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Introduction
Systemic lupus erythematosus (SLE or lupus) is an autoimmune disease of  incompletely understood eti-
ology. Genetic, epigenetic, and environmental factors are thought to play key roles in the immune dysreg-
ulation underlying the development of  the disease (1). Lupus is characterized by the production of  auto-
antibodies against nuclear antigens and a remitting-relapsing disease course that can target multiple organ 
systems (2). Frequent disease flares and prolonged periods of  active disease are associated with a more 
deleterious outcome in lupus patients and a higher risk of  tissue and organ damage (3).

Lupus is associated with changes in gene expression, including prominent type I IFN and neutrophil 
gene signatures in the peripheral blood (4–7). Furthermore, increased disease activity in lupus is associated 
with transcriptional profiles implicating different innate and adaptive peripheral immune cells in individual 
patients followed longitudinally (7). Notably, progression to active nephritis in lupus patients was associ-
ated with gradual enrichment in neutrophil transcripts (7). Indeed, a prominent role for neutrophils in the 
pathogenesis of  lupus is being more clearly elucidated (8).

DNA methylation, an epigenetic mechanism that regulates gene expression, is altered in the immune 
cells of  lupus patients and is potentially influenced by both environmental and genetic factors (9). DNA 
methylation defects in lupus are suggested to promote an overactive immune response when exposed 
to inflammatory signals like autoantibody-autoantigen complexes or endogenous nucleic acids (10–12). 
Methylation quantitative trait loci (meQTL) are genetic polymorphisms that are associated with DNA 
methylation either directly through alteration of  CpG dinucleotides or at a distance through an interme-
diary process. meQTL identified in prior lupus studies show enrichment for lupus susceptibility genes 
and type I IFN response genes, suggesting that altering DNA methylation levels at specific loci could be a 

Epigenetic dysregulation is implicated in the pathogenesis of lupus. We performed a longitudinal 
analysis to assess changes in DNA methylation in lupus neutrophils over 4 years of follow-up and 
across disease activity levels using 229 patient samples. We demonstrate that DNA methylation 
profiles in lupus are partly determined by ancestry-associated genetic variations and are highly 
stable over time. DNA methylation levels in 2 CpG sites correlated significantly with changes 
in lupus disease activity. Progressive demethylation in SNX18 was observed with increasing 
disease activity in African American patients. Importantly, demethylation of a CpG site located 
within GALNT18 was associated with the development of active lupus nephritis. Differentially 
methylated genes between African American and European American lupus patients include type 
I IFN–response genes such as IRF7 and IFI44, and genes related to the NF-κB pathway. TREML4, 
which plays a vital role in TLR signaling, was hypomethylated in African American patients and 
demonstrated a strong cis–methylation quantitative trait loci (cis-meQTL) effect among 8855 cis-
meQTL associations identified in our study.
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potential mechanism by which risk alleles contribute to disease susceptibility in lupus (13–15). Lupus sus-
ceptibility is significantly higher in patients of  non-European ancestry, who are also more likely to develop 
more severe disease, even after accounting for the influence of  social and environmental factors (16). 
Thus, meQTL analysis provides a potential approach to better understand the mechanisms underlying 
the observed differences in disease manifestations and outcomes in lupus patients of  different ancestries.

Recent work investigating DNA methylation changes in lupus and associated downstream effects and 
underlying upstream regulatory mechanisms have resulted in significant insights into the pathogenesis of  
lupus and the identification of  novel therapeutic targets for the disease (17). Cell type–specific precision 
delivery systems to modify the epigenome are promising approaches in the treatment of  autoimmune dis-
eases including lupus (18). Furthermore, DNA methylation changes have been suggested as diagnostic 
markers and markers that can potentially predict specific disease manifestations in lupus (11, 19–21). How-
ever, DNA methylation studies in lupus to date have been cross-sectional, and longitudinal studies investi-
gating epigenetic changes in patients with lupus over time have not been reported.

We have previously demonstrated robust demethylation of  IFN-regulated genes in lupus neutrophils 
compared with normal healthy controls (12). In this study, we investigate neutrophil DNA methylation 
changes over time and across disease activity levels in a cohort of  lupus patients followed longitudinally 
for up to about 4 years. Moreover, we sought to increase our understanding of  how DNA methylation is 
affected by the genetic background. We compared DNA methylation patterns between African American 
and European American lupus patients, performed meQTL analyses in lupus neutrophils, and identified 
CpG sites that show methylation changes correlating with disease activity and the development of  lupus 
nephritis across the course of  the disease.

