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Abstract
Introduction Obstructive sleep apnoea (OSA) is an underdiagnosed condition frequently associated with glycaemic control 
impairment in patients with type 2 diabetes.
Aim To assess the relationship between glycometabolic parameters and OSA in obese non-diabetic subjects.
Methods Ninety consecutive subjects (mean age 44.9 ± 12 years, mean BMI 42.1 ± 9 kg/m2) underwent polysomnography 
and a 2-h oral glucose tolerance test (OGTT).
Results OSA was identified in 75% of subjects, with a higher prevalence of males compared to the group of subjects without 
OSA (62% vs 32%, p = 0.02). Patients with OSA had comparable BMI (42.8 kg/m2 vs 39.4 kg/m2), a higher average HbA1c 
(5.8% vs 5.4%, p < 0.001), plasma glucose at 120 min during OGTT (2 h-PG; 123 mg/dl vs 97 mg/dl, p = 0.009) and diastolic 
blood pressure (81.1 mmHg vs 76.2 mmHg, p = 0.046) than obese subjects without OSA. HbA1c and 2 h-PG were found 
to be correlated with the apnoea-hypopnoea index (AHI; r = 0.35 and r = 0.42, respectively) and with percent of sleep time 
with oxyhaemoglobin saturation < 90% (ST90; r = 0.44 and r = 0.39, respectively). Further, in a linear regression model, 
ST90 and AHI were found to be the main determinants of 2 h-PG (β = 0.81, p < 0.01 and β = 0.75, p = 0.02, respectively) after 
controlling for age, sex, waist circumference, physical activity, and C-reactive protein. Similarly, ST90 and AHI persisted 
as independent determinants of HbA1c (β = 0.01, p = 0.01 and β = 0.01, p = 0.01, respectively).
Conclusion Beyond the traditional clinical parameters, the presence of a normal-high value of 2 h-PG and HbA1c should 
raise suspicion of the presence of OSA in obese subjects.
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Introduction

Obstructive sleep apnoea (OSA) is a treatable chronic sleep-
breathing disorder characterised by recurrent episodes of 
complete (apnoea) or partial (hypopnoea) obstruction of 
the upper airway resulting in intermittent hypoxia, arous-
als, and sleep fragmentation. Over the past decade, both 

pathophysiological and epidemiological studies have iden-
tified poor sleep quality and OSA as putative novel risk 
factors for type 2 diabetes (T2D) [1–5]. Moreover, a meta-
analysis of five prospective studies reported that moderate-
to-severe OSA confers a greater risk for T2D incidence [6] 
and, more recently, a significant improvement in glycaemic 
control and insulin resistance was demonstrated after treat-
ment with continuous positive airway pressure (CPAP) in 
patients with type 2 diabetes and OSA [7]. Notably, OSA 
and disorders of glucose metabolism are both strongly asso-
ciated with obesity and abdominal fat accumulation; thus, 
they not unexpectedly often occur concomitantly in the same 
individual. Indeed, several studies have established a robust 
association between the presence and severity of OSA and 
metabolic impairment in non-diabetic adults, independ-
ent of adiposity and other known confounders [3, 8–11]. 
Given that recurrent episodes of sleep-disordered breathing 
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are followed by a cascade of events related to the activation 
of the sympatho-adrenal system, oxidative stress, systemic 
inflammation, and changes in adipokines involved in car-
dio-metabolic risk [12], the relationship between OSA and 
glucose homeostasis needs to be explored further. Thus, the 
purpose of this cross-sectional study was to investigate the 
association of OSA and various polysomnographic indexes 
with fasting glucose, postprandial glucose and HbA1c lev-
els in high-risk non-diabetic patients with moderate/severe 
obesity.

