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Abstract
The NLRP3 inflammasome is a multimeric protein complex that cleaves
caspase-1 and the pro-inflammatory cytokines interleukin 1 beta (IL-1β)
and IL-18. Dysregulated NLRP3 inflammasome signalling is linked to
several chronic inflammatory and autoimmune conditions; thus,
understanding the activation mechanisms of the NLRP3 inflammasome is
essential. Studies over the past few years have implicated vital roles for
distinct intracellular organelles in both the localisation and assembly of the
NLRP3 inflammasome. However, conflicting reports exist. Prior to its
activation, NLRP3 has been shown to be resident in the endoplasmic
reticulum (ER) and cytosol, although, upon activation, the NLRP3
inflammasome has been shown to assemble in the cytosol, mitochondria,
and mitochondria-associated ER membranes by different reports. Finally,
very recent work has suggested that NLRP3 may be localised on or
adjacent to the Golgi apparatus and that release of mediators from this
organelle may contribute to inflammasome assembly. Therefore, NLRP3
may be strategically placed on or in close proximity to these subcellular
compartments to both sense danger signals originating from these
organelles and use the compartment as a scaffold to assemble the
complex. Understanding where and when NLRP3 inflammasome assembly
occurs may help identify potential targets for treatment of NLRP3-related
disorders.
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Introduction
Inflammasomes are multimeric protein complexes composed 
of typically a Nod-like receptor (NLR) or absent in myeloma 2 
(AIM2), the adaptor molecule apoptosis-associated speck-like 
protein containing a CARD (ASC), and the effector protease  
caspase-1. Upon activation, the receptor dimerises and recruits 
ASC via pyrin domain interactions and ASC subsequently 
interacts with caspase-1 via their respective CARD domains.  
Caspase-1 undergoes autoproteolytic cleavage to produce an 
active fragment which is able to cleave the precursor forms 
of cytokines interleukin 1 beta (IL-1β) and IL-18, leading to  
pro-inflammatory responses1–5. In addition to cleaving the above 
cytokines, caspase-1 cleaves gasdermin-D (GSDMD) to pro-
duce an active N-terminal fragment which subsequently inserts 
into the plasma membrane and assembles a pore, resulting in an  
inflammatory cell death termed pyroptosis6–8.

Of all the NLR inflammasomes characterised to date, the NLRP3 
inflammasome has been the most extensively studied, largely due 
to its role in several infectious and inflammatory disorders9–14. 
Activation of the NLRP3 inflammasome is unique in that it 
requires two signals to assemble. The first signal involves  
ligation of typically a Toll-like receptor (TLR), initiating  
activation of the transcription factor nuclear factor kappa-light- 
chain-enhancer of activated B cells (NF-κB) and upregulation of  
pro-IL-1β and NLRP3. This initial step is often referred to as 
the “priming” signal. The second signal (also known as the 
activating signal) is induced by a wide variety of substances,  
including exogenous and endogenous compounds such as ATP, 
silica, cholesterol crystals, and alum, as well as a variety of  
bacterial, viral and fungal pathogens or their toxins (or both). 
How such a wide variety of structurally and chemically diverse 
entities are all able to activate the NLRP3 inflammasome has  
been at the forefront of inflammasome biology for the last dec-
ade. It is commonly accepted that all of these ligands do not 
bind NLRP3 directly and instead converge on a cellular path-
way which subsequently activates NLRP315. Mechanisms pro-
posed for NLRP3 activation include K+ efflux, mitochondrial 
dysfunction, production of reactive oxygen species (ROS), lyso-
somal rupture, and Ca2+ mobilisation. Although some of these 
mechanisms are involved in response to many NLRP3 activa-
tors, absolute requirement of any specific mechanism with all 
activating signals is still to be demonstrated, thereby preclud-
ing a consensus on the central NLRP3 inflammasome-activating 
mechanism. A common theme among many of the proposed mech-
anisms is the sensing of molecules released as a result of cellular/ 
organelle stress and dysfunction16–18. Additionally, emerging  
evidence has now suggested key homeostatic functions for  
endoplasmic reticulum (ER) and Golgi in NLRP3 activation18–22.  
Here, we review recent literature focusing on the roles that 
mitochondria, ER, and Golgi play in the localisation, assem-
bly, and activation of the NLRP3 inflammasome. Though less 
studied, the requirement of these organelles in activation of  
other inflammasomes, when relevant, is also discussed. A critical 
role for lysosomes has been recognised in response to particu-
late ligands; however, we have not included a separate section 
on this organelle as it has been discussed in detail in several  
published reviews23–25.