Results
Longitudinal analysis of  DNA methylation over time and across disease activity levels in lupus patients. The Infini-
um MethylationEPIC array measures the methylation status of  866,836 methylation sites across the 
genome, including 863,904 CpG and 2932 CNG sites (C, cytosine; N, any nucleotide; G, guanine) (22). 
After QC and technical probe masking, a total of  745,477 (86.0%) sites were retained for analysis. Het-
erogeneity in disease manifestations, patient genetic background, and the environment are all factors that 
complicate the understanding of  lupus pathogenesis. Using repeated sampling of  lupus patients followed 
longitudinally, we can account for these factors and detect potentially novel changes in DNA methyla-
tion that are associated with disease activity over time. We followed a total of  54 lupus patients for up 
to 43 months and assessed genome-wide DNA methylation levels in neutrophils in a total of  229 patient 
samples. Our cohort included 22 African American and 32 European American lupus patients followed 
across 93 and 136 time points, respectively. We assessed correlation between DNA methylation changes 
in individual methylation sites across the genome with disease activity as measured by Systemic Lupus 
Erythematosus Disease Activity Index (SLEDAI) scores in each ancestry group. After removing CpG-
SNP probes with a minor allele frequency > 1% to avoid a bias due to intraancestral allele frequency 
differences, we analyzed a total of  733,192 (84.6%) methylation sites. In the African American cohort, 
we identified a total of  8 CpG sites that met our suggestive FDR-adjusted P < 0.1 (Figure 1A and Table 
1). Two sites — cg26104306 (SNX18; FDR-adjusted P = 3.38 × 10–2) and cg06708913 (FDR-adjusted P 
= 3.43 × 10–2) — were significantly associated with changing disease activity levels in our cohort (Figure 
1, B and C). Cg26104306 shows stark demethylation with increasing disease activity compared with 
our European American patients, who showed very little methylation change across time and disease 
activity. Similarly, cg06708913 shows a much higher rate of  increasing methylation with disease activity 
in African American patients relative to European American patients. The inclusion of  the top 4 medica-
tion components as fixed effects did not improve the fit of  our model for these 2 CpG sites (cg26104306 
χ2 P = 0.25 and cg06708913 χ2 P = 0.83). Our European American sample cohort analysis did not identify 
any CpG-SLEDAI score associations at either P value threshold. Importantly, these data suggest that 
DNA methylation patterns defining lupus patients are largely stable over time and across disease activity.

We next performed an analysis in a subset of  patients who developed active lupus nephritis at any 
time point during our study and in whom a sample from at least 1 time point without evidence of  lupus 
nephritis is available. After adjusting for medications, age, and ancestry, we identified a single CpG site 
with a statistically significant relationship between DNA methylation levels and active nephritis in n = 
11 lupus patients. DNA methylation levels in cg16204559, which is located within the gene GALNT18, 
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are significantly reduced during active nephritis in lupus patients (Supplemental Table 1 and Figure 1D; 
supplemental material available online with this article; https://doi.org/10.1172/jci.insight.143654DS1).

DNA methylation differences in neutrophils of  African American and European American lupus patients. We 
then performed a differential DNA methylation analysis comparing lupus patients with African American 
(n = 22) and European American (n = 32) ancestry after adjusting for medication use and age. A multi-
dimensional plot of  the 5000 most variable CpG sites in these patients showed that methylation patterns 
tended to cluster by patient ancestry group (Figure 2A). African American lupus patients in our cohort had 
more active disease compared with European American lupus patients (SLEDAI 5.2 ± 4.5 vs. 2.9 ± 3.2, 
respectively; P = 0.03; 2-tailed t test). Medication use at the initial time point was not significantly different 
between the ancestry groups (Supplemental Table 2). We identified 907 differentially methylated CpG sites 
using an FDR-adjusted P value threshold of  < 0.05 and a differential methylation between ancestry groups 
of  at least 10% (Figure 2B, Supplemental Table 3). Four hundred eighty-seven (53.7%) of  these sites were 
hypomethylated in African American compared with European American lupus patients, and 420 (46.3%) 
were hypermethylated (Figure 2C). DNA methylation levels among differentially methylated sites differed 
by 16.5% on average (SD, 8.2%; range, 10.0%–57.9%) between ancestry groups. The hypomethylated and 
hypermethylated sites were associated with 391 and 316 genes, respectively. Hypomethylated genes showed 
enrichment for gene ontologies (GO) for granulocyte differentiation (GO: 0030852, FDR-adjusted P = 
2.23 × 10–2; GO: 0030853, FDR-adjusted P = 3.20 × 10–2), cell adhesion (GO: 0007155, FDR-adjusted P 
= 1.26 × 10–2; GO: 1903037, FDR-adjusted P = 3.41 × 10–2), and TLR signaling pathways (GO: 0002224, 
FDR-adjusted P = 3.41 × 10–2; GO: 0034121, FDR-adjusted P = 4.46 × 10–2) (Supplemental Table 4). 

Figure 1. The relationship between DNA methylation changes, disease activity, and the development of lupus nephritis in a longitudinal cohort of lupus 
patients. (A) A Manhattan plot depicting the significance of correlation between methylation levels of CpG sites and disease activity as measured using 
SLEDAI scores in African American lupus patients (n = 93 samples). The red dots are CpG sites that meet the threshold for significance of FDR-adjusted P < 
0.05 (bold line), and the blue dots are CpG sites that meet the suggestive threshold of FDR-adjusted P < 0.10 (dashed line). (B and C) Methylation status of 
cg26104306 (B) and cg06708913 (C) across SLEDAI scores for African American (n = 93 samples; red dots/line) and European American (n = 136 samples; blue 
dots/line) lupus patients. (D) Ideogram of chromosome 11 showing the location of 11p15.5 and 11p15.4 cytobands. Cg16204559 (black line) is within the body of 
GALNT18 located in the 11p15.4 region (green box). Methylation profiles for n = 11 lupus patients (red dots; n = 7 African American and n = 4 European Ameri-
can) at a time point with active nephritis and the nearest preceding or receding time point without nephritis were compared after adjusting for medications, 
age, and ancestry group using a linear mixed effects model. Cg16204559 (GALNT18) was significantly demethylated (FDR-adjusted P = 0.048) with the occur-
rence of nephritis. Mean β nephritis was 78.4% (25th percentile, 80.9%; 75th percentile, 82.0%) and mean β nonnephritis was 81.2% (25th percentile, 77.7%; 
75th percentile, 79.5%). Whiskers extend to the maximum value within 1.5 times the IQR on either end of the group. Points beyond the whiskers are outliers.
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Hypermethylated genes were enriched for fewer ontologies representing primarily Rho guanine nucleotide 
exchange factor (GEF) protein activity (GO: 0005089, FDR-adjusted P = 7.76 × 10–3) and ATP binding 
(GO: 0005524, FDR-adjusted P = 2.80 × 10–2) (Supplemental Table 5).