Methods

Study design

This cross-sectional study included consecutive outpatients 
being screened for participation in a previously described 
randomised controlled trial (RCT) [12] to assess the effect 
of CPAP treatment on markers of inflammation in adipose 
tissue. The trial was conducted from February 2012 through 
December 2015 at the Outpatient Clinic for the Study of 
Obesity, Unit of Endocrinology, Department of Emergency 
and Organ Transplantation, University of Bari Aldo Moro. 
The trial protocol was approved by the Ethics Committee of 
the Azienda Ospedaliero-Universitaria Policlinico di Bari, 
Bari, Italy, and meets the standards of the 7th revision of 
the Declaration of Helsinki. Each subject provided written 
informed consent. The full details of the RCT have been 
detailed previously [12]. Briefly, inclusion criteria included 
recruitment at their first medical examination and BMI 
higher than 30 kg/m2. Exclusion criteria included known 
diabetes mellitus, plasma glucose diagnostic for diabetes 
[fasting glucose ≥ 126 mg/dl, 2 h post-oral glucose toler-
ance test (OGTT) ≥ 200 mg/dl, or both] or glycosylated 
hemoglobin (HbA1c) ≥ 6.5% [13], current smoking, auto-
immune inflammatory diseases, cancer, severe kidney or 
liver diseases, stroke, ischemic or valvular heart disease, 
obesity hypoventilation syndrome, secondary causes of obe-
sity (i.e., hypercortisolism, growth hormone deficiency), or 
use of medications that could affect body weight, glucose 
metabolism, and inflammatory markers, previous diagnosis 
of OSA and treatment for OSA. The present manuscript has 
followed the STROBE checklist guidelines [15].

Anthropometric variables

Body weight and waist, hip and neck circumferences were 
measured. Blood pressure was measured to the nearest 
2 mmHg using a periodically calibrated mercury sphyg-
momanometer in patients in the sitting position after 
at least 5 min of rest. The mean of three measurements 
was recorded. Physical activity was assessed using the 

International Physical Activity Questionnaire (IPAQ) [16]. 
The volume of both physical activity and time spent sitting 
per week were derived from the IPAQ validity and reliabil-
ity study and expressed as (Metabolic Equivalent of Task 
(MET) × min/week and min/week, respectively) [16].

Laboratory tests

Blood samples were drawn between 08:00 and 09:00 h 
after an overnight fast within 1 week of the ambulatory 
blood pressure measurement; all participants then under-
went a standard 75-g OGTT. Serum insulin concentrations 
were measured by radioimmunoassay (Behring, Scoppitto, 
Italy). Plasma glucose levels before (FPG) and 2 h after 
(2 h-PG) OGTT were determined using the glucose-oxi-
dase method (Sclavo, Siena, Italy), and plasma lipids [tri-
glycerides, total cholesterol, and high-density lipoprotein 
(HDL) cholesterol] were measured using an automatic col-
orimetric method (Hitachi; Boehringer Mannheim, Man-
nheim, Germany). The low-density lipoprotein (LDL) cho-
lesterol level was calculated using the Friedewald equation 
[17] and the estimated glomerular filtration rate (eGFR) 
level was calculated using the CKD-EPI equation [18]. 
Insulin sensitivity was estimated using the homeostasis 
model assessment method [19].

Hypnological assessment

All patients underwent nocturnal cardiorespiratory moni-
toring with a portable cardiorespiratory monitor (SOM-
NEA) in ambient air and with spontaneous breathing for 
approximately 8 h within one month of their first outpatient 
check-up. The SOMNEA device consists of multiple sen-
sors for the detection of the following signals: oxyhaemo-
globin saturation (by a finger sensor), heart rate (derived 
from ECG electrodes placed on the chest), snoring sound 
(by a microphone placed on the thyroid cartilage), body pos-
ture, oro-nasal airflow (by a flow sensor for both nostrils and 
mouth) and thoracic and abdominal movements (by stretch 
belts). A respiratory event is defined as obstructive apnoea 
if it is characterised by a 90% reduction in airflow (com-
pared to the mean of the previous 3 min) for at least 10 secs 
with preserved thoraco-abdominal movements. Obstructive 
hypopnoea is defined as a decrease in the airflow by 50% 
(compared to the mean of the previous 3 min) for at least 10 
secs with preserved thoraco-abdominal movements associ-
ated with > 4% oxyhaemoglobin desaturation. Factors that 
were calculated include the number of obstructive apnoea/
hypopnoea events per h of sleep [obstructive apnoea/hypo-
pnoea index (AHI)], the number of oxyhaemoglobin desatu-
ration > 4% events per h of sleep [oxyhemoglobin desatura-
tion index (ODI)] and the time (expressed as a percentage of 
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total actual sleep time) of oxyhaemoglobin saturation spent 
below 90% (ST90). All scoring was performed based on 
the American Academy of Sleep Medicine sleep scoring 
guidelines [20]. OSA diagnosis was proposed if a patient 
had an AHI index ≥ 5 with symptoms or an AHI index > 15 
without symptoms [20].