Cellular localisation of NLRP3 and ASC
Studies conducted almost a decade ago suggested NLRP3 
inflammasome localisation on mitochondria and mitochondria- 
associated ER membranes (MAMs)26. Detailed biochemical  
studies demonstrated that, under resting conditions, the major-
ity of NLRP3 is located in the ER and cytosol of THP-1 cells 
overexpressing NLRP3. However, upon activation with NLRP3  
activators monosodium urate (MSU) or nigericin, NLRP3 relocated 
to the perinuclear space and associated with both mitochondrial 
and ER markers and therefore is thought to be located on 
MAMs, composed of both ER and mitochondrial outer mem-
brane fragments26. A small fraction of NLRP3 was also found 
in the cytosol upon activation. Similarly, Yang et al. have  
demonstrated that the activated NLRP3 inflammasome is located 
on the mitochondria27. Conversely, Wang et al. showed that the  
NLRP3 inflammasome shows no association with mitochon-
drial markers and was located solely in the cytosol of mouse 
macrophages exposed to lipopolysaccharide (LPS) and ATP28.  
However, the location of NLRP3 may be cell-specific, as nuclear 
localisation was reported in CD4+ Th2 cells, whereas cyto-
plasmic location was observed in CD4+ Th1 cells following  
differentiation29. In this case, nuclear NLRP3 transcriptionally  
regulated Th2 differentiation of CD4+ T cells but did not participate 
in inflammasome formation per se29.

The recruitment of NLRP3 to MAMs may be dependent on  
mitochondrial cardiolipin or the presence of mitochondrial  
antiviral signalling (MAVS), an outer mitochondrial mem-
brane protein involved in retinoic acid–inducible gene I (RIG-I)- 
mediated interferon (IFN) responses30–32. Additionally, the trans-
location of NLRP3 to mitochondria may rely on the presence of 
a short sequence in the N-terminal domain of human NLRP330; 
although murine NLRP3 differs in this minimal N-terminal 
sequence, it too was found to be associated with mitochondria upon  
activation32. Other studies found a role for microtubules in 
the transport of NLRP3 to mitochondria and this was aided 
by microtubule-affinity regulating kinase 4 (MARK4), which 
helped position NLRP3 to mitochondria for effective “speck” 
formation and optimal inflammasome activity (Figure 1). 
mCherry-tagged NLRP3 was shown to move along microtubules  
towards mitochondria in nigericin-activated THP-1 cells, a 
response that was diminished in MARK4 knock-down cells33. In 
agreement, inhibition of tubulin polymerisation by either colchicine 
or nocodazole diminished NLRP3 inflammasome activation33,34.  
The localisation of NLRP3 on or in close vicinity to mitochon-
dria offers an obvious advantage to the cell as any disturbance 
in cellular homeostasis leading to mitochondrial dysfunction 
would result in efficient sensing and activation of NLRP3. Stud-
ies on the localisation of ASC within the cell are somewhat con-
tradictory; Misawa et al. demonstrated the localisation in the  
mitochondria, cytosol, and nucleus under resting conditions 
in primary bone marrow–derived macrophages (BMDMs)34. 
Once an activating signal is sensed, a dynein-dependent mecha-
nism transports ASC on the mitochondria in close proximity to 
NLRP3 on the ER34. This transport was shown to be independ-
ent of K+ efflux and mitochondrial ROS (mtROS). Additionally,  
other reports have shown ASC to reside exclusively in the cytosol 
and in the nucleus under resting conditions and to associate 
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with mitochondria upon NLRP3 inflammasome activation26,35. 
Whether the nature of the upstream stimuli calibrates the locali-
sation of the NLRP3 inflammasome to distinct subcellular  
compartments is still unclear, as is the localisation of other  
inflammasome-forming receptors.