To estimate the proportion of  CpG sites differentially methylated between African American and Euro-
pean American lupus patients that are influenced by ancestral genetic differences, we performed differential 
DNA methylation analysis comparing neutrophils isolated from normal healthy African American and 
European American controls, using publicly available DNA methylation data generated using the Illumi-
na HumanMethylation450 array (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65097). Of  
437 sites differentially methylated between African American and European American lupus patients that 
were included on the HumanMethylation450 array, 185 CpG sites (42.3%) were also differentially methyl-
ated between African American and European American healthy controls (Supplemental Table 6). Indeed, 
among these methylation sites, DNA methylation differences between the 2 ancestries in controls and lupus 
patients showed a high degree of  correlation (Pearson’s product-moment correlation R = 0.872; t statistic = 
24.077, degrees of  freedom [DF] = 183, P < 2.2 × 10–16). These data indicate that at least a proportion of  
differential methylation identified between African Americans and European American lupus patients can 
be explained by differences in the ancestral genetic background between the populations.

meQTL analysis. We next identified associations between DNA methylation and genotype in our 
cross-sectional cohort of  lupus patients (n = 53) after controlling for age, medications, and genetic 
background. cis-meQTL in our cohort (Figure 3A and Supplemental Table 7) were defined using a 
conservative range of  1000 bp to focus on localized effects. We identified a total of  8855 pairs of  CpG 
sites and SNPs with an FDR-adjusted P < 0.05. These meQTL pairs represented 7614 (86.0%) unique 
methylation sites and 7094 (80.1%) unique polymorphisms. A total of  7269 (82.1%) of  meQTL did not 
contain CpG-SNPs. Gene set enrichment analysis (GSEA) of  the 3871 unique genes associated with 
the CpG sites revealed numerous ontologies and pathways. The most significantly enriched included 
ontologies and pathways for cell and biological adhesion (GO: 0007155, FDR-adjusted P = 6.43 × 10–20; 
GO: 0022610, FDR-adjusted P = 6.43 × 10–20; and KEGG: 83069, FDR-adjusted P = 5.29 × 10–4) and 
calcium ion binding and signaling pathways (GO: 0005509, FDR-adjusted P = 1.46 × 10–7; KEGG: 
83050, FDR-adjusted P = 9.58 × 10–4) (Figure 3B and Supplemental Table 8). The meQTL revealed in 
our study are, at least in part, responsible for a proportion of  the observed DNA methylation differences 
between African American and European American patients. Indeed, of  the 907 differentially methyl-
ated CpG sites in our cohort, 142 (15.7%) were also meQTL (Figure 3A and Supplemental Table 9). 
These included sites associated with IL16 (cg02810829; Δβ = –0.23) and an meQTL associated with the 
triggering receptor expressed on myeloid cells–like 4 (TREM-like 4) gene TREML4 (cg25555787; Δβ = 
–0.20). Cg25555787 had one of  the strongest meQTL associations in this study (rs9369265 meQTL, R2 
= 0.91) (Figure 4). We identified 1586 (17.9%) meQTL that were tagged as including CpG-SNPs and 
comprised many of  the strongest methylation-genotype associations (Supplemental Table 7).

Table 1. Correlation of DNA methylation and disease activity in a cohort of African American lupus patients (n = 22) across 93 samples 
after adjusting for age using a mixed-effects model

Probe ID Genes Location (hg38) SLEDAI score 
coefficient

F (Satterthwaite) P value FDR-adjusted P 
values

cg26104306 SNX18 chr5:54517014 -0.046 36.57 4.61 × 10–8 3.38 × 10–2

cg06708913 - chr12:89880778 0.055 34.77 9.35 × 10–8 3.43 × 10–2

cg24682077 FGD1 chrX:54496205 -0.026 30.33 3.72 × 10–7 5.35 × 10–2

cg15563677 ELMSAN1;RP5-1021I20.1 chr14:73788514 -0.039 31.15 3.73 × 10–7 5.35 × 10–2

cg26138978 EFNB2 chr13:106530743 -0.038 30.14 3.77 × 10–7 5.35 × 10–2

cg17038326 - chr3:27614709 -0.049 30.64 4.38 × 10–7 5.35 × 10–2

cg22284518 - chr16:49351267 -0.016 29.63 5.90 × 10–7 6.18 × 10–2

cg00465267 NFATC2 chr20:51497407 0.038 29.28 6.76 × 10–7 6.19 × 10–2

All CpG sites represented here met our suggestive significance threshold of FDR-adjusted P < 0.10, and the first two CpG sites meet our significance 
threshold of P < 0.05. F (Satterthwaite) is the F value for the F test conducted by lmerTest using the Satterthwaite method for denominator degrees of 
freedom.
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meQTL involving lupus genetic susceptibility loci and type I IFN genes. Comparing methylation site–asso-
ciated genes in meQTL pairs with previously identified lupus susceptibility loci from genome-wide 
association studies (23–27), we identified 79 meQTL pairs in 28 lupus susceptibility genes (Supplemen-
tal Table 10). These included IFN regulatory factors IRF7, IRF8, and STAT4, which are involved in the 
type I IFN response. To identify type I IFN–regulated genes that are associated with meQTL in our 
cohort, we compared our meQTL-associated genes with the genes included in the Interferome (v.2.01) 
database (28). Sixty-four of  the 3871 unique genes (1.7%) associated with methylation sites in meQTL 
were identified as type I IFN–regulated genes (Supplemental Table 11).