Arterial blood gas

Arterial blood gas was obtained in ambient air using radial 
artery puncture (arterial blood air-analyzer; Nova Biomedi-
cal Stat Profile Critical Care Xpress). The  PaO2 and  PaCO2 
values were analysed.

Statistical analysis

Continuous variables are presented as mean ± standard devi-
ation (SD). Differences between patients with and without 
OSA were tested using Student’s t test or the Mann–Whitney 
U test for continuous variables according to normal distri-
bution. Spearman’s correlation between HbA1c, FPG and 
2 h-PG and hypnological variables was assessed. Categori-
cal variables are reported as percentage and were compared 
using the χ2 test or Fisher’s exact test. All tests of signifi-
cance were two-sided. Analysis was performed with RStudio 
for Windows, version 1.0.143. Normality was assessed using 
the Kolmogorov–Smirnov test. To estimate the effect size of 
increasing severity of OSA on FPG, 2 h-PG, and HbA1c in 
a clinically useful manner, the changes in FPG, 2 h-PG and 
HbA1c based on AHI and ST90 tertiles were statistically 
assessed with the non-parametric Kruskal–Wallis method. 
Linear regression analysis was applied to explore the rela-
tionships between glucose or HbA1c values and apnoea-
related parameters independent of age, sex, waist circum-
ference, physical activity or C-reactive protein (CRP). The 
covariates were included a priori in the model. The statistical 
significance level was set at 5% (p < 0.05). The post hoc 
analysis showed a power of 90% and p < 0.01 to establish 
an effect size of 1 for HbA1c, which represents a variation 
of 0.5%.

Results

The anthropometric and metabolic characteristics of the 90 
obese patients are presented in Table 1, according to the 
presence or absence of OSA. Sleep characteristics of the two 
groups are shown in Table 2. OSA was identified in 76% of 
patients, which were more frequently male as compared to 
patients without OSA (Non-OSA) (62% vs 38%, p = 0.02) 
(Table 1).

Additionally, the OSA group displayed older age 
(46.5 ± 10.4 years vs 39.9 ± 13.7 years, p = 0.02), higher 

Table 1  Characteristics of the study population (n = 90)

Mean (SD): (unpaired Student’s t test). Bold font indicates p < 0.05
2 h-PG postprandial glucose 120 min after oral glucose tolerance test, 
2 h-PI postprandial insulin 120 min after oral glucose tolerance test, 
ALT alanine aminotransferase, AST aspartate aminotransferase, BMI 

Characteristic Non-OSA OSA p value

N (%) 22 (24.5) 68 (75.5)
Male sex (%)‡ 7 (31.8) 42 (61.8) 0.023
Female sex (%)‡ 13 (59.1) 26 (38.2)
Age (years) 39.9 (13.7) 46.4 (10.4) 0.020
Current smoker (%)‡ 4 (18.2) 16 (26.2) 0.388
BMI (kg/m2) 39.4 (8.0) 42.8 (9.7) 0.132
Neck circumference
 Female (cm) 39.1 (3.4) 40.5 (3.1) 0.211
 Male (cm) 40.9 (1.9) 44.4 (3.1) 0.002

Height
 Female (cm) 158.9 (5.2) 158.9 (8) 0.993
 Male (cm) 172.7 (3.9) 172.1 (7.5) 0.751

Weight (kg)
 Female (cm) 104.2 (19.4) 121.9 (20.5) < 0.001
 Male (cm) 104.4 (13.1) 118.6 (30.3) 0.051

