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Abstract: The coronary artery calcium score is an independent risk factor of the development of
adverse cardiac events. The severity of coronary artery calcification may influence the myocardial
texture. Due to higher spatial resolution and signal-to-noise ratio, new CT technologies such as
PCCT may improve the detection of texture alterations depending on the severity of coronary artery
calcification. In this retrospective, single-center, IRB-approved study, left ventricular myocardium
was segmented and radiomics features were extracted using pyradiomics. The mean and standard
deviation with the Pearson correlation coefficient for correlations of features were calculated and
visualized as boxplots and heatmaps. Random forest feature selection was performed. Thirty patients
(26.7% women, median age 58 years) were enrolled in the study. Patients were divided into two
subgroups depending on the severity of coronary artery calcification (Agatston score 0 and Agatston
score ≥ 100). Through random forest feature selection, a set of four higher-order features could be
defined to discriminate myocardial texture between the two groups. When including the additional
Agatston 1–99 groups as a validation, a severity-associated change in feature intensity was detected.
A subset of radiomics features texture alterations of the left ventricular myocardium was associated
with the severity of coronary artery calcification estimated by the Agatston score.

Keywords: photon-counting computed tomography; coronary artery calcium score; radiomics;
texture analysis

1. Introduction

The coronary artery calcium score (CACS) is an established risk predictor of adverse
coronary events such as myocardial infarction and cardiac death [1,2]. Through the CACS,
the individual burden of subclinical atherosclerosis of coronary arteries can be determined.
However, the significance of CACS extends far beyond purely estimating the cardiac risk;
it is also associated with other disease patterns such as cancer and dementia, partly due
to underlying similar risk factors such as tobacco use, diabetes, and hypertension [3]. The
Agatston score is used in daily practice to estimate the extent of coronary artery calcification
not only as a total but also differentiated to the individual main vessels [4]. Using the
Agatston score, a risk profile can be created that indicates a cardiac age in relation to the
biological age and, depending on the extent of the calcifications (and, thus, the level of the
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score), a probability for the development of an obstructive coronary artery disease event in
the next 10 years [5]. The cut-off value of 100 was outlined as a reference point, as calcium
scores greater than 100 were associated with most coronary events such as myocardial
infarction or death from coronary artery disease [6]. As cardiovascular diseases remain the
number one cause of death worldwide [7], the importance of further diagnostic tools in this
field has been recognized by medical societies, leading to a readjustment of guidelines and
recommendations for cardiac CT [8], even with the knowledge of the limitation in cases
of severe artery calcification due to the blooming artifacts of calcified plaque that occur
due to limited spatial resolution [9]. This was even further emphasized by outlining the
lower frequency of major-procedure-related complications in patients with stable chest pain
and intermediate pretest probability of coronary artery disease who underwent initial CT
instead of initial invasive coronary angiography, as outlined by the DISCHARGE trial [10].

Apart from risk estimations based on CACS, imaging of the myocardium, followed
by assessment of myocardial disease, with magnetic resonance imaging (MRI) is a further
important clinical parameter in these patients. A recent study revealed CACS as an inde-
pendent predictor of unrecognized myocardial infarction on MRI [11]. In the context of
MRI, texture analysis with radiomics parameters has been established as an additional
quantitative clinical marker of the myocardium [12–14]. Radiomics is a technique used to
extract numerous features from an area of interest in a radiologic image to create datasets
of hundreds of parameters [15,16]. Recently, the first feasibility studies have employed
radiomics for analysis of myocardial fibrosis [17], quantification of coronary plaques [18],
and perivascular fat [19] on computed tomography. However, the effect of increased CACS
on myocardial texture features on CT is unclear. Coronary artery sclerosis may have a
chronic impact on myocardial perfusion, possibly resulting in myocardial fibrosis. Myocar-
dial fibrosis was, until now, mainly investigated in cardiac MRI [12] due to the need for
optimal spatial resolution and signal-to-noise ratio [20–22].

The implementation of photon-counting computed tomography (PCCT) has the po-
tential to overcome this limitation. In contrast to conventional energy-integrating detectors
(EIDs), PCCT allows every photon that hits the detector element to be directly converted
into an electric pulse. Due to smaller detector elements and using a threshold for electric
noise, PCCT has higher spatial resolution as well as a better signal-to-noise ratio [23,24].

The aim of this pilot study was to investigate whether myocardial texture changes not
visible to the human eye can be identified by texture analysis depending on the severity of
coronary artery calcification with PCCT.