Discussion
Neutrophils are the most numerous cells in circulating blood and are early responders to inflammatory events 
throughout the body. They play an important role in entering sites of  infection to identify pathogens through 
a variety of  receptors, destroying pathogens, and secreting inflammatory signals to mobilize the immune 
system in response (29). Their primary methods of  destroying pathogens include phagocytosis, production 
of  reactive oxygen species, release of  granules containing antimicrobial enzymes, and the release of  NETs, 

Figure 2. Neutrophils of African American and European American lupus patients show DNA methylation differences associated with ancestry. (A) Mul-
tidimensional scaling plot of top 5000 most variable CpG sites in African American (n = 22; red circles) and European American (n = 32; blue circles) lupus 
patients at initial sample collection. (B) Volcano plot of differentially methylated CpG sites between African American (n = 22) and European American (n 
= 32) lupus patients at initial sample collection. Each dot represents a CpG site (n = 745,477). Significantly differentially methylated sites (green) are dif-
ferentially methylated by at least 10% between ancestry groups and with an FDR-adjusted P < 0.05 (n = 907). (C) Pie chart (left) showing the percentage 
of sites hypermethylated (n = 420; 46.3%) and hypomethylated (n = 487; 53.7%) in African American compared with European American lupus patients. 
Barcharts showing the distribution of hypermethylated (red) and hypomethylated (blue) sites annotated to locations with CpG islands and genes (middle 
and right, respectively). S_Shore: south shore; S_Shelf: south shelf; N_Shore: north shore; N_Shelf: north shelf. 3′-UTR: 3′ untranslated region; ExonBnd: 
exon boundary; 5′-UTR: 5′ untranslated region; TSS200: 200 bp upstream of transcription start site; TSS1500: 1500 bp upstream of transcription start site.
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which physically bind and expose pathogens to antimicrobial proteins (29). In lupus, neutrophils display sev-
eral abnormal phenotypes, including enhanced apoptosis, increased NETosis after type I IFN priming, and 
impaired phagocytosis (30). Our prior work has found that lupus neutrophils display a DNA methylation 
signature common to other immune cell types, primarily demethylation of  type I IFN response genes (12).

We interrogated the DNA methylome of  neutrophils in a cohort of  lupus patients followed longitudinal-
ly for about 4 years across 229 time points to assess DNA methylation changes over time and across different 
levels of  disease activity. We showed that the DNA methylome is largely stable over time and across disease 
activity in lupus patients. We identified 2 CpG sites (cg26104306 and cg06708913) with DNA methylation 
levels that significantly correlated with disease activity. These correlations were detected in African Ameri-
can but not European American lupus patients. Cg26104306 lies 745 bp upstream of  the transcription start 
site of  the gene SNX18, which encodes the sorting nexin 18 protein SNX18. It is located on the 5′ north 
shore of  a CpG island (chr5:54517549–54519476 [hg38]) that overlaps the SNX18 promoter region. Methyl-
ated CpG islands are typically indications of  silenced gene promoters in somatic cells, and hypomethylation 
suggests disease-associated disruption in this silencing. SNX18 localizes to the plasma membrane of  cells 
and plays a functional role in endocytosis and autophagosome formation in cells (31, 32). Cg06708913 
overlapped a long noncoding RNA AC009522.1 and is proximal to an enhancer-like region denoted by tran-
scriptionally permissive DNase hypersensitivity and increased H3K27ac modifications (33). One CpG site 
that reached suggestive significance for correlation with disease activity in African American lupus patients, 
cg24682077 (FDR-adjusted P = 5.35 × 10–2), is associated with FYVE, RhoGEF, and PH domain containing 
1 gene FGD1. FGD1 interacts with Rho GTPase Cdc42, which regulates neutrophil motility in response to 
extracellular signals (34). Cg24682077 is located 39 bp downstream of  the transcription start site of  FGD1 
and within a promoter-associated CpG island.

The small number of  CpG sites that change methylation levels with disease activity in our longitudinal 
study suggests that DNA methylation levels are stable in lupus neutrophils over time and across different 
disease activity levels. An inception study of  lupus patients across time is necessary to detect DNA meth-
ylation biomarkers that indicate the onset of  disease. A larger cohort size may bring more of  these sites 
beyond the significance threshold or reveal novel associations in other ancestry groups. These associations 
will require replication to be confirmed but serve as indicators that novel disease–associated loci can be 
detected in longitudinal data from lupus patients. Our data also demonstrate that accounting for genetic 
ancestry in lupus studies can reveal novel associations.

Lupus nephritis is one of  the most severe manifestation of  lupus that can lead to chronic kidney damage 
and renal failure. We compared 2 time points from lupus patients with samples collected with and without 
nephritis in the same patient and adjusted DNA methylation changes for medication use, age, and race. A 
single methylation site, cg16204559, passed our FDR significance threshold corrected for multiple testing. 
Cg16204559 (chr11:11451256–11451258 [hg38]) is in the 11p15.4 cytoband within an intron of  the gene 
GALNT18, which encodes the polypeptide N-acetylgalactosaminyltransferase 18 protein. 11p15.4 is adja-
cent to 11p15.5, which has previously been identified as the location of  the Systemic Lupus Erythematosus 
Nephritis 3 (SLEN3) locus. This locus is near the short arm telomere of  chromosome 11 and was identified 
as a susceptibility locus for lupus using genetic linkage in multiplexed pedigrees of  African American ances-
try that included lupus patients with nephritis (35). Understanding the biological role of  this demethylation 
in lupus nephritis will require further investigation. Our study reveals the value of  using longitudinal epi-
genetic studies to identify potentially novel DNA methylation changes that could provide insight for specific 
disease manifestations. Precision medicine approaches in lupus, enabling epigenetic modification in specific 
cell types and possibly in key specific genetic loci in the near future, are very promising (18).