Waist circumference
 Female (cm) 116.9 (12.3) 129.5 (20.1) 0.019
 Male (cm) 116.3 (5.6) 126.8 (18) 0.007

Fasting glycaemia (mg/dl) 90.4 (13.8) 94.5 (10.7) 0.155
2 h-PG (mg/dl) 96.6 (18.0) 123.1 (32.3) 0.009
Fasting insulinemia (mUI/ml) 20.5 (13.0) 23.6 (11.9) 0.346
2 h-PI (mUI/ml) 94.6 (79.8) 86.3 (54.2) 0.687
HbA1c (%) 5.4 (0.5) 5.8 (0.5) < 0.001
HOMA-IR 5.0 (3.3) 5.5 (2.8) 0.496
Systolic blood pressure 

(mmHg)
120.9 (16.0) 126.1 (12.7) 0.142

Diastolic blood pressure 
(mmHg)

76.2 (10.2) 81.1 (9.2) 0.046

HR (bpm) 73.1 (10.2) 75.4 (9.7) 0.372
Cholesterol
 Total (mg/dl) 178.6 (45.4) 190.3 (34.5) 0.209
 LDL (mg/dl) 49.3 (12.9) 45.6 (12.5) 0.268
 HDL (mg/dl) 105.8 (35.3) 119.3 (33.7) 0.130

Triglycerides (mg/dl) 118.9 (80.3) 126.1 (60.6) 0.273
Uric acid (mg/dl) 4.8 (1.2) 5.4 (1.4) 0.106
AST (UI/l) 26.6 (15.4) 23.3 (8.2) 0.264
ALT (UI/l) 48.5 (40.6) 41.5 (22.7) 0.379
γ-GT (UI/l) 37.1 (25.8) 37.1 (19.4) 0.994
MS (%)‡ 5.0 (23.8) 21.0 (38.9) 0.336
MS score 2.0 (0.8) 2.3 (0.8) 0.348
CRP (mg/dl) 6.6 (7.1) 8.2 (7.2) 0.362
ESR (mean (sd)) 17.4 (10.5) 23.7 (19.2) 0.174
WBC (n ×  103/ml) 6.6 (2.0) 7.7 (2.0) 0.025
Haematocrit (%) 41.0 (3.2) 42.8 (3.5) 0.071
Hb (g/dl) 14.0 (1.2) 14.3 (1.3) 0.434
METS (METS/week)§ 9074 (21,872) 3779 (4459) 0.116
Sitting (min/week)§ 407 (183) 393 (203) 0.825
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diastolic blood pressure (81.1 vs 76.2 mmHg, p = 0.046), 
higher plasma glucose post-OGTT (2  h-PG; 123.1 vs 

96.6 mg/dl, p = 0.01), and higher HbA1c (5.8% vs 5.4%, 
p < 0.001). Moreover, BMI did not differ between the OSA 
and non-OSA groups (p = 0.10), whereas both male and 
female patients with OSA had a higher average waist circum-
ference (male: 126.8 vs 116.3 cm, p = 0.01; female: 129.5 vs 
116.9, p = 0.02), and male patients with OSA had a higher 
average neck circumference than non-OSA patients (44.4 
vs 40.9 cm, p = 0.002; Table 1). However, the prevalence of 
metabolic syndrome did not differ between the two groups 
(p = 0.34; Table 1). Interestingly, OSA patients displayed 
higher white blood cells (7.7 vs 6.6 n ×  103/mm3, p = 0.02; 
Table 1).

Results of the Spearman correlation showed a significant 
moderate and positive association between apnoic/hypop-
noic events and nocturnal hypoxemia and glycemia. Particu-
larly, both 2 h-PG and HbA1c appear to be correlated with 
AHI (r = 0.42, p < 0.01 and r = 0.35, p < 0.001, respectively). 
Likewise, a significant moderate and positive association 
between both 2 h-PG and HbA1c and ST90 was observed 
(r = 0.39, p < 0.01 and r = 0.44, p < 0.001, respectively; 
Table 3). In contrast, FPG appeared to be not correlated to 
either AHI or ST90. Notably, uric acid was correlated with 
AHI (r = 0.27, p = 0.02) and ST90 (r = 0.40, p < 0.001; data 
not shown).