Mitochondria
Mitochondrial dysfunction leads to NLRP3 inflammasome 
activation
Positioning of NLRP3 following activation on MAMs/mitochon-
dria is thought to enable immediate recognition of mitochondrial 
damage, which has been proposed as a central event downstream 
of various NLRP3-activating stimuli. These damage signals  
include mtROS, mitochondrial DNA (mtDNA) and cardiolipin 
(Figure 1)26,36,37.

Cellular ROS was initially shown to activate the NLRP3 inflam-
masome in an NAPDH-dependent manner; however, further 

studies showed that ROS generated by the mitochondria 
is sufficient to lead to NLRP3 activation26,38,39. Specific inhibition 
of mtROS significantly diminishes NLRP3 inflammasome  
activation40. Yu et al. demonstrated that mitochondrial damage 
following NLRP3 inflammasome activation occurs in a caspase-
1–dependent manner, resulting in the release of mtROS41. Cas-
pase-1 was demonstrated to amplify this response by inhibiting 
mitophagy, the process of removal of damaged mitochondria, 
which then contributed to pyroptosis induction41. Conversely, ROS 
production has been shown to be dispensable for NLRP3 inflam-
masome activation, and the significance of K+ efflux has been  
highlighted42, thereby suggesting these as independent NLRP3 
activation mechanisms. How increases in mtROS production 
activate NLRP3 is still unclear, although TXNIP has been impli-
cated by various studies43–45. TXNIP is a negative regulator of the 
antioxidant thioredoxin (TRX) and is thought to dissociate from 
TRX in the presence of ROS, allowing TXNIP to bind to NLRP3. 
In agreement, NLRP3 inflammasome activation is impaired in 

Figure 1. Mitochondria and ER in activation of the NLRP3 inflammasome. A proportion of NLRP3 has been shown to reside in the ER prior 
to activation and translocate to the mitochondria or mitochondria-associated membranes during activation. The translocation of NLRP3 to 
the mitochondria has been shown to be dependent on microtubule rearrangement and microtubule kinase MARK4. Activation of the NLRP3 
inflammasome requires two signals. The first signal, referred to as NLRP3 “priming”, requires activation of NF-κB (for example, through TLR 
stimulation) and the upregulation of NLRP3 and IL-1β. The second activating signal has been shown to be mediated via several mechanisms. 
TLR priming induced upregulation of mtDNA via CMPK2, and the upregulation of mtROS has been shown to activate the NLRP3 at the 
mitochondria. mtDNA may also be able to activate the AIM2 inflammasome. ER stress has also been implicated in NLRP3 inflammasome 
activation, and ER stress–induced activation of the UPR response pathway, including UPR sensors IRE1α and PERK, is required for NLRP3 
inflammasome activation. Following activation, the NLRP3 inflammasome leads to the activation of caspase-1 and subsequent cleavage of 
IL-1β and IL-18. AIM2, absent in myeloma 2; ASC, apoptosis-associated speck-like protein containing a CARD; CMPK2, cytidine/uridine 
monophosphate kinase 2; ER, endoplasmic reticulum; IL-1β, interleukin-1 beta; IL-18, interleukin-18; IRE1α, inositol-requiring protein 1 alpha; 
MARK4, microtubule-affinity regulating kinase 4; mtDNA, mitochondrial DNA; mtROS, mitochondrial reactive oxygen species; NF-κB, nuclear 
factor kappa-light-chain-enhancer of activated B cells; PERK, protein kinase R-like endoplasmic reticulum kinase; TLR, Toll-like receptor; 
UPR, unfolded protein response.
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TXNIP-/- mice46. The precise mechanism remains unresolved.  
Furthermore, mutations in mtDNA-encoded cytochrome b gene 
in patients with fibromyalgia are associated with mitochon-
drial dysfunction and increased ROS production, leading to 
enhanced caspase-1 cleavage, and IL-1β and IL-18 secretion 
in fibroblasts and serum respectively47. Increases in ROS have  
previously been implicated in other inflammatory disorders48,49.