Ancestry-associated DNA methylation differences and meQTL analyses showed a significant enrich-
ment in Rho GEF pathways. GEFs are proteins that catalyze the cycling of  GDP/GTP binding in Rho 
GTPases, which results in their activation (36, 37). Rho GTPase activity regulates neutrophil function by 

Figure 3. cis-meQTL analysis in lupus neutrophils. (A) A Manhattan plot showing CpG sites (black and gray dots) in cis-meQTL pairs identified in our lupus 
cohort. Black dots represent CpG sites in non–CpG-SNP cis-meQTL pairs that had a significantly different average methylation between African American and 
European American patients (FDR-adjusted P < 0.05). The red dashed line represents an approximate FDR-adjusted P value threshold of 0.05 for all cis-meQTL 
across the entire genome. An meQTL involving TREML4 was among the most significant meQTL effects detected. (B) Enrichment of gene ontologies and path-
ways among annotated genes associated with CpG sites with cis-meQTL effects in lupus neutrophils. Barcharts show the most significant molecular function 
(orange) and biological process (green) gene ontology terms, and KEGG pathways (purple) by –log10 (P value). All terms have an FDR-adjusted P < 0.05.
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controlling cytoskeletal arrangements in response to activation of  signaling pathways (38). They regulate 
reactive oxygen species production, endothelial adhesion and transmigration, and production of  neutrophil 
extracellular traps (NETs) (38). We used network analysis to further characterize ancestry-specific differ-
ential DNA methylation in lupus. Supplemental Figure 1 shows a gene network that is centered around 
the transcription factor complex NF-κB. NF-κB is activated through degradation of  inhibitory proteins in 

Figure 4. meQTL involving the SNP rs9369265 within TREML4 in lupus patients. (A) Rs9369265 is significantly asso-
ciated with the methylation status of cg25555787 (FDR-adjusted P value = 1.22 × 10–16). Mean β for genotype TT = 23% 
(25th percentile = 21.2%, 75th percentile = 25.0%, n = 4), mean β for genotype CT = 52.0% (25th percentile = 48.3%, 
75th percentile = 55.2%, n = 25), and mean β for genotype CC = 85.6% (25th percentile = 84.2%, 75th percentile = 87.3%, 
n = 24). Whiskers extend to the maximum value within 1.5 times the IQR on either end of the group. Points beyond 
the whiskers are outliers. The minor allele frequency of rs9369265 significantly differed between European American 
(n = 32) and African American (n = 21) lupus patients (P = 1.45 × 10–3), with the T allele associated with lower DNA 
methylation. Comparing allelic proportions between ancestry groups was done using a 2-proportion z test. All P values 
were 2 tailed, and a significance threshold of P < 0.05 was used. (B) Rs9369265 is an exonic SNP in TREML4 and is 
significantly associated with the methylation status of 2 CpG sites upstream of the transcription start site of TREML4 
(cg25555787 and cg03849834) (hg19). This region has epigenetic marks including DNase hypersensitivity (DNase HS), 
histone 3 lysine 4 mono- (H3K4me1) and –tri-methylation (H3K4me3) and is labeled as an enhancer region for TREML4 
(Flanking Active TSS; orange bar) in primary human neutrophils. Data for B were generated using the WashU Epig-
enome Browser (https://epigenomegateway.wustl.edu/) using ENCODE and Epigenome Roadmap ChromHMM data 
tracks from peripheral primary human neutrophils (E030).
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response to inflammatory signaling, such as TLR engagement, and translocates to the nucleus (39). There, 
it coordinates the expression of  proinflammatory gene programs in neutrophils that delay apoptosis, pro-
motes production of  proinflammatory cytokines, and increases cell adhesion and NETosis when cells 
are sufficiently activated (40). Resting human neutrophils tightly regulate NF-κB activation through high 
levels of  nuclear IκBα that is rapidly degraded upon proinflammatory stimulation (41). The gene IKBKB 
(cg20242624; Δβ = –0.11) encodes the inhibitor of  NF-κB kinase subunit β protein (IKKβ), which is part of  
the IκB kinase (IKK) complex, required for activation and nuclear translocation of  NF-κB by phosphory-
lation of  the NF-κB inhibitory subunit IκBα (42). BCL10 (cg17322118; Δβ = –0.18) encodes the B cell lym-
phoma/leukemia 10 protein BCL10, which is also an activator of  NF-κB through ubiquitination of  the IKK 
subunit protein IKKγ (43). Hypomethylation of  these genes in neutrophils may reflect an increased response 
to inflammatory stimuli that promotes tissue invasion and inflammatory damage. Differentially methylated 
genes involved in regulating the type I IFN response were also present (Supplemental Figure 2). In particular 
IRF7 (cg08926253, Δβ = –0.14; cg22016995, Δβ = 0.13) was significantly hypomethylated, similar to what 
we previously observed in naive CD4+ T cells of  African American lupus patients and the neutrophils of  
lupus patients compared with healthy controls (12, 44). IFI44, also a type I IFN response gene, was also sig-
nificantly hypomethylated in African American patients (cg01079652; Δβ = –0.23). We compared differen-
tially hypomethylated genes in African American lupus patients to the Interferome (v.2.01) database (28) to 
identify other type I IFN–regulated genes (Supplemental Table 11). Of  interest, the cytokine gene IL16 was 
hypomethylated in African American patients (cg02810829; Δβ = –0.23) and had a modest association in an 
meQTL pair (rs35130261 meQTL R2 = 0.68; Δ minor allele frequency [ΔMAF] = 0.33). IL-16 is a chemoat-
tractant cytokine that induces infiltration of  T cells, macrophages, and eosinophils into sites of  inflammation 
and promotes proinflammatory cytokine release by monocytes in vitro (45). It also promotes IL-2 receptor 
expression on the surface of  CD4+ T cells, enhancing IL-2 activity (46) and the migration and expansion of  
Tregs in sites of  inflammation (47). A recent study observed that neutrophils produce and store inactive pro–
IL-16 in the cytosol, which is released and activated by caspase-3 upon secondary necrosis (48). Increased 
circulating IL-16 levels in lupus patients are associated with more severe disease (49, 50), and primary neu-
trophils of  lupus patients more readily undergo apoptosis and increased secondary necrosis with reduced 
clearance of  apoptotic material (51). This suggests that hypomethylation of  IL16 (in part, related to meQTL) 
could promote an exaggerated inflammatory response upon neutrophil secondary necrosis in lupus patients.