Next, ST90 and AHI variables were categorised into ter-
tiles. Higher ST90 and AHI tertiles were associated with 
significantly higher levels of HbA1c (+ 0.5%, + 0.4%, ter-
tile III vs I, respectively; p < 0.05) and 2 h-PG (+ 24 mg/
dl, + 32 mg/dl, tertile III vs I, respectively; p < 0.05; Fig. 1).

A multivariate regression model in which FPG, 2 h-PG, 
and HbA1c were considered as dependent variables was con-
structed using AHI or ST90 as independent variables and 
age, sex, waist circumference, physical activity and CRP as 
covariates. Both AHI and ST90 were significant associated 
with higher HbA1c and 2 h-PG (Table 4), but not with FPG. 
The model indicates that each increase of 13 n/h in AHI 

body mass index, CRP C-reactive protein, Hb haemoglobin, HbA1c 
glycated haemoglobin A1c, HDL high-density lipoprotein, HOMA-IR 
homeostatic model assessment for insulin resistance, HR heart rate, 
LDL low-density lipoprotein, METS metabolic equivalent of task, MS 
metabolic syndrome, SD standard deviation, WBC white blood cells
‡ Percentage (χ2 test for qualitative variable)
§ Median; interquartile range in parentheses (Mann–Whitney U test)

Table 1  (continued)

Table 2  Polysomnographic and arterial blood gas variables in the 
study population

Mean ± SD (Unpaired Student’s t test). Bold font indicates p < 0.05
AHI apnoea-hypopnoea index, ODI oxygen desaturation index, ESS 
Epworth sleepiness score, ST90 % of sleep time spent below 90% 
oxygen saturation, SD standard deviation

Characteristics Non-OSA OSA p value

AHI (n/h) 4.10 (2.57) 33.77 (20.47) < 0.001
ODI (n/h) 5.63 (3.44) 34.36 (20.47) < 0.001
ST90 (%) 1.86 (2.64) 23.62 (21.93) < 0.001
pH 7.43 (0.02) 7.43 (0.03) 0.633
PaO2 (mmHg) 89.12 (15.80) 78.20 (9.34) 0.001
PaCO2 (mmHg) 39.38 (2.45) 40.74 (3.08) 0.109
SO2 (%) 96.53 (1.55) 94.29 (9.30) 0.358
HCO3

− (mEq/l) 25.84 (1.07) 29.08 (9.67) 0.188
ESS 6.05 (2.74) 12.70 (3.00) < 0.001
Mean oxygen saturation (%) 94.95 (1.25) 92.78 (3.17) 0.002
Sleep efficiency (%) 85.90 (11.06) 88.76 (8.81) 0.22
Supine position (%) 82.08 (22.59) 81.85 (25.16) 0.97

Table 3  Spearman correlation 
matrix for continuous variable

FPG fasting plasma glucose, 2 h-PG postprandial glucose 2 h after oral glucose tolerance test, HbA1c gly-
cated haemoglobin A1c, BMI body mass index, AHI apnoea-hypopnoea index, ESS Epworth sleepiness 
scale, ST90 % of sleep time spent below 90% oxygen saturation
*p < 0.05, **p < 0.01, ***p < 0.001

FPG 2 h-PG HbA1c Waist BMI Neck AHI ESS

FPG
2 h-PG 0.07
HbA1c 0.29** 0.42**
Waist 0.07 0.12 0.32**
BMI 0.04 0.19 0.32** 0.79***
Neck 0.33** 0.29* 0.14 0.41*** 0.18
AHI 0.15 0.42** 0.35*** 0.34** 0.16 0.4***
ESS 0.13 0.15 0.32** 0.28* 0.23* 0.25* 0.45***
ST90 0.2 0.39** 0.44*** 0.46*** 0.32** 0.4*** 0.79*** 0.46***
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(p = 0.02) and of 12% in ST90 (p = 0.003) is associated with 
a 10 mg/dl increase in 2 h-PG. Moreover, an increase of 9 
n/h in AHI (p = 0.01) and of 9% in ST90 (p = 0.01) was asso-
ciated with an increase of 1 mmol/mol in HbA1c (Table 4).