2. Materials and Methods
2.1. Study Design

For this retrospective single-center study, patients with clinically indicated electro-
cardiography (ECG) gated non-contrast- and contrast-enhanced cardiac CT were enrolled
between December 2021 and February 2022. All patients were examined using a clinically
approved photon-counting CT system. Patients with suspected or known CAD were in-
cluded. Patients were excluded in the case of severe image artifacts (n = 4) or in the case of
previous cardiac stent implantation (n = 1). Additionally, patients were excluded in the case
of known cardiomyopathy, history of myocardial infarction, or visible myocardial damage
(n = 4). All investigations were conducted according to the Declaration of Helsinki. The
study had institutional review board and local ethics committee approval (ID 2021-659).

2.2. Patient Collective

Based on inclusion and exclusion criteria, a total of 30 CT scans of patients were
included in this study. In total, 30 patients (22 men, 8 women; mean age 58 years, range:
21–80 years; all p > 0.05) were selected. The patient and scan characteristics are summarized
in Table 1.
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Table 1. Patient overview. Mean and (SD) given for continuous variables.

Overall Agatston 0 Agatston 1–99 Agatston ≥ 100 p-Value

Patient
parameters

n 30 10 10 10 N/A
Age 58.27 (13.85) 50.6 (16,52) 63.2 (11.90) 61 (10.17) 0.091
Sex 22 male (73.3 %) 6 male (60.0 %) 7 male (70.0 %) 9 male (90.0%) 0.303

Stent 0 0 0 0 N/A
Agatston Score 270.10 (616,42) 0 (0) 29.74 (22.56) 789.57 (882.50) 0.002

Scanner
parameters

Tube voltage 120 120 120 120 N/A
Slice thickness 0.6 mm 0.6 mm 0.6 mm 0.6 mm N/A

Kernel Bv40 Bv40 Bv40 Bv40 N/A
Tube Vectron ® Vectron ® Vectron ® Vectron ® N/A

Detector PCD PCD PCD PCD N/A

2.3. Chest CT Imaging

All 30 patients were scanned on a first-generation, whole-body, dual-source PCCT
system (NAEOTOM Alpha; Siemens Healthcare GmbH, Forchheim, Germany) using a
prospective ECG-gated sequential mode with a tube voltage of 120 kV and automatic dose
modulation with a CARE keV BQ setting of 64, and gantry rotation time was 0.25 s. In the
absence of contraindications and in correlation to heart rate, patients intravenously received
5–10 mg of ß-blockers to lower heart rates to less than 65 beats/min. First, all patients
underwent a non-contrast-enhanced cardiac CT (2 mm slice thickness) for the evaluation of
coronary artery calcification by estimation of the Agatston score. The contrast-enhanced
scan of the coronary arteries was performed using 80 mL of iodine contrast (Imeron 400,
Bracco Imaging Deutschland GmbH, Konstanz, Germany) followed by a 20 mL saline
chaser (NaCl 0.9%) with a weight-based flow rate of 5–6 mL/s via antecubital venous
access. Bolus tracking was used to trigger the start of coronary CTA by placing a region of
interest (ROI) in the descending thoracic aorta (threshold 140 HU at 90 kV).

2.4. Chest CT Imaging Analysis

Non-enhanced-CT data were anonymized and exported from PACS. Plaque analysis
was performed on axial nonenhanced scans with 2 mm slice thickness and Qr36 kernel
using dedicated software (syngo.via, Siemens Healthcare GmbH, Forchheim, Germany).
The study population was divided into different groups: As a training collective, patients
with no sign of coronary calcification (Agatston score = 0) and patients with an Agatston
score of above or equal to 100 were selected. Additional patients with an Agatston score of
1–99 were enrolled as an independent cohort for validation (Figure 1).

Window level and width were determined using the standard window-level setting
from clinical routine.

Additional axial images of contrast-enhanced CCTA were reconstructed with a slice
thickness of 0.6 mm (increment of 0.4 mm) using a soft vascular kernel (Bv40). These data
were also anonymized, exported, and stored in digital imaging and communications in
medicine (DICOM) file format as well as converted into NIFTI file format for use with a dedi-
cated segmentation tool (3D Slicer, Version 4.11) [25]. The whole left ventricular myocardium,
including the trabecular structure and papillary muscle, was segmented semiautomatically
by a radiologist with 9 years of experience in cardiovascular imaging. Figure 2 shows an
example segmentation of the left ventricular myocardium in the axial view.
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Agatston 0 
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Figure 1. Consort flow diagram.