A demonstration of  the mechanism underlying meQTL associations can be seen in 2 of  the stron-
gest meQTL pairs, cg25555787 (TREML4; rs9369265 meQTL R2 = 0.91; ΔMAF = 0.31) and cg03849834 
(TREML4; rs9369265 meQTL R2 = 0.81; ΔMAF = 0.31). Functionally, TREML4 has previously been 
identified as playing an important role in modulating the response to TLR7 signaling when bound to 
single-stranded RNA and TLR9 binding to unmethylated CpG-DNA (52). Rs9369265 lies in the sec-
ond exon of  TREML4 within an active region flanking the transcription starts site of  TREML4 in neu-
trophils. Rs9369265 genotype is also significantly associated with the expression of  TREML4 in whole 
blood (Gene-Tissue Expression Portal [GTEx] P = 1.2 × 10–163), with the C allele associated with reduced 
expression and increased DNA methylation in our data. The presence of  H3K4me3 peaks in this region 
and DNase accessibility suggest this is an important regulatory region for controlling TREML4 expression 
as a promoter. A reduction in DNA methylation corresponds with an increase in H3K4me3 and promoter 
activity (53). The ligand for TREML4 is unknown, but it readily binds to dead and dying cells (54). Reduced 
clearance of  necrotic material in lupus patients might provide more stimulation to TREML4 and TLRs, 
promoting the exaggerated type I IFN response seen in lupus patients and contributing to the development 
of  renal disease in lupus (55). Indeed, it has been observed that lupus-prone MRL/lpr mice have higher 
survival, produce fewer dsDNA autoantibodies, and develop less renal damage when Treml4 is knocked out 
(52). Neutrophils from Treml4–/– mice show reduced expression of  Cxcl2, which is a potent neutrophil che-
moattractant, but unimpaired motility and phagocytosis (52). The higher frequency of  the T allele in our 
African American lupus patients, which correlates with increased TREML4 expression, suggests a potential 
for a more robust response to TLR stimulation. This is supported by the observation of  increased expres-
sion of  the proinflammatory cytokines IFN-α and TNF-α in the whole blood of  female African American 
lupus patients compared with female European American patients (56).

The mechanisms underlying the association between genotype and DNA methylation status will require 
further investigation. Potential mechanisms could include an inherited haplotype tagged by rs9369265 that 
promotes or suppresses transcription regulator accessibility and binding. This effect could also extend to 
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other myeloid cells that express TREML4, including macrophages and DCs, which contribute to the proin-
flammatory response (52).

We compared the DNA methylation profiles of  neutrophils from a small cohort of  healthy African 
American and European American female controls to determine if  the observed differences in lupus 
patients were unique to the disease or shared by healthy ancestral populations. Of  methylation sites that 
were assessed in both patients and healthy controls, 42.3% of  the differentially methylated sites between 
African American and European American lupus patients overlapped with differentially methylated sites 
in healthy control neutrophils between the 2 populations. Furthermore, 30 (48.4%) of  the 62 CpG sites 
included on both the Infinium MethylationEPIC and Infinium HumanMethylation450 arrays that are in 
an meQTL pair and differentially methylated in patient neutrophils were also differentially methylated in 
control neutrophils, between the 2 ancestries. Taken together, ancestry-associated methylation variability in 
lupus patients includes both genetically determined methylation differences and methylation changes that 
might be related to nongenetic factors. Additional work is required to differentiate benign ancestry-associ-
ated epigenetic variability from epigenetic changes that might contribute to the pathogenesis of  lupus or to 
differences in disease presentation and progression between populations.

Our current study was focused on epigenetic evaluation of  neutrophils isolated from lupus patients, 
given the increasingly recognized role of  neutrophil dysfunction in lupus. Future longitudinal studies in 
other cell types involved in the pathogenesis of  lupus are likely to provide additional insights. For example, 
a prominent role for T cell aberrancies in the pathogenesis of  lupus is well established (57). Investigating T 
cell DNA methylation changes over time in patients with lupus is warranted.