In addition to mtROS, the release of mtDNA—in particular,  
oxidised mtDNA—in response to mitochondrial dysfunction  
activates the NLRP3 inflammasome36,50,51. NLRP3 inflammasome 
priming via TLRs has been shown to induce mtROS production 
and, more recently, the production of mtDNA52,53. The latter is 
dependent on MyD88/TRIF- and IRF-1-mediated upregulation  
of mitochondrial deoxyribonucleotide kinase, CMPK2, an 
enzyme with rate-limiting activity in mtDNA synthesis53. The  
newly synthesised mtDNA (made during priming) was found 
to be necessary to generate oxidised mtDNA fragments when 
cells were subsequently exposed to an NLRP3-activating signal  
(Figure 1)53. Of note, oxidised DNA from any cellular source  
can activate the NLRP3 inflammasome. In fact, mtDNA con-
tributes to inflammation in diseases such as atherosclerosis and 
inflammatory kidney disorders, and the inhibition of its release 
by exposure to agents that maintain mitochondrial integrity  
prevents NLRP3 inflammasome activation54–59. Contrary to the  
above, TLR-dependent priming also restricts inflammasome 
activation through efficient removal of damaged mitochondria.  
TLR-activated NF-κB pathway induces prolonged accumula-
tion of the autophagic receptor p62/SQSTM1, which targets  
damaged mitochondria for clearance by mitophagy60, thereby pre-
venting NLRP3 over-activation61. Whether inhibition of mtDNA 
release or maintenance of mitochondrial integrity (or both) will 
translate into novel therapeutics for disorders in which NLRP3  
inflammasome is dysregulated is yet to be seen.

A small number of studies have implicated mtDNA in the  
activation of other inflammasome complexes. Mitochondrial  
damage by Pseudomonas aeruginosa leads to the release of 
ROS and mtDNA; the latter was shown to bind and activate the 
NLRC4 inflammasome. In agreement, abolition of mtDNA by 
DNase I treatment resulted in reduced caspase-1 activation and 
IL-1β secretion following P. aeruginosa infection62. However,  
caspase-1 activation was not completely abolished by DNase I 
in Nlrc4−/− macrophages, suggesting roles for other inflamma-
somes, and the authors attributed this to AIM2 inflammasome 
activation. Although NLRP3 is not thought to be involved during  
P. aeruginosa infection, a role for NLRP3 was not experimen-
tally ruled out62,63. Dang et al. also demonstrated that mtDNA, 
released as a result of loss of mitochondrial integrity by  
elevated cellular cholesterol levels, can activate the AIM2 
inflammasome in macrophages lacking cholesterol-25-hydroxy-
lase. In wild-type cells, production of 25-hydroxycholesterol  
(25-HC) by cholesterol-25-hydroxylase repressed cholesterol 
biosynthesis, thereby maintaining mitochondrial integrity64.  
However, only a small redundant role for NLRP3 was found 
in the above study, although mtDNA is known to activate this  
inflammasome36. As the AIM2 inflammasome can recognise 
both foreign and self-DNA, it is likely that it can also recognise 
mtDNA; however, further studies are required to confirm these 
findings. Whether mtDNA has the ability to directly activate 

multiple inflammasomes65 or whether upstream stimuli direct 
differential activation of NLRP3 and AIM2 inflammasomes  
requires further clarification.