Figure 2. Segmentation of the left ventricular myocardium was performed on axial view with a slice
thickness of 0.6 mm. An example case of a 21-year-old man is shown.
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2.5. Radiomics Feature Extraction and Statistical Analysis

Radiomics feature extraction (first-order, shape, glcm, gldm, glrlm, gldm, glszm, and
ngtdm) was performed in a dedicated software package (pyradiomics, Version 3.0.1) [26].
Extracted features were imported into statistical analysis software (R Statistics, Version 4.1.2,
R Core Team, Vienna, Austria) [27] and assessed in RStudio (version 1.4.1717, Boston,
MA) [28]. Mean and standard deviation values of quantitative parameters were calculated,
and categorical variables were summarized as percentages. All radiomics features were
normalized using the z-score:

z = ((X − µ))/σ

Correlations of features were calculated as Pearson’s correlation coefficients. Feature
visualization was performed as boxplots and heatmaps using the ComplexHeatmap Pack-
age in R; k-means clustering was performed. For feature selection, a permutation-based
random forest (RF) classification was performed with the Boruta package for R.

3. Results
3.1. Cluster Analysis

After standardization, k-means clustering of radiomics features extracted from the
myocardium of each patient was performed. Additional clustering within each Agatston
severity group was added. These results are visualized in a heatmap (Figure 3).

 
 

Figure 3. Unsupervised cluster heatmap of myocardial radiomics features.
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3.2. Feature Selection

RF feature selection was used for the selection of important features for differen-
tiation of patients based on the left myocardial texture: First, random-forest-based fea-
ture selection was performed only on the patients with an Agatston score of 0 and an
Agatston score ≥ 100. This led to the identification of “gldm SmallDependenceHigh-
GrayLevelEmphasis”, “glcm ClusterShade”, “glrlm LongRunLowGrayLevelEmphasis”,
and “ngtdm Complexity” as a feature set associated with a difference in Agatston score
(Figure 4).
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Figure 4. Random forest feature selection in 20 patients in training set.

3.3. Internal Validation

For internal validation, these radiomics features were investigated in the additional
Agatston score 1–99 group. The respective radiomics scores are shown as boxplots in
Figure 5 and summarized in Table 2.

 

 
 

 
 

 Figure 5. Distribution of “gldm SmallDependenceHighGrayLevelEmphasis”, “glcm ClusterShade”,
“glrlm LongRunLowGrayLevelEmphasis”, and “ngtdm Complexity” feature within the dataset.
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Table 2. Higher-order radiomics features. Mean and (SD) given for continuous variables.

Agatston 0 Agatston 1–99 Agatston ≥ 100 p-Value

gldm_SmallDependenceHighGrayLevelEmphasis 9.82 (3.39) 11.79 (4.03) 13.44 (3.21) 0.093
glcm_ClusterShade 67.42 (39.64) 79.34 (31.23) 113.74 (39.01) 0.025

glrlm_LongRunLowGrayLevelEmphasis 0.0214 (0.006) 0.0282 (0.007) 0.0283 (0.008) 0.062
ngtdm_Complexity 185.12 (40.14) 191.69 (22.34) 234.17 (41.94) 0.01

The Agatston score 1–99 group was settled between the two other groups, supporting
the expected trend in the texture parameter changes of the left ventricular myocardium with
an increasing Agatston score. In particular, gldm_SmallDependenceHighGrayLevelEmphasis
showed mean values of 9.82, 11.79, and 13.44, respectively, in the subsequent Agatston
groups (0/1–99/≥100). Similar distributions were shown for glcmClusterShade (68.42,
79.32, and 113.74), glrlm_LongRunLowGrayLevelEmphasis (0.0214, 0.0282, and 0.0283), and
ngtdm_Complexity (185.12, 191.69, and 234.17). A combined heatmap of the reduced feature
set for all Agatston severity grades is shown in Figure 6 (heatmap of all features for all patients,
Supplementary Figure S1).

 

2 

 

 

 

Figure 6. Unsupervised cluster heatmap of “gldm SmallDependenceHighGrayLevelEmphasis”,
“glcm ClusterShade”, “glrlm LongRunLowGrayLevelEmphasis”, and “ngtdm Complexity” feature
of 30 patients.

4. Discussion

In this pilot study, we demonstrated that the texture features of the left ventricular
myocardium showed a possible association with the amount of coronary artery sclero-
sis. Differentiation between patients without coronary artery calcification and patients
with coronary artery calcification was possible through four different radiomics-based
texture parameters from the myocardium in this small sample size. Referring to the fea-
ture complexity, the value increased with increasing Agatston score, indicating a more
heterogeneous structure. In line with this feature, cluster shade, as a measurement of
skewness and uniformity, also increased with increasing calcification, outlining a greater
asymmetry around the mean. This could be possible due to myocardial fibrosis resulting
in a more heterogeneous texture structure. In detail, it was even evident that the amount
of calcification tended to correlate with the severity of change in texture parameters, thus
outlining a possible severity-associated effect of coronary artery calcification on the left
ventricular myocardium with respect to the small sample size.

