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Cancer formation is a highly regulated and complex process, largely dependent on its
microenvironment. This complexity highlights the need for developing novel target-based
therapies depending on cancer phenotype and genotype. Autophagy, a catabolic
process, removes damaged and defective cellular materials through lysosomes. It is
activated in response to stress conditions such as nutrient deprivation, hypoxia, and
oxidative stress. Oxidative stress is induced by excess reactive oxygen species (ROS) that
are multifaceted molecules that drive several pathophysiological conditions, including
cancer. Moreover, autophagy also plays a dual role, initially inhibiting tumor formation but
promoting tumor progression during advanced stages. Mounting evidence has
suggested an intricate crosstalk between autophagy and ROS where they can either
suppress cancer formation or promote disease etiology. This review highlights the
regulatory roles of autophagy and ROS from tumor induction to metastasis. We also
discuss the therapeutic strategies that have been devised so far to combat cancer. Based
on the review, we finally present some gap areas that could be targeted and may provide a
basis for cancer suppression.

Keywords: autophagy, ROS, tumor microenvironment, epithelial–mesenchymal transition, metastasis, anticancer
therapy resistance
INTRODUCTION

Autophagy, meaning “self-eating,” is a catabolic process where cytoplasmic organelles, proteins, and
other macromolecules are degraded during starvation or other types of stress (1–3). It is vital in
maintaining cellular homeostasis, helps eliminate pathogens, and is regulated by the autophagy-
related (ATG) genes. The molecules/cargo to be degraded are sequestered in double-membrane
vesicles (autophagosomes). Autophagosomes fuse to lysosomes, forming autolysosomes that lead to
cargo degradation. The degraded molecules provide energy that can be used in anabolic and
bioenergetic pathways (4). Apart from macroautophagy, there are two other forms of autophagy:
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microautophagy and chaperone-mediated autophagy (5). Any
disruption in autophagic pathways has been shown to play a
significant role in different diseases such as neurodegeneration,
atherosclerosis, and cancer (6, 7).

Usually, autophagy acts as a tumor suppressor during
initiation but promotes cancer cell proliferation in established
tumors (8). Autophagy can be regulated by several factors,
including starvation, infections, drugs, hypoxia, ATP/AMP
ratio, and reactive oxygen species (ROS) levels (9). Cancer cells
also exhibit high ROS levels (10) due to increased metabolism
rate, incomplete oxidative phosphorylation, mitochondrial
dysfunction, low nutrient levels, hypoxia, and low pH in their
microenvironment (11–13). Under normal conditions, low ROS
levels are generated to regulate signaling pathways, including
autophagy, to maintain cellular homeostasis (14–16). Moreover,
starvation conditions known to upregulate autophagy can also
induce ROS. Consistently, studies have shown ROS-mediated
regulation of autophagy as ROS scavengers or high expression of
antioxidants can block stress-induced autophagy (17, 18).

ROS-induced autophagy can lead to cell death or survival (17,
19). High ROS levels can also activate several oncogenic
pathways, such as mitogen-activated protein kinase (MAPK)
and nuclear factor (NF)-kB signaling pathways. Contrarily,
increased ROS can also promote cell death by activating the
tumor suppressor p53 or apoptosis caused by excessive
mitochondrial and DNA damage (20). Thus, an intricate
cellular balance between autophagy and ROS is required to
maintain cellular redox balance in normal and disease-related
physiological conditions. Therefore, the exact role of autophagy
and ROS in cancer cells is context-dependent and varies in
different cancer phenotypes (21–24). This review describes the
role of autophagy and ROS as tumor promoters and suppressors.
We further discuss the intricate crosstalk between autophagy and
ROS that can regulate tumor promotion, metastasis, and
response to therapy and may ultimately decide the fate of
cancer cells.
REGULATION OF AUTOPHAGY