NLRP3 is recruited to and binds mitochondrial cardiolipin
Cardiolipin, a phospholipid localised to the inner mitochondrial 
membrane (IMM), has also been linked to NLRP3 inflamma-
some activation. Upon NLRP3 activation or in the presence of 
stimuli that destabilise mitochondria, cardiolipin redistributes 
to the outer leaflet of the mitochondrial membrane (OMM), 
where NLRP3 anchors through its leucine-rich repeat (LRR)  
domain37,66 (Figure 1). Depletion of cardiolipin or abrogation 
of cardiolipin synthesis by culturing cells in the presence of  
palmitate (C16:0), a saturated long-chain fatty acid, blunted inflam-
masome activation in J774A.1 macrophages37. Similarly, small 
interfering RNA (siRNA) knock-down of cardiolipin synthase  
reduced NLRP3 activation37. Corroborating these findings, 
activation of the NLRP3 inflammasome, by HIV reverse tran-
scriptase inhibitor abacavir, was abrogated following inhibition 
of cardiolipin synthase-137. Furthermore, cardiolipin-depend-
ent NLRP3 inflammasome activation by the antibiotic linezolid, 
which induces mitochondrial toxicity, was ROS-independent37. 
Thus, mitochondrial dysfunction, which induces ROS under 
certain conditions, and not ROS itself, may be responsible for 
NLRP3 inflammasome activation. Additionally, recent work from 
the group established that NLRP3 is recruited to the mitochon-
dria at the priming stage and binds to cardiolipin on the OMM67.  
Interestingly, the movement of cardiolipin to the OMM was 
found to be dependent on ROS produced during the NLRP3  
priming step. Surprisingly, caspase-1 also binds cardiolipin at the 
mitochondria, while ASC was recruited only following NLRP3  
activation67. The binding of both caspase-1 and NLRP3 to  
mitochondrial cardiolipin validates mitochondria as a scaffold 
for inflammasome activation, thereby amplifying its activation 
by bringing molecules together (Figure 1). In line with this, 
other immune signalling pathways initiated at the mitochon-
dria, including the MAVS complex, occur in a similar manner68.  
Additionally, these studies identify a role for priming beyond the 
upregulation of NLRP3 and pro-IL-1β.

Endoplasmic reticulum
Endoplasmic reticulum stress triggers caspase-1 activation
NLRP3 has been shown to reside in the ER prior to its  
activation, and ER dysfunction has been reported to trigger inflam-
masome activation (Figure 1). The ER is a membrane-bound  
organelle that is critical for protein folding, assembly and modi-
fication in addition to being the site for lipid synthesis and Ca2+ 
homeostasis. Cellular stress leading to accumulation of mis-
folded or unfolded proteins induces an unfolded protein response 
(UPR) aimed at restoring ER homeostasis by regulating levels of  
transcription, translation, and protein folding69. The UPR response 
activates several stress sensors located in the ER, including  
inositol-requiring protein 1 alpha (IRE1α), protein kinase  
R-like endoplasmic reticulum kinase (PERK), and activating 
transcription factor 6 (ATF6). These sensors subsequently regu-
late downstream cytosolic effectors and signalling pathways, 
including proteasomal degradation, autophagy, and antioxidant 
defence mechanisms. Prolonged ER stress induces an inflam-
matory response and cell damage, thereby triggering NLRP3 
inflammasome activation18,70–73. An initial study suggested that 
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ER stress activated the NLRP3 inflammasome via a UPR- 
independent pathway, as short hairpin RNA (shRNA) knock-
down of either Ire1α or Perk or macrophages obtained from 
Atf6α−/− mice released comparable IL-1β following NLRP3  
activation74. However, the authors also noted that not all NLRP3 
activators induced ER stress, indicating that this may be just one 
mechanism by which the NLRP3 inflammasome is activated. In  
agreement, Bronner et al. found that ER stress and IRE1α were 
not induced in mouse BMDMs with the canonical NLRP3 
activator ATP, although they were induced during Brucella  
abortus infection18. During B. abortus infection, IRE1α-initiated 
mtROS production recruited NLRP3 to mitochondria. Mecha-
nistically, IRE1α activated TXNIP and caspase-2, leading to  
truncation and activation of the mitochondrial protein Bid, which 
resulted in mitochondrial damage and release of mitochondrial 
damage-associated molecular patterns (DAMPs) that promoted  
NLRP3 activation18. Surprisingly, NLRP3 was required to acti-
vate caspase-2/Bid upstream of mitochondrial damage, suggesting  
a role for NLRP3 in initiating mitochondrial damage by a feed-
forward loop. IRE1α and its activation of TXNIP have been impli-
cated in NLRP3 inflammasome activation in other studies19,75–78. 
Similarly, inhibition of the ER stress sensor PERK was shown to 
reduce caspase-1 activation and IL-1β secretion in J744.1 mac-
rophages, although how PERK inhibition decreases NLRP3 
activation was not determined79. Targeting IRE1α to dampen 
ER stress–induced NLRP3 inflammasome activation has shown 
benefits in a wide variety of inflammatory conditions75,76,80–85.  
These studies again suggest mitochondrial damage as the  
downstream mechanism by which ER stress initiates NLRP3 
inflammasome formation. Additionally, this work may indicate 
that the ER is the site where NLRP3 activation is initiated 
before the inflammasome is assembled in the cytosol or at the  
mitochondria/MAMs.