Nonenhanced coronary computed tomography allows a good estimation of coronary
artery calcification, which can be classified into different risk scores by applying the in
clinical routine commonly used Agatston score [29,30]. Hou et al. showed that CACS
is not only capable of assessing the risk of major adverse cardiac events but also has an
incremental and independent value compared with clinical risk factors [31]. Adding to
this, Nicoll et al. found that the Agatston score is a more accurate predictor of significant
coronary stenosis than conventional risk factors [32]. On the other hand, the absence of
coronary artery calcification results in a significant reduction in major adverse cardiac
events, but does not eliminate them [33].

Cetin et al. outlined different parameters derived from texture analysis in the my-
ocardium of patients with different cardiovascular risk factors, including diabetes, hy-
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pertension, and cigarette smoking, acquired by late gadolinium enhancement sequences
in MRI. Especially in the case of cigarette smoking, there was an increased heterogene-
ity in gray-level intensities, suggesting a diffuse process in the myocardium [34]. In the
meantime, efforts are also increasing to visualize myocardial fibrosis in CT. Esposito et al.
used texture analysis in late iodine-enhanced CT scans for evaluating the extracellular
volume fractions (ECVs) in patients with recurrent ventricular tachycardia, with a good
correlation of the texture parameter of general attenuation and central tendency with ECV
and end-diastolic volume, as well as an inverse correlation with ejection fraction (EF) [35].
Acute or chronic myocardial infarction was detected by texture analysis in noncontrast,
low-radiation-dose CT imaging on a second-generation, dual-source CT scanner by Mannil
et al., especially outlining that this was invisible to the human eye alone. High-accuracy
differentiation between healthy controls and patients with acute or chronic myocardial in-
farction was possible through certain texture features. However, the differentiation between
patients with acute and chronic myocardial infarction was only moderately accurate but
could be improved by pooling patients with both acute and chronic myocardial infarction
(classification accuracy 86%). These results suggest a certain overlap of texture features
in infarcts of different ages [36]. In contrast, Hinzpeter et al. illustrated the feasibility
of texture analysis for distinguishing healthy from acutely infarcted myocardium with
cardiac contrast-enhanced CT using a second-generation, dual-source CT scanner with a
good to excellent intra- and inter-reader agreement for all first- and second-order features
with different slice thicknesses [37]. Recently, Qin et al. visualized myocardial fibrosis by
texture analysis in coronary artery CT by comparison with late gadolinium-enhancement
sequences in patients with hypertrophic cardiomyopathy [38].

Nevertheless, myocardial texture analysis in cardiac CT is still in its infancy. Through
the implementation of PCCT, a higher spatial resolution, as well as higher contrast-to-noise
ratio and lower beam hardening artifacts, can be achieved [23,24], addressing the past
limitations of radiomics analysis [39]. Furthermore, the distortion of features by beam-
hardening artifacts can be excluded in radiomics texture maps. The first results showing the
influence of PCCT in comparison with energy integrating detector CT on texture analysis
of left ventricular myocardium outline comparable results in terms of first-order features,
but differences in higher-order features, suggesting the possible impact of improved image
quality on texture analysis [40].

Ultimately, however, this study also has limitations, where the small study population
and the aspect of a single-center study must be emphasized. Additionally, this study
made no reference to soft plaques, which can also lead to stenosing effects and thus
influence the texture of the myocardium. Finally, no other risk factors, which could have
contributed to texture differences of the myocardium such as tobacco use or hypertension,
were considered in this study. Both issues should be considered in the future. Additionally,
no comparison analysis with T1 mapping or late gadolinium-enhanced MRI sequences,
or late iodine CT images was performed. This additional analysis for fibrosis detection is
highly recommended for further studies. Yet, this pilot study is the first to investigate the
myocardial changes associated with CACS in a photon-counting CT dataset.

5. Conclusions

In conclusion, this pilot study outlined the effect of coronary artery calcifications on
texture analysis of the left ventricular myocardium, indicating a possible structural change
in the myocardium depending on the Agatston score and a broader potential for myocardial
image evaluation using computed tomography.

Supplementary Materials: The following supporting information can be downloaded at: https:
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