Autophagy is moderately active at the basal level but becomes
highly activated due to different cellular stresses, including
chemotherapeutics and radiotherapy (25–27). To date, 35
different ATG genes have been identified in yeast that are also
conserved in higher eukaryotes (28–31). The autophagy
pathway can be divided into several steps: (a) initiation and
nucleation, (b) autophagosome closure, (c) maturation through
autophagosome–lysosome fusion, and (d) cargo degradation
through lysosomal enzymes. Autophagy is regulated through a
series of proteins, including mammalian target of rapamycin
(mTOR) and 5' adenosine monophosphate-activated protein
kinase (AMPK). Activated mTOR negatively regulates
autophagy through phosphorylation of the Atg proteins.
However, during stress conditions, mTOR is inhibited, and
autophagy is enhanced. Conversely, AMPK negatively regulates
mTOR and induces the autophagic process (32; 33). After mTOR
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inhibition, the Unc-51-like autophagy-activating kinase (ULK)
complex is activated (34), which in turn activates the class III
phosphoinositide 3 kinase (PI3K) (35). The class III PI3K
complex consists of several proteins including VPS34, p150,
Atg14, and Beclin-1, which initiates autophagosome formation.
Beclin-1, a primary autophagy regulator, recruits different
proteins involved in the maturation and elongation of the
autophagosome. Subsequently, Atg9 protein mediates the
trafficking of the source membrane for autophagosome
elongation. These may include the Golgi complex,
mitochondria, endoplasmic reticulum, endosome, and plasma
membrane (36). The primary component required for
autophagosome maturation is the ubiquitin-like protein
lipidation system that conjugates phosphatidylethanolamine to
the C terminus of Atg8 (LC-3) protein, thereby facilitating the
incorporation of Atg8 protein into autophagosomal membranes
(37, 38). The proteins Atg7 and Atg10 help in conjugating Atg12
protein to Atg5 protein. The Atg12–Atg5 protein complex then
conjugates with Atg16L1 protein to promote Atg8 protein
lipidation. Atg8 protein is present in the inactive pro-Atg8
form but is cleaved by Atg4B protein, leaving a C-terminal
glycine residue (39). The lipidated form of Atg8 protein is
strongly associated with the autophagosomal membranes. Yeast
contain a single Atg8 protein, while mammals have seven Atg8
proteins in two structurally related subfamilies (MAP1LC3A, B,
C and GABARAP, GABARAPL1, and GABARAPL2), signifying
a complex diversification of their functions (37). During
autophagy induction, damaged organelles, protein aggregates,
and ubiquitinated proteins are sorted to the phagophore for
degradation. The Atg5–Atg12–Atg16L protein complex localizes
to the phagophore, forming a cup-shaped structure, and
dissociates when LC3-II localizes to the phagophore to
complete the autophagosome formation. The cargo adaptor
proteins like p62, NBR1, or NIX are further recruited on the
autophagosome to target ubiquitinated protein aggregates and
damaged organelles for degradation (40–42). Furthermore, the
autophagosome fuses with the lysosomes forming autolysosomes
to degrade targeted contents (Figure 1). This fusion is mediated by
lysosomal-associated membrane protein 2 (LAMP2), the small
GTPase RAB7A and UVRAG. Finally, lysosomal hydrolases and
cathepsins degrade the targeted proteins, while cathepsins degrade
LC3-II on the inner autophagosomal surface (43).
REACTIVE OXYGEN SPECIES
AND AUTOPHAGY

ROS include a reactive group of molecules such as hydroxyl
radical, superoxide anion (O−

2 ), and hydrogen peroxide (H2O2)
(44). During normal physiological conditions, most intracellular
ROS are produced in the mitochondria during oxidative
phosphorylation due to the leaking of electrons from the
electron transport chain (45, 46). However, an increase in
intracellular ROS levels can promote mitochondrial
dysfunction by accumulating high ROS levels, oxidation of
lipids, proteins, and DNA damage (Table 1) (56, 57). The
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FIGURE 1 | The autophagy pathway. AMPK and ULK1 kinase complex initiates autophagy. mTOR inhibition promotes phagophore formation through class III PI3K
and Beclin 1 complex formation. Atg5-12 complex and LC3 are required to complete the autophagosome. After maturation, autophagosomes fuse with lysosomes
to form autolysosomes where cargo degradation occurs. UVRAG, RAB7A, and LAMP2 mediate autophagosome maturation and fusion with lysosomes. AMPK, 5'
adenosine monophosphate-activated protein kinase; ULK1, Unc-51 Like Autophagy Activating Kinase 1; mTOR, mammalian target of rapamycin; PI3K,
phosphoinositide 3-kinase; ATG, Autophagy related; LC3, Microtubule-associated protein 1A/1B-light chain 3; UVRAG, UV radiation resistance-associated gene
protein; RAB7A, Ras-related protein Rab-7a; LAMP2, lysosomal-associated membrane protein 2.
TABLE 1 | Role of different reactive oxygen species in cancer.