In addition to being implicated in the activation of the NLRP3 
inflammasome, ER stress is thought to play a role in the  
activation of the NLRP1 inflammasome. NLRP1 expression 
in HeLa cells is upregulated upon induction of ER stress by  
tunicamycin and thapsigargin, which inhibit the N-linked gly-
cosylation of proteins and sarcoplasmic/endoplasmic reticulum  
Ca2+-ATPase (SERCA) respectively. Upregulation of Nlrp1 involved 
IRE1α and PERK, and siRNA knock-down of either Ire1α or  
Perk abrogated increase in NLRP1 expression86. Consistent 
with this, studies have shown a link between ER stress and 
NLRP1 upregulation in leukaemia and cardiovascular injury 
models87,88. Thus, as suggested by studies discussed below, ER 
seems to be a key subcellular site to regulate inflammasome  
activation.

Endoplasmic reticulum calcium homeostasis in 
inflammasome activation
The ER is also the site at which Ca2+ homeostasis occurs, and 
Ca2+ mobilisation has been implicated in NLRP3 inflamma-
some activation. Blockade of the ER-resident calcium channel 
IP3R led to reduced NLRP3 inflammasome activation in mouse 
macrophages89,90. Other studies have challenged these claims, 
showing no role for Ca2+ and indicating that K+ efflux is more  
important42,91. It can be expected that, as with other mechanisms 
of NLRP3 activation, Ca2+ mobilisation from the ER activates 
the NLRP3 inflammasomes only under specific conditions.  

Similarly, it is possible that Ca2+ mobilisation precedes ER stress 
or is a consequence of ER dysfunction and therefore happens to  
occur alongside ER stress–induced NLRP3 activation.

Endoplasmic reticulum cholesterol levels regulate NLRP3 
activation
The ER not only is involved in lipid synthesis but also is the 
site at which cholesterol levels within the cell are sensed and 
regulated. Cellular cholesterol homeostasis is achieved by 
maintaining an equilibrium between de novo synthesis at the 
ER, exogenous cholesterol uptake in the form of low-density 
lipoprotein (LDL), and cholesterol efflux programs. LDL is  
endocytosed by LDL receptor and subsequently trafficked 
through the endosomal system to other subcellular compartments,  
including the ER, plasma membrane, and Golgi. Blockade of  
cholesterol efflux from the lysosome was recently demonstrated to 
inhibit NLRP3 inflammasome activation in mouse macrophages, 
an effect attributed to decreased cholesterol within the ER21.  
Similarly, inhibition of cholesterol biosynthesis in the ER by 
exposing cells grown in lipoprotein-deficient media to statins 
dampened NLRP3 inflammasome activation21. Additionally, 
the ER-localised cholesterol-sensing transcription factor sterol 
regulatory element-binding protein 2 (SREBP2) has been impli-
cated in NLRP3 inflammasome activation92. The cholesterol  
metabolite, 25-HC, has also been shown to activate the NLRP3 
inflammasome by induction of K+ efflux, mtROS production, 
and activation of the cholesterol transcriptional regulator liver 
X receptors (LXRs)93. Thus, either cholesterol may be involved 
in directly influencing inflammasome complex formation or  
ER cholesterol content may support NLRP3 in achieving the 
necessary conformation. Regardless, these studies emphasise  
a critical role for ER in inflammasome activation.