Discussion

This study examined the potential correlation between the 
sleep-breathing disorder OSA and glycaemic parameters in 
non-diabetic obese patients. Although obesity is the main 
risk factor for the development of T2D, coexisting OSA 
may add to this risk. We found greater than 75% preva-
lence of OSA in individuals with obesity, which is consist-
ent with previous reports [20–23]. Sleep-breathing disor-
ders may influence glucose and HbA1c levels independent 
of central obesity [23–26]. A recent meta-analysis of pro-
spective cohort studies suggests that moderate-severe OSA 
may increase the risk of T2D (RR 1.63; 95% confidence 
interval 1.09–2.45), supporting the hypothesis that OSA 
may represent an independent risk factor for the develop-
ment of this disease [6]. A significant correlation between 
nocturnal hypoxemia and HbA1c was found in other stud-
ies on non-diabetic individuals [24, 27, 28]. Additionally, 
the presence of OSA may lead to a higher glycaemic vari-
ability, defined as mean amplitude of glycaemic excursion 
(MAGE) [29]; in fact, an association between MAGE and 
AHI has been confirmed in non-diabetic patients as well 

Fig. 1  Glycaemic parameters according to tertiles of apnoeic indexes. 
A–C FPG, 2  h-PG and HbA1c boxplots according to AHI tertiles, 
respectively. D–F FPG, 2  hPG and HbA1c boxplots according to 
ST90 tertiles, respectively. Abbreviations: AHI Apnoea-hypopnoea 

index, ST90 % of sleep time spent below 90% oxygen saturation, FPG 
Fasting plasma glucose, 2  h-PG Postprandial glucose 2 hours after 
oral glucose tolerance test, HbA1c Glycated haemoglobin A1c

Table 4  Regression table

Bold font indicates p < 0.05
AHI apnoea-hypopnoea index, ST90 % of sleep time spent below 90% 
oxygen saturation, FPG fasting plasma glucose, 2 h-PG postprandial 
glucose 2 h after oral glucose tolerance test, HbA1c glycated haemo-
globin A1c, SE standard error

Dependent variable β SE T-statistic p value

AHI
 FPG 0.136 0.096 1.411 0.170
 2 h-PG 0.749 0.312 2.404 0.022
 HbA1c 0.011 0.004 2.655 0.011

ST90
 FPG 0.009 0.093 0.101 0.920
 2 h-PG 0.815 0.259 3.142 0.003
 HbA1c 0.010 0.004 2.540 0.015
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[30]. However, the relationship between OSA and gly-
caemic parameters in morbidly obese individuals without 
diabetes is poorly defined. In this study, we show a signifi-
cant correlation of HbA1c and 2 h-PG but not FPG with 
AHI and ST90. Moreover, multiple regression analysis 
indicated that ST90 and AHI display the highest b value 
and thus represent the main determinants of 2 h-PG and 
HbA1c among the multiple potentially confounding factors 
(data not shown).

Therefore, metabolic abnormalities found in morbid obe-
sity may be linked not only to adiposity per se but also to 
concomitant OSA. Several mechanisms, including direct 
effects of hypoxia [31], oxidative stress [32, 33] sympathetic 
nervous system activation [34] and the associated increase in 
catecholamines [34–37], and alterations in pro-inflammatory 
cytokines such as interleukin-6, tumor necrosis factor-a [38] 
and hypoxia-inducible factor-1a [39] seem to play a critical 
role in the metabolism of carbohydrates. In a recent study 
investigating the effects of 24 weeks of weight-loss inter-
vention plus CPAP therapy in obese individuals with OSA, 
we have shown that correction of intermittent hypoxemia 
improves systemic and obesity-associated inflammatory 
markers [12]. In OSA, increased sympathetic nerve activity 
and catecholamines may occur as a result of repeated arous-
als or repeated oxygen desaturations [40]. In humans, expo-
sure to high altitude hypoxia for a few days increases glucose 
and insulin concentrations together with increased plasma 
catecholamines and cortisol [36, 41, 42]. Moreover, OSA is 
reportedly associated with marked impairments in insulin 
sensitivity and disposition index (an integrated measure of 
pancreatic ß-cell function) independent of adiposity [9, 43]. 
Finally, intermittent hypoxemia has been shown to be toxic 
to ß-cell function in murine models of sleep apnoea [44, 45].

