presumed to be Holocene introductions to the island fauna [23].

The cobble-based core-and-flake technology in Layer A is particularly enigmatic. This tool-

kit is very similar to the technology at Talepu dated to ~194–118 ka [10]. The large flaked cob-

bles from Layer A closely resemble Cabenge core tools. Most Cabenge artifacts are from

undated surface contexts. Previously thought to post-date the arrival of H. sapiens on Sulawesi

[57, 58], recent findings [10] support earlier contentions [22] that at least some stone artifacts

within these surface assemblages are late Middle Pleistocene in origin, and were perhaps made

by an archaic hominin population [10].

Layer I and the newly revealed deposits underlying it lack materials suitable for 14C-dating,

including charcoal, shell and bone collagen, and they have proved challenging to date using

other methods. At best, based on pIRIR dating of feldspars from Layer A and U-series dating

of a straw stalactite from this deposit, combined with the 14C chronology for the rear wall brec-

cias, which are unequivocally younger from a stratigraphic perspective, we can constrain the

time range of the deposits comprising Layers A to Layer I to between around 50 ka and 35 ka

cal BP. The pIRIR age estimates for Layer I (~45–35 ka) are potentially consistent with the pro-

posed timescale of the erosion and re-infilling episode, suggesting Layer I was deposited prior
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to accumulation of the ‘missing’ strata (~35–23 ka cal BP) represented now only by remnant

breccias on the rear wall. Sample LB2-OSL11, from Layer A, yielded an earlier age of 73 ± 14

ka, although it is associated with a much larger uncertainty. The lower age limit for this sample

at 2σ is ~44 ka. A suid tooth with a minimum U-series age of ~100–80 ka was also found in

Layer A. Although this fossil could have been reworked, its presence signals the existence of

faunal assemblages at the site that may extend back to MIS5e or earlier.

The identity of the hominins present at Leang Burung 2 during the early stages of this site’s

formation history (i.e., Layers A, I and B) is unclear. The open site of Talepu 80 km northeast

of Leang Burung 2 provides the first indication that Sulawesi harbours an early record of hom-

inin occupation that very likely pre-dates the oldest known presence of our species in the

region [10]. The excavated section at Talepu terminates at ~100 ka. Hence, the identity of the

late Middle Pleistocene tool-makers, and what happened to them, are unresolved issues [10].

Recent findings show that modern humans were established in the lowland karsts of Maros

by at least 40 ka, having brought with them an artistic culture focused on hand stencils and

large figurative animal paintings [8]. These same inhabitants may also have been responsible

for the cultural remains in Layers I and A. This possibility suggests that the first modern

humans to colonize this region possessed a unique cultural repertoire that included selective

exploitation of extinct forms of proboscideans and living ‘megafauna’, a cobble-based core tool

technology comparable to that produced by late Middle Pleistocene hominins at Talepu, and

one of the world’s earliest known rock art traditions. Alternatively, the original inhabitants of

Leang Burung 2 may have belonged to an as-yet unknown population of archaic hominins

that was later replaced by our species. If so, further research in the Maros-Pangkep karsts may

help to determine not only the identity of these hominins but also whether or not there was a

period of overlap (and perhaps interaction) with modern humans.

Conclusion

Our 2007 and 2011–13 excavations at Leang Burung 2 have led to a revised understanding of

the depositional sequence at this shelter site, a stalwart of regional prehistoric studies since the

1980s [1]. Contrary to previous understandings of this site, new dating evidence suggests the

upper levels of the excavated floor deposits and the rear wall breccias perched above the pres-

ent-day shelter floor actually represent two separate phases of deposition. Cultural and faunal

remains in the stratigraphically deepest deposits at Leang Burung 2 (Layers I/A-C) pre-date

the distinctively modern human culture identified at the site by Glover [1], but a more precise

chronology for these lowermost levels, for the present time, is difficult to establish.

Archaeological excavations at Leang Burung 2 still have not revealed bedrock. Continued

investigations at this site are likely to be severely hampered by the practical difficulties of exca-

vating the deposit. In particular, extending the coverage, safely, to a stratigraphically deeper

level than that attained by us will require dealing with the serious issue of groundwater intru-

sion, perhaps necessitating the use of a system of well points and continual pumping to lower

the surrounding water table. The deep deposits were particularly hard to excavate from a tech-

nical perspective. However, assessing the time depth of the stratigraphic layers has proved the

most vexing challenge. Leang Burung 2, like most limestone cave and rock-shelter deposits

[20, 40, 65], has a complicated formation history.