The Golgi complex
NLRP3 translocation near the Golgi is required for 
inflammasome activation
Although roles for mitochondria and ER have been suggested 
by many labs in the last decade, a few recent studies have 
also implicated Golgi in inflammasome activation. The Golgi 
apparatus is important for the modification and transport of  
proteins and lipids within the cell. Zhang et al. first impli-
cated the Golgi in NLRP3 inflammasome activation. Following  
treatment with NLRP3 activators, the levels of diacyl  
glycerol (DAG) at the Golgi increased and this coincided with 
the localisation of NLRP3 on MAMs adjacent to the Golgi20.  
Disruption of Golgi integrity with brefeldin A reduced caspase-1 
activation, IL-1β secretion and ASC speck formation fol-
lowing NLRP3 inflammasome activation, a result which  
was corroborated in a subsequent study94. This effect was attrib-
uted to protein kinase D (PKD), a DAG effector, which phos-
phorylated NLRP3 at a conserved residue (Ser293) in its NBD 
domain, allowing its release from MAMs to form an inflam-
masome complex within the cytosol (Figure 2). Of note, PKD  
phosphorylated after NLRP3 self-oligomerised and PKD  
inactivation both retained self-oligomerised NLRP3 at MAMs 
and reduced NLRP3 inflammasome activation. Interestingly, 
PKD inhibition in cells from patients with cryopyrin-associated  
periodic syndrome (who exhibit spontaneous NLRP3 oli-
gomerisation) also showed reduced NLRP3 activation20. This 
added to previous studies that indicate that post-translational  
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modifications can both positively and negatively affect NLRP3  
activation95,96. Furthermore, this study highlights cross-talk 
between Golgi and MAMs during NLRP3 inflammasome activa-
tion by means of DAG accumulation. In support of this, a recent 
study demonstrated recruitment of NLRP3 to the trans-Golgi  
network (TGN) through ionic bonding between NLRP3 and  
phosphatidylinositol-4-phosphate (PtdIns4P) in the membrane of 
the Golgi (Figure 2)22. The authors found that the TGN dispersed 
and formed vesicles in the perinuclear space that co-localised 
with overexpressed NLRP3 following inflammasome activation  
in HeLa cells. Similar results were shown in primary BMDMs  
lacking ASC; therefore, whether the full assembly of the inflam-
masome complex occurs at the TGN was not addressed. However,  
in that study, in contrast to previous studies, NLRP3 was not 
found to be associated with mitochondria, and instead the 
TGN, rather than the mitochondria, provided the scaffold for 
NLRP3 inflammasome activation22. Furthermore, translocation 
of NLRP3 from the ER to the Golgi, this time requiring SREBP  
and SREBP cleavage-activating protein (SCAP), has also 
been reported in primary mouse macrophages92. When cho-
lesterol levels within the cell are low, the SCAP-SREBP2  
complex translocates from the ER to the Golgi, where SREBP2 
is cleaved into its active form by site-1 protease (S1P) and  
site-2 protease (S2P), and translocates to the nucleus to  

transcribe genes involved in cholesterol biosynthesis and uptake97. 
The latter study demonstrated that NLRP3 partially co-localises 
with SCAP-SREBP2 and translocates to the Golgi, and that 
inhibition of SCAP-SREBP2 translocation abrogated NLRP3  
inflammasome activation (Figure 2). Subcellular fractionation 
studies showed NLRP3 in the Golgi as well as in the mitochon-
drial fraction with SCAP. This correlates with findings from 
Zhang et al., who suggested that NLRP3 activation occurs in close  
proximity to both the Golgi and the mitochondria20. Whether 
multiple mechanisms can independently initiate NLRP3 recruit-
ment to the Golgi requires further work and so does the role  
of NLRP3 phosphorylation in inflammasome activation.