In summary, we have analyzed the association of  DNA methylation with disease activity across time 
in the neutrophils of  lupus patients. We demonstrate that the DNA methylome is at least in part deter-
mined by genetic variants in lupus patients and is largely stable over time and across disease activity levels 
in a longitudinal multiancestral lupus cohort. We identified 2 CpG sites in patients of  African American 
ancestry that show methylation levels associated with disease activity in lupus. We also identified a single 
locus that becomes hypomethylated in patients who developed active lupus nephritis. Using genome-wide 
DNA methylation and genotyping data, we characterized ancestry-associated DNA methylation changes 
in lupus neutrophils and identified meQTL effects throughout the genome. Two genes, TREML4 and 
IL16, contained meQTL and were also significantly hypomethylated in African American lupus patients. 
These genes play roles in promoting inflammatory response to TLR signaling and infiltration of  peripher-
al immune cells into tissue.

Methods
Study participants and demographics. Fifty-four female lupus patients were recruited from the University 
of  Michigan Health System and Henry Ford Health System for this study (Supplemental Table 2). Our 
cohort included 32 patients of  European American ancestry and 22 patients of  African American ancestry. 
Patients were followed over a 43-month period. The patients selected for this study had at least 1 change 
in disease activity as measured by the SLEDAI score across all time points. This resulted in a total of  229 
time points across all patients (4 median time points per patient; range, 2–11 time points). The mean age 
of  patients at the initial visit was 41.0 ± 13.1 years (mean ± SD; range, 19–70 years). The mean SLEDAI 
score of  patients was 3.9 ± 3.9 (mean ± SD; range, 0–20) at their initial visit and 4.0 ± 3.7 (mean ± SD; 
range, 0–20) across all time points (Supplemental Figure 3). All patients in this study fulfilled the American 
College of  Rheumatology classification criteria for SLE (58).

DNA methylation data from normal healthy control neutrophils (n = 5 and 6 African American and 
European American, respectively) generated using the Illumina Infinium HumanMethylation450 array and 
previously reported were also used (12) (GEO accession no. GSE65097; https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE65097). DNA methylation data generated in this study have been deposited in 
Gene Expression Omnibus (GEO) and are available under GEO accession number GSE161476.

DNA isolation. Whole blood was collected from each patient at each time point during clinic visits in 
vials containing EDTA. Granulocyte fractions were isolated using density centrifugation with Ficoll-His-
topaque (GE Healthcare). Genomic DNA was isolated from the enriched granulocyte layer using either 
phenol-chloroform extraction or QIAGEN DNEasy Blood and Tissue kit (QIAGEN), or following the 
removal of  RBCs using dextran (MilliporeSigma) and hypotonic lysis (59). DNA was eluted in water and 
quantified using Qubit DNA fluorescence quantification assays (Thermo Fisher Scientific).
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DNA methylation measurement. A total of 350ng of DNA from each sample was bisulfite converted using the 
EZ-96 DNA Methylation Kit (Zymo) following the manufacturer’s instructions. Samples were hybridized to 
the Infinium MethylationEPIC array (Illumina) to assess site-specific DNA methylation of over 850,000 meth-
ylation sites across the genome. Samples were randomized across all arrays to minimize batch effects. Sample 
hybridization and array scanning were performed at the University of Michigan Advanced Genomics Core.

DNA methylation quality control and analysis. DNA methylation data analysis was performed in the R sta-
tistical computing environment (v.3.6.3) (60). Raw.idat files were generated for each sample and read into the 
R package minfi (v.1.32.0) for quality control (QC) and downstream analysis (61, 62). Probes with fewer than 
3 beads and zero intensity values across all samples were removed according to best practices as implement-
ed by the DNAmArray package (v.0.1.1) (63). Then, background signal and dye bias were corrected, followed 
by normalization of  signal intensities using functional normalization in the preprocessFunnorm.DNAmArray 
function (63, 64). This method uses the first 3 principal component values calculated from signal intensities 
of  control probes present on all array spots to correct for technical variation. Probes with detection P < 0.01 
were removed, as were probes that returned signal intensities in fewer than 98% of  samples. Signal intensi-
ties were then converted to M-values with a maximum bound of  ± 16. M-values were used for all regression 
testing and converted to β values (0%–100% methylation scale) using minfi for reporting.

We masked any probes with potential technical issues if  the probe met any one of the following criteria 
described by ref. 65: A unique probe sequence of less than 30 bp, mapping to multiple sites in the genome, poly-
morphisms that cause a color channel switching in type I probes, inconsistencies in specified reporter color chan-
nel and extension base, mapping to the Y chromosome, and/or having a polymorphism within 5 bp of the 3′ end 
of the probe with a MAF > 1% with exception of CpG-SNPs with C > T polymorphisms, which we retained for 
analysis. Batch correction was performed using the ComBat function in the sva (v.3.34.0) package (66).

We implemented a mixed correspondence analysis with the PCAmixdata package (v.3.1) to calculate 
eigenvalues using patient medication data for prednisone, hydroxychloroquine, azathioprine, mycopheno-
late mofetil, and cyclophosphamide (67). The top 4 components accounted for a cumulative 88.4% of  vari-
ability in the medication data. Each component value was used as an independent variable in regression 
analysis to adjust for medication usage across individuals.

Cell type–specific DNA methylation profiles were used to assess enrichment of neutrophils in our DNA 
samples (68). Of 73 CpG sites previously identified to accurately discriminate between neutrophils and other cell 
types in peripheral blood (namely CD4+ T cells, CD8+ T cells, B cells, NK cells, and monocytes), methylation 
levels in 71 sites passed our QC measures in our data set. DNA methylation levels in these sites were very highly 
correlated in our DNA samples with DNA isolated from neutrophils (R = 0.996, Supplemental Figure 4).