Our research shows that there is a clear imperative to continue investigations in the lowland

karsts of Maros-Pangkep. We concur with earlier assessments [20, 39] that many cave and

rock-shelters in these karsts have been extensively disturbed and reworked by erosional pro-

cesses and also by decades, perhaps centuries, of farmers stripping sites of mineral-rich earth

[40]. Despite this, our deep-trench excavations at Leang Burung 2 have revealed that intact
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and relatively undisturbed occupation deposits of potentially great antiquity still exist at some

sites in this lowland tower karst region. In our view, the Maros-Pangkep landscape holds enor-

mous potential to illuminate the artistic culture and symbolism of Pleistocene human commu-

nities and the genesis of the Toalean, the enigmatic ‘Mesolithic’ tradition of Holocene South

Sulawesi. Moreover, it is now apparent that further investigation may also reveal much earlier

patterns of hominin settlement and faunal turnovers, including the extinction of proboscide-

ans and other endemic species of ‘megafauna’, as well as, quite possibly, the late survival of

archaic hominins and their eventual replacement by H. sapiens.

Methods

Radiocarbon dating

Freshwater gastropod shells were the only materials available for radiocarbon dating. Freshwa-

ter shells can be affected by a freshwater reservoir (or hardwater effect), which cause the shells

to appear tens to thousands of years too old. Prior research in Maros highlights the complexi-

ties involved in acquiring accurate and reliable reservoir estimates for freshwater shells from

this region (e.g. [21, 66]). As yet, there have been no attempts to conduct 14C-dating on the

shells of T. perfecta and other freshwater gastropods collected live from karstic streams and riv-

ers in the Maros region prior to the 1950s atmospheric testing of thermonuclear weapons [21,

67]. Accordingly, there are no widely accepted environmental offsets for correcting 14C ages

on ancient freshwater shells [21]. Although we have treated the 14C dates on T. perfecta shells

as relative ages, it seems reasonable to aver that they deviate from the true ages of the shells by

hundreds, instead of many thousands, of years, although the latter possibility cannot be

excluded. All 14C dates reported in this paper, including those of Glover [1] and the 2007

Leang Burung 2 excavation team, were calibrated using the Southern Hemisphere terrestrial

calibration curve [49] and the OxCal 4.3 program.

Red TL dating

The 2007 investigations involved the first attempt to establish a luminescence chronology for

Leang Burung 2. Owing to the limitation of the radiocarbon barrier at ~40 ka, and the nature

of the quartz in this volcanic province, the red TL dating technique was used. Quartz grains of

90–125 μm collected from Layer I were separated using standard purification procedures,

including a final etch in 40% hydrofluoric acid for 45 min [68]. Quartz grains were mounted

on stainless-steel discs using silicone oil spray, each large aliquot being composed of ~5000

grains (~10 mg). The isothermal red TL emissions [69] were measured via a dual-aliquot pro-

tocol (DAP, [70]), using a red sensitive photomultiplier tube (Electron Tubes Ltd 9658B) and

cooling tower (LCT50 liquid-cooled thermoelectric housing) with Kopp 2–63 and BG-39 filter

combination, and laboratory irradiations were conducted using a calibrated 90Sr/90Y beta

source. De were estimated from the 20–30 s interval of isothermal decay (which was bleachable

by>380 nm illumination) using the final 160 s as background. Aliquots were heated to 260˚C

at a heating rate of 5 K s-1 and then held at 260˚C for 1000 s to minimise the unwanted TL

from incandescence. Palaeodoses were estimated from the 20–30 s interval of isothermal decay

(which was bleachable by>380 nm illumination), using the final 160 s as background. Total

dose rates were measured by in situ gamma spectrometry and laboratory beta counting. An

effective internal alpha dose rate of 0.03 Gy ka-1 and a long-term water content of between 12–

15 ± 5% were used. The red TL signal from the sediments at Liang Bua cave in western Flores

has been extensively studied (e.g [65, 70–72]) and can be used for comparative purposes with

the signal from the deposits in Leang Burung 2. Fig 16 displays this comparison, suggesting

that the Leang Burung 2 sediments contain a similar signal intensity and wavelength of
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Fig 16. Example of the red TL data from Leang Burung 2. (a, b) a comparison of the red TL signal characteristics using glow curves derived from a Liang Bua cave

(Flores) sample WR1 (a) and from a Leang Burung 2 sample (SLBRG2-1, Layer I). The glow curves demonstrate that after 500 Gy dosing the low temperature peaks

disappear with the introduction of the 260˚C preheat, and the presence of a light sensitive shoulder (260–305˚C) that is removed by one hour of bleaching. The Leang

Burung 2 sample shows similarities with the Liang Bua sample, but has a more defined bleachable shoulder and a more intense signal; (c) Isothermal decay of the red

TL signal from sample SLBRG2-1; (d) dose response curve for the unbleachable signal derived from aliquot 1; and (e) the dose response of the bleachable signal

isolated from data derived from aliquot 1 and 2 (see [70] for methodological details).

https://doi.org/10.1371/journal.pone.0193025.g016
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emission, and the same types of TL peaks and luminescence traps. These similarities provide

confidence in the use of the DAP red TL technique as it was primarily developed for applica-

tion to similar luminescence characteristics (e.g. [73]).

pIRIR dating

Previous efforts to date sediments of volcanic origin from Indonesia have used red TL or ultra-

violet OSL signals from quartz, and IRSL signals from potassium-rich feldspar (K feldspar).