Concluding remarks
The intracellular milieu of the cell is vital for maintenance of 
cell function as well as the many cellular processes. Damage 
to organelles, caused by either endogenous agents or invading 
pathogens, has been demonstrated to activate NLRP3 inflam-
masome, leading to pro-inflammatory cytokine release and 
cell death via pyroptosis. Although a consensus has yet to be 
reached as to the precise location of the resting NLRP3 and  
the inflammasome complex, several studies have indicated that 
NLRP3 translocates to the mitochondria or MAMs following 
activation (Table 1). The mitochondria are integral to providing 

Figure 2. Emerging role of the Golgi apparatus in NLRP3 inflammasome activation. NLRP3 localised at the endoplasmic reticulum has 
been shown to translocate to the Golgi via binding to the SCAP-SREBP2 complex, which regulates cholesterol homeostasis. SREBP2 is 
cleaved at the Golgi by S1P and S2P to yield the active nuclear form of SREBP2, which then translocates to the nucleus and upregulates 
genes involved in cholesterol synthesis. NLRP3 has also been shown to be recruited to the TGN through ionic bonds formed with PtdIns4P. 
The Golgi then acts as a scaffold for NLRP3 assembly. Finally, DAG accumulation at the Golgi recruits and activates PKD, which is required for 
NLRP3 phosphorylation at the mitochondria, leading to its release and activation at mitochondrial-associated membranes. ASC, apoptosis-
associated speck-like protein containing a CARD; DAG, diacylglycerol; IL-1β, interleukin-1 beta; IL-18, interleukin-18; PKD, protein kinase D; 
PtdIns4p, phosphatidylinositol-4-phosphate; S1P, site-1 protease; S2P, site-2 protease; SREBP2, sterol regulatory element-binding protein 2; 
TGN, trans-Golgi network.
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the cell with its source of energy; therefore, it is conceivable 
that any insult to this compartment is sufficient to be perceived 
as a danger signal. NLRP3 localisation on or in proximity to  
mitochondria upon activation supports the notion that it is  
competently positioned to sense danger signals originating from  
this organelle. This is backed by the numerous studies dem-
onstrating an association between loss of mitochondrial integ-
rity and NLRP3 inflammasome activation. The direct roles of 
other subcellular compartments in inflammasome assembly 
remain to be established, although studies have shown vital  
roles for ER stress signalling and ER cholesterol content in 
NLRP3 inflammasome activation. Unravelling the input of  
distinct organelles in NLRP3 inflammasome assembly will  
provide crucial insights into how cells sense and coordinate the  
activation of the NLRP3 inflammasome. This new understanding 

would enable the development of therapeutics that calibrate  
NLRP3 activation to maintain cellular homeostasis.
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Table 1. Localisation of NLRP3 before and after NLRP3 inflammasome activation.

Cells and method employed Resting NLRP3 Activated NLRP3/NLRP3 
inflammasome

Reference

1. THP-1 cells overexpressing FLAG-tagged NLRP3 
and ASC 
Subcellular fractionation and confocal and 
electron microscopy

ER and cytosol MAMs Zhou et al.26 (2011)

2. Peritoneal macrophages from C57BL/6 mice 
Immunofluorescence microscopy

- Cytosol Wang et al.28 (2013)

3. HEK-293T overexpressing NLRP3 – Confocal 
microscopy 
Wild-type and Asc−/− immortalised BMDMs 
– Subcellular fractionation

Cytosol Mitochondria Subramanian et al.30 (2013)

4. BMDMs – Immunofluorescence microscopy ER Mitochondria/ER 
(microtubules bring ASC on 
mitochondria and NLRP3 on 
ER together)

Misawa et al.34 (2013)

5. BMDMs – Subcellular fractionation and 
immunofluorescence microscopy

- Mitochondria Yang et al.27 (2015)

6. BMDMs and THP-1 cells – Confocal microscopy Cytosol MAMs → cytosol Zhang et al.20 (2017)

7. HeLa cells overexpressing NLRP3 – Subcellular 
fractionation and fluorescence microscopy 
Asc−/− BMDMs – Immunofluorescence  
microscopy

Cytosol and trans-
Golgi network

Trans-Golgi network Chen and Chen22 (2018)

ASC, apoptosis-associated speck-like protein containing a CARD; BMDM, bone marrow–derived macrophage; ER, endoplasmic reticulum; MAM, 
mitochondria-associated endoplasmic reticulum membrane.
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