Genotyping and meQTL analysis. Genotyping data were generated using Infinium Global Screening 
Array-24 v2.0 (Illumina) according to the manufacturer’s instructions. Stringent QCs were applied 
before analyses using PLINK (v.1.9) (69). Single nucleotide polymorphisms (SNPs) with a genotyping 
call rate < 98% and MAF < 5%, as well as those showing a deviation from Hardy-Weinberg equilibri-
um (HWE; P < 1 × 10–3), were filtered out. Samples were removed if  they had a genotyping call rate 
< 95%. Sex chromosomes were not analyzed. About 100,000 independent SNPs were pruned and 
used to perform principal component analysis (PCA) with Eigensoft (v.6.1.4) software (Supplemental 
Figure 5) (70). Genotyping data of  a single African American lupus patient were removed at the QC 
step due to failing quality measures. All meQTL analyses presented in this paper are obtained from 
the methylation and genotyping profiles of  n = 21 African American and n = 32 European American 
lupus patients.

GSEA. Gene annotation of  CpG probes was done using GENCODE v22 (hg38) annotations from 
a manifest file produced by ref. 65. Gene network analysis of  differentially methylated genes was done 
using Ingenuity Pathway Analysis (QIAGEN; https://analysis.ingenuity.com/). ToppGene Suite was used 
for functional gene ontology enrichment analysis (71). Molecular Function and Biological Process Gene 
Ontologies and KEGG Pathways were selected for enrichment. P values were derived using a hypergeomet-
ric probability mass function and a Benjamini-Hochberg FDR–adjusted P value cutoff  of  < 0.05 was used 
as a threshold of  significance. Ontologies and pathways had to have a minimum membership of  3 genes 
and maximum of  2000 genes to be included.

IFN-regulated genes were identified using the differentially methylated gene set as input for Interfer-
ome (v.2.01) (28), limiting results to genes with an expression fold change of  1.5 or greater between type I 
IFN–treated and untreated samples using data sets derived from peripheral whole blood.

https://doi.org/10.1172/jci.insight.143654
https://insight.jci.org/articles/view/143654#sd
https://insight.jci.org/articles/view/143654#sd
https://insight.jci.org/articles/view/143654#sd


1 2insight.jci.org   https://doi.org/10.1172/jci.insight.143654

R E S E A R C H  A R T I C L E

Statistics. We used probe-wise linear regressions to detect CpG sites in our cohort that show 
methylation difference between African American and European American patients using the limma 
(v.3.42.2) package (72). Patient age and the top 4 medication components were adjusted for in each 
regression, and an empirical Bayes moderated t-statistic and P value calculated for each probe. CpG 
sites were considered to be significantly differentially methylated if  they had a Benjamini-Hochberg 
FDR-adjusted P < 0.05 and were differentially methylated by at least 10% between African American 
and European American patients.

Methylation M-values from the initial time point samples (n = 53), sample genotypes (n = 53), sample 
age, the top 4 medication components, and top 10 genotype principal components were used to build a lin-
ear model for detecting meQTL using MatrixEQTL (v.2.3) in R (73). cis-meQTL were defined as CpG sites 
with methylation values associated with a SNP within a conservative 1000 bp of  the CpG dinucleotide. We 
used a Benjamini-Hochberg FDR-adjusted P value cutoff  of  < 0.05 for significant associations.

Analysis of  the association with SLEDAI score and DNA methylation in our longitudinal cohort 
(n = 93 African American and 136 European American patient samples) was performed by fitting 
a linear mixed model using the lmerTest (v.3.1-2) (74) and MuMIn (v.1.43.17) packages in R (75). A 
regression model was fit in a probe-wise manner for all samples in each ancestry group. Regression 
models were adjusted for age at sample collection as a fixed effect and SLEDAI score as the variable 
of  interest. Repeated samples were grouped by patient, which was accounted for as a random effect in 
the model. CpG methylation and SLEDAI score had a statistically significant association if  they had 
a Benjamini-Hochberg FDR-adjusted P < 0.05 and a suggestive association with a Benjamini-Hoch-
berg FDR-adjusted P < 0.10. The impact of  adjusting for medication components was determined by 
comparing the fit of  the previously specified mixed effect regression model with an extended model 
that includes additional fixed effects for the top 4 medication components of  each lupus patient’s time 
point. A χ2 difference test for nested models was applied using the ANOVA function in R to determine 
if  model fit was improved. P < 0.05 was considered statistically significant and indicates that the larger 
model has improved data fit.

Longitudinal analysis of  nephritis in our cohort was performed by fitting a linear mixed model as above 
to each probe using methylation profiles for n = 11 lupus patients (n = 7 African American and n = 4 Euro-
pean American) at a time point with active nephritis (as defined by SLEDAI) and the nearest preceding or 
receding time point without nephritis after adjusting for the top 4 medication components, age, and ances-
try as fixed effects. Sample pairs were included as a random effect. A Benjamini-Hochberg FDR-adjusted P 
value threshold of  < 0.05 was used to identify statistically significant associations.

Two-group testing of  mean ages between ancestry groups was done using a 2-tailed t test. SLEDAI 
criteria and medication differences were compared using Fisher’s exact test. Comparing allelic proportions 
between ancestry groups was done using a 2-proportion z test. All P values were 2-tailed and a significance 
threshold of  P < 0.05 was used.

Study approval. The IRBs of  the University of  Michigan Health System, Henry Ford Health System, 
and the University of  Pittsburgh approved this study, and all patients signed informed consent before 
study enrollment.
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