There is evidence to suggest that the OSL signals from these Indonesian materials are, in gen-

eral, too dim for dating purposes [70, 74]. It can be argued, for instance, that the light-sensitive

component of the red TL signal is less easily bleached than the OSL or IRSL traps, is small in

size and is obtained by subtraction, possibly resulting in imprecise and potentially inflated ages

[70]. The IRSL signals measured previously showed exceptionally high rates of anomalous fad-

ing and a suitable correction could not be applied. It was not until recently that the newly

developed post-infrared infrared stimulated luminescence (pIRIR) [75] and multiple-elevated-

temperature pIRIR (MET-pIRIR; [76]) procedures were successfully applied to date the sedi-

ments from this region, including at the open-air site of Talepu in Sulawesi [10], at the cave of

Liang Bua on Flores [65], and at a recently excavated cave deposit at Leang Bulu Bettue 1.5 km

to the north of Leang Burung 2 [77] (see also [64]).

Similar to the samples from the nearby site, Leang Bulu Bettue [77], the feldspar grains at

Leang Burung 2 are relatively dim, so we could not apply the MET-pIRIR procedure. Instead,

sufficient signal intensity can be obtained using a two-step pIRIR290 procedure [78], in which a

IR bleach is given at a low temperature (e.g., ~50˚C) before the pIRIR signal is measured at a

high temperature (290˚C). In this procedure, a preheat at 320˚C for 60 s was applied for both

the regenerative and test doses, and a hot-IR bleach at 340˚C for 100 s was applied at the end

of each regenerative and test dose measurement cycle (see [77], for details about the facility

and experimental procedures).

The pIRIR290 procedure was conducted on a total of seven samples collected from Leang

Burung 2 in 2012 from Layer B (LB2-OSL13), Layer A (LB2-OSL12 & LB2-OSL11), Layer I

(LB2-OSL10 & LB2-OSL6), Layer II (LB2-OSL4) and Layer V (LB2-OSL3). Examples of a

pIRIR decay curve and the corresponding dose-response curve are shown in Fig 17 for one

Fig 17. pIRIR decay curve and the corresponding dose-response curve for one aliquot from LB12-OSL3.

https://doi.org/10.1371/journal.pone.0193025.g017
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aliquot from LB12-OSL3. Similar results were obtained for the other samples. The dose-

response curve for each aliquot was generated using a series of regenerative and test doses (the

latter being used to monitor and correct for any sensitivity changes between measurement

cycles), and the De is calculated by projecting its sensitivity-corrected natural signal on to this

dose-response curve. Twelve aliquots were measured for each sample.

The performance of the pIRIR procedure was tested by measuring the residual dose and con-

ducting a dose recovery test. To estimate the extent of any residual dose, we exposed four natu-

ral aliquots of each of the samples LB2-OSL3, OSL4, OSL6 and OSL10 to a solar simulator for

~4 hr and the remnant doses were measured using the pIRIR290 procedure. The residual doses

obtained range from 6 to 9 Gy, and are consistent with each other at 2σ. These values were then

subtracted from the De estimate to determine final ages for our samples. A weighted mean value

of 7.3 ± 0.6 Gy was assumed for the other samples not measured in the residual dose test.

Similar to the residual dose measurement, four natural aliquots from each of LB2-OSL3

and OSL4 were bleached in a solar simulator for ~4 hr and then given a beta dose of 110 Gy.

These aliquots were then measured using the same pIRIR290 procedure. A recovered ratio of

0.95 ± 0.02 and 0.96 ± 0.02 was obtained after correction for residual doses, indicating that the

experimental conditions used here are able to recover the given dose.