Our data suggest how OSA may worsen HbA1c and post-
prandial glycaemia, in particular, in individuals with mor-
bid obesity before T2D develops. In this study, a significant 
correlation between nocturnal hypoxemia or apnoea index 
with FPG was not found, even though the lowest tertile of 
AHI and ST90 were found to be associated with lower FPG 
compared to the other tertiles. However, in a non-T2D popu-
lation, a study on 31 male individuals found a significant 
correlation between minimum  O2 level, but not AHI, with 
FPG [27]. This small discrepancy could be due to differ-
ences in the study populations, since individuals with sub-
stantially lower BMIs were analysed in that study. It could be 
argued that the effects of OSA on FPG are more prominent 
in leaner individuals, while in higher-grade obesity the influ-
ence of hypoxemia injury on ß-cell dysfunction and meta-
bolic abnormalities could be more pronounced. Although 
this study was not designed to examine the mechanisms 
for the adverse effect of OSA on glycaemic parameters, the 
results support the hypothesis that OSA-induced intermittent 

hypoxia could exert harmful effects on glucose metabolism 
primarily by increasing 2 h-PG. Our results are in accord-
ance with the findings of Babu et al., who demonstrated 
that CPAP treatment results in a significant reduction of 1-h 
postprandial glucose in diabetic patients with OSA [46].

Both postprandial glucose and HbA1c exhibited a sig-
nificant correlation with nocturnal hypoxemia indexes, but 
not with sleep fragmentation. This finding suggests that 
the effect of OSA on glucose parameters may be mediated 
by hypoxia and not by sleep alterations. However, Gri-
maldi et al. showed that HbA1c levels are associated with 
obstructive apnoeas that occur particularly during REM 
sleep, suggesting the relevance of REM sleep integrity for 
glucose control [47]. Nevertheless, sleepiness as a surro-
gate marker of sleep integrity seems to be associated with 
glucose control only in subjects affected by a low grade 
of obesity [48], and in this study, using sleep efficiency in 
the multivariate model did not change the results of the 
regression analysis (data not shown).

Interestingly, even if only a few patients showed hyper-
uricaemia, plasma uric acid displayed a positive correla-
tion with AHI and ST90, suggesting that OSA is a poten-
tial risk factor for the development of hyperuricaemia. Of 
note, we have recently demonstrated that CPAP treatment 
could reduce uric acid levels in OSA patients [12]. Fur-
ther studies are required to address whether higher plasma 
uric acid levels, as a consequence of more severe forms 
of OSA, may directly affect glucose metabolism and/or 
cardiovascular risk in these individuals.

Moreover, several other blood metabolites other than 
2 h-PG, HbA1c and uric acid, such as circulating comple-
ment component 3, CRP and erythropoietin, have recently 
been raised as promising biomarkers supporting the diag-
nosis of OSA [48–51].

In conclusion, OSA represents common comorbid-
ity among non-diabetic morbidly obese patients. In this 
population, the presence of normal-high levels of either 
2 h-PG or HbA1c may help in identifying the presence of 
OSA, which acts as an independent marker of a peculiar 
metabolic derangement in obese patients. Indeed, OSA is 
associated with higher postprandial glycaemia and HbA1c 
even in normoglycaemic patients and this occurs indepen-
dently of gender, age and central obesity. Recognition of 
OSA may thus substantiate aggressive treatment of obesity 
and intermittent hypoxia to antagonise the progression to 
T2D in obese patients.
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