ROS Roles in Cancer References

1 Generic ROS • Activation of oncogenes.
• Activate oncogenic signals including Ras, Bcr-Abl, c-Myc, which hyperactivates cell proliferation.
• Inactivation of tumor suppressors, promoting angiogenesis, and mitochondrial dysfunction.
• Induction of Wnt/b-catenin pathway which increases metastatic potential.
• High expression of MMPs.
• Matrix metalloproteinases (MMPs) trigger epithelial-mesenchymal transition (EMT)
• MMPs inhibitor or ROS inhibitor may be useful in the reversal of EMT or the killing of cancer stem cells.
• Regulation of NF-kB pathways
• Contribution to drug resistance such as through high mutagenic rates

(47–49)

2 Hydrogen Peroxide
(H2O2)

• Promotes phosphoinositide 3 kinases (PI3Ks)/RAC-alpha serine/threonine-protein kinase (Akt) survival
pathway.

• Enhanced MAPK and ERK signaling pathway.
• Oxidative modification of PTEN
• Oncogenic stabilization of hypoxia-inducible factor (HIF)-1a; conversion to hydroxyl radical

(50; 51, 52)

3 Hydroxyl radical (•OH) • Initiates lipid peroxidation
• promotes DNA mutagenesis

(53, 54)

4 Hypochlorous acid
(HOCl)

• Induces mutations in mitochondrial DNA with age (54)

5 Superoxide anion (O−
2 ) • Conversion to H2O2, peroxynitrite

• Stimulates AMPK activity to induce metastasis.
• Oncogenic stabilization of HIF-1a

(51, 55)
Fro
ntiers in Oncology | www.
frontiersin.org March 2022 | V3
Ras, Rat sarcoma virus; Bcr-Abl, breakpoint cluster region protein -v-abl Abelson murine leukemia viral oncogene; c-Myc, Cellular myelocytomatosis oncogene; MAPK, Mitogen-activated
protein kinase; ERK, extracellular-signal-regulated kinase; PTEN, Phosphatase and Tensin Homolog deleted on Chromosome 10; DNA, deoxyribonucleic acid; H2O2, Hydrogen peroxide;
AMPK, 5' adenosine monophosphate-activated protein kinase; ROS, reactive oxygen species; NF-kB, Nuclear factor kappa B.
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selective removal of damaged mitochondria by autophagy is
called mitophagy. It is mediated by two signaling pathways,
namely, NIX/BNIP3L and PARKIN (PARK2)/phosphatase and
tensin homolog (PTEN)-induced putative kinase 1 (PINK1) (58–
61). Targeting mitochondria toward mitophagy requires
interaction between Nix/BNIP3L and GABARAP at the
autophagosome (41, 62). PARKIN/PINK1 help remove
dysfunctional mitochondria in response to ROS-induced
mitochondrial membrane depolarization (63). Furthermore,
the redox balance in a cell is maintained through the
antioxidant defense system consisting of glutathione peroxide
(GPx), catalase, glutathione reductase, glutathione S-transferase
(GST), superoxide dismutase (SOD), and glutathione (64).
Intracellular H2O2 is generated by SOD-catalyzed dismutation
from O−

2 formed within the mitochondria (46). Increased H2O2

levels were observed during tumorigenesis due to increased ROS
production, high SOD levels, and inactivation of H2O2-
scavenging enzymes (48). High H2O2 levels induce autophagic
cell death in glioma cells after treatment with the polycyclic
ammonium ion sanguinarine, which increases electron leakage
from mitochondria and induces NADPH oxidases (NOXs) (65).
NOXs, a membrane-bound enzyme complex, is another source
of extracellular ROS (49) and are abnormally upregulated in
cancer cells (66).

Studies have demonstrated that several oncogenes, including
K-RAS and c-MYC, induce intracellular ROS to promote cancer
cell proliferation (67, 68). K-RAS also promotes extracellular
ROS generation by increasing the activity of NOXs on the tumor
cell membrane (69). In this regard, a study reports the tumor-
promoting effect of autophagy in K-Ras [K-Ras(V12)]-induced
malignant cell transformation, where inhibiting ROS with
antioxidants reduced K-RasV12-induced induction of Atg5
protein and Atg7 protein, autophagy, and cancer growth (70).
However, another study reports that rapamycin, an mTOR
inhibitor, combined with (Hsp90) inhibitor IPI-504, causes
tumor regression by promoting mitochondrial damage,
oxidative stress, and autophagy in Kras/p53 mutant lung
cancer and Nf1-deficient RAS-driven tumors (71).