As demonstrated previously [77], the feldspars from this region have a highly variable ano-

malous fading rate in the pIRIR signals, and a low temperature IR stimulation (at 50 or 100˚C)

used in a pIRIR procedure cannot completely remove the anomalous fading for the subsequent

pIRIR signals. In order to test whether this is the case for our Leang Burung 2 samples, after De

measurements, between five and 12 aliquots from each sample (except LB12-OSL4) were mea-

sured for an anomalous fading test. A single-aliquot measurement procedure similar to those

described in [79], but based on the pIRIR procedure, was applied. The fading rates (g-values)

were calculated for the pIRIR(50, 290) signal and normalised to the time of prompt measure-

ment of the IRSL signal (tc = 970 s). The g-values obtained are shown in Fig 18 for individual

aliquots. It can be seen that, apart from LB12-OSL3, the g-values for which have a small range

between -2 and 3%/decade, the other samples yielded a wide range of g-values (up to ~10%/

decade) for different aliquots. This is similar to the observation obtained using the samples

from Leang Bulu Bettue [77]. To account for this problem, the latter authors proposed a

method to obtain reliable De estimates by extrapolation of the relationship between De and lab-

oratory fading rate (g-value). Unfortunately, given the limited number of aliquots measured

for g-value and De for our samples, it was not possible to apply that method to our samples.

Instead, we used the fading correction method [80] for the aliquots with g-values measured,

despite the large uncertainties associated with fading-corrected De values owing to the large

uncertainty associated with the individual g-values.

The fading-uncorrected and fading-corrected De values for all the samples are shown in the

radial plots in Fig 18B–18H, respectively. A central age model (CAM) [81] was applied to cal-

culate the fading-uncorrected and–corrected De values, and these are summarised in Table 2.

The CAM results for fading-corrected De values are shown as grey bands in the corresponding

radial plots for each sample (Fig 18B–18H). It is shown that the fading-corrected CAM results

are broadly consistent with the largest fading-uncorrected De values. This is similar to the

observation of [77], who found that the non-fading or small-fading aliquots have the largest De

values for their samples from Leang Bulu Bettue, implying that it is the variable fading rates

among different aliquots that results in the large variation and different extents of underesti-

mation in the De values. Hence, we have adopted the CAM results for the fading-corrected De

values to estimate the final ages (Table 2).

The total dose rate for feldspar grains consists of four components: the external gamma,

beta and cosmic-ray dose rates, and the internal beta dose rate. The external gamma dose rates
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were measured using an Exploranium GR-320 portable gamma-ray spectrometer, which is

equipped with a 3-inch diameter NaI(Tl) crystal calibrated for U, Th and K concentrations

Fig 18. pIRIR data from Leang Burung 2. (a) Summary of the g-values obtained for individual aliquots from samples LB2-OSL3, LB2-OSL6, LB2-OSL10, LB2-OSL11,

LB2-OSL12 and LB2-OSL13, respectively; (b-h) The fading-uncorrected (filled circles) and–corrected (triangles) De values for all the 2012 OSL samples shown in the

radial plots.

https://doi.org/10.1371/journal.pone.0193025.g018
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using the CSIRO facility at North Ryde [82]. The external beta dose rate was measured by low-

level beta counting using a Risø GM-25-5 multicounter system [83] and referenced to the Nus-

sloch Loess (Nussi) standard. The external beta dose rate was corrected for the effect of grain

size and hydrofluoric acid etching on beta-dose attenuation. These external components of the

total dose rate were adjusted for assumed long-term water contents. These values are based on

the measured field water contents, together with an assigned 1σ uncertainty of ± 5% (or ± 10%

for the deepest samples) to capture the likely range of time-averaged values over the entire

period of sample burial (Table 2). The dosimetry data for all samples are summarised in Table 2.

U-series dating of faunal remains

We conducted laser ablation U-series dating of faunal remains from Leang Burung 2, follow-

ing methods reported in detail in [60]. All U-series isotope analyses were measured using the

laser ablation multi-collector inductively coupled mass spectrometer (MC-ICP-MS) system at

The Australian National University’s (ANU) Research School of Earth Sciences. Sample details

are provided in Table 3.

U-series dating of straw stalactites

U-series dating of straw stalactites from Leang Burung 2 was carried out in the Radiogenic Iso-

tope Facility of the University of Queensland, Australia, on a Nu Plasma MC-ICP-MS, fol-

lowed procedures outlined in [55]. We dated a total of five straw stalactites collected at varying

depths from Layers II, and a single specimen collected from Layer A (see Table 2 for sample

details). The samples all consisted of small segments of broken straw stalactites, rather than

whole or relatively complete examples of these fragile, ubiquitous speleothems. The straw sta-

lactites were quite muddy and thus required careful pre-treatment for dating, including cut-

ting, breaking into small chips, washing, hand-picking under a binocular microscope, and

vigorous cleaning. Straw stalactites may grow over a long period of time [55]. Hence, for three

of the samples, we dated both the tips and the bases of the straw stalactites separately. Where

dated, the ‘tips’ of the broken stalactites were slightly younger than the ‘bases’, confirming

their stratigraphic order and therefore the reliability of the U-series dates.
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