Following another mechanism of action, ROS can also
regulate autophagy through AMPK. AMPK induces autophagy
during hypoxia or nutrient starvation by inhibiting mammalian
target of rapamycin complex 1 (mTORC1 (72, 73). AMPK is
phosphorylated by AMP-activated protein kinase kinase
(AMPKK) following the accumulation of H2O2, which
promotes its activation and autophagy induction (74).
Inactivation of Atg4 protein increases autophagosomes and
ATM-mediated oxidation of AMPK that inhibits mTORC1 in
a H2O2-dependent manner (26, 75, 76). ROS can also mediate
the induction of autophagy genes, including Beclin-1 or
SQSTM1/p62, by regulating the activity of NF-kB in cancer
cells (77–79).

The redox regulation of the proto-oncogene Akt provides
another crucial point in the ROS-mediated regulation of
autophagy. A well-described Akt-activating mechanism is
PTEN oxidation (80, 81). In this regard, ROS production due
to the growth factor stimulation promotes PTEN inactivation
Frontiers in Oncology | www.frontiersin.org 4
by forming a disulfide bridge between a cysteine in the catalytic
site with a proximal cysteine residue. Consequently, Akt is
activated due to increased PtdIns(3,4,5)P3 levels (81). However,
disruption of mitochondrial membrane potential by an increase
in H2O2 levels inhibits Akt, an upstream activator of mTOR,
and induces autophagy (82; 83). This ROS-mediated signal
transduction mechanism may also have a critical physiological
role, as it may block catabolic pathways, like autophagy, in the
presence of growth factors and may also induce the process
of tumorigenesis.

Although ROS can promote autophagy induction, autophagy
can also modulate ROS production. It was observed that caspase
8 inhibition and subsequent activation of JNK1 led to Atg6-Atg7
protein-dependent cell death when apoptosis was impaired (84).
Moreover, caspase 8 inhibition promotes selective catalase
degradation via autophagy that results in increased lipid
peroxidation and autophagic cell death (85). Thus, it can be
hypothesized that autophagy-mediated removal of catalase
creates a self-sustaining loop, in which increased production of
H2O2 by mitochondria may promote aberrant activation of
autophagy, ultimately leading to autophagic cell death.
However, catalase degradation was not observed under
starvation conditions stimulating cytoprotective autophagy.

Furthermore, superoxides also modulate autophagy, as
starvation-induced autophagy, mitochondrial electron transfer
chain inhibitors, and the addition of exogenous H2O2 correlate
with increased superoxide production and reduced H2O2 levels.
Thus, overexpression of the SOD2 [manganese superoxide
dismutase (Mn-SOD)] scavenges the superoxides, inhibits
autophagy, and promotes H2O2 levels and starvation-induced
cell death. In contrast, increasing superoxide levels by using the
mitochondrial electron transfer chain inhibitors combined with
SOD inhibitor 2-methoxyestradiol (2-ME) promoted both
autophagy and cell death (86).

Thus, it can be concluded that autophagy and ROS-
generating agents work in an unprecedented complex manner,
as ROS-induced autophagy and vice versa can either be a
cytoprotective mechanism that reduces oxidative stress or a
self-destructing process promoting autophagic cell death
(Figure 2). A clearer understanding of this intricate crosstalk
between autophagy and ROS can help develop therapeutic
strategies and open several opportunities to target the disease
development process.
AUTOPHAGY AND REACTIVE
OXYGEN SPECIES IN CANCER:
A PROMOTER OR SUPPRESSOR

Autophagy usually acts as a survival pathway in normal and
cancer cells exposed to various stresses like hypoxia, nutrient
deprivation, or chemotherapeutics. These stress conditions also
promote ROS generation that could aid in autophagy-mediated
cell survival (25, 86). Indeed, ROS accumulation can activate
several transcription factors like p53, hypoxia-inducible factor-1
March 2022 | Volume 12 | Article 852424
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(HIF-1), nuclear factor (erythroid-derived 2)-like 2 (NRF2), and
forkhead box transcription factors (FOXO3), which can increase
the transcription of several proteins involved in autophagy (87).
The initial connection between autophagy and cancer was
established when studies demonstrated that Beclin-1 is mono-
allelically deleted in approximately 50% of breast, ovarian, and
prostate cancers (88, 89). Other studies revealed that mice
hemizygous for Beclin-1 show a high incidence of lymphoma,
liver, and lung cancer (90, 91).

Thus, it was believed that autophagy acts as a tumor
suppressor. It removes damaged mitochondria through
mitophagy and prevents ROS accumulation, therefore limiting
the tumor-promoting effect of ROS (92). Consequently,
autophagy inhibition promotes ROS production, mitochondrial
impairment, and DNA damage, all potentially pro-tumorigenic
during tumor initiation (6) but deleterious at later stages (75, 93).
Studies have shown that autophagy loss causes genomic
instability and aneuploidy (94, 95). Furthermore, autophagy
dysfunction can promote tumor cell-extrinsic effects, including
a pro-tumorigenic inflammatory microenvironment (25).
Frontiers in Oncology | www.frontiersin.org 5
ROS are also induced by several tumor-associated immune
cells in the tumor microenvironment (TME) (96) that may trigger
altered activation of macrophages and immunosuppression (97).
Macrophages are the first host cells to enter the TME to kill cancer
cells (98). However, tumor-associated macrophages (TAMs)
infiltrate into the tumors and differentiate into mature pro-
tumor macrophages (M1 and M2 macrophages) mediated by
cytokines in the TME (99–101). Although the pro-tumorigenic
role of M1 is context dependent based on tumor
microenvironmental cues (102, 103). Macrophages also show
phagocytotic activity toward damaged tumor cells (104).
However, macrophages are recruited through chemokines
during cancer initiation, amplifying an inflammatory response.
Macrophages also produce redoxosomes (exosomes containing
functional NOX complexes) in the TME, which generates
extracellular ROS and is incorporated into neighboring cells
through endocytosis (105). Thus, a supportive TME is essential
for tumorigenesis, wherein ROS plays a significant role in creating
immunosuppressive TME for cancer growth and metastasis.
Hence, it is plausible that autophagy inhibition may promote
FIGURE 2 | Relationship between ROS and autophagy. Increased ROS levels lead to oxidation of Atg4, which triggers autophagosome formation. ROS can regulate
autophagy through AMPK activation that in turn phosphorylates ULK1 complex and promotes autophagy induction. Furthermore, disruption of Beclin 1–Bcl2 complex
also induces autophagy. Any change in mitochondrial homeostasis promote ROS accumulation inducing mitophagy and removal of damaged mitochondria. Kelch-like
ECH-associated protein 1 (KEAP1) degradation by p62-mediated selective autophagy leads to Nrf2-regulated antioxidant production and reduction in ROS levels. ROS
can also inhibit the Akt/mTOR signaling cascade to induce autophagy.
March 2022 | Volume 12 | Article 852424
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pro-tumorigenic ROS, since dysregulated autophagy leads to
mitochondrial damage and high ROS levels, and oxidative stress,
all potentially pro-tumorigenic.

Several studies have demonstrated that dysregulated autophagy
due to the deletion of proteins such as Atg16L1, Beclin-1, or LC-
3B promotes the accumulation of damaged mitochondria and
mitochondrial ROS. It also promotes inflammation linked to
increased levels of IL-1b and IL-18 (106–109). ROS can also be
induced by IL-1, whose high expression has been associated with a
poor cancer prognosis (110). Moreover, increased ROS levels also
activate pro-inflammatory factors such as the pyrin domain-
containing 3 (NLRP3) inflammasome (109). Inflammation aids
in cancer initiation and survival through vascularization and
stimulating the TME through the IL-1 and IL-18 pathway.
Inflammatory cells further produce ROS or reactive nitrogen
species (RNS) via iNOS, xanthine oxidase (XO), nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase, and
myeloperoxidase (MPO). These oxidant-generating enzymes
may promote damage to DNA damage. (111). Autophagy also
plays a crucial role in inflammation by regulating the homeostasis,
development, and survival of inflammatory cells (112).
Inflammatory cells also release cytokines, activating NF-kB. NF-
kB can help generate excess ROS or RNS by stimulating COX2,
lipoxygenase (LOX), and inducible nitric oxide synthase (iNOS),
that in turn may stimulate several oncogenes such as c-Jun and c-
Fos and initiate tumorigenesis (113).

Another major regulator of both autophagy and ROS is the
tumor suppressor p53 that plays a contrasting role in autophagy
based on its subcellular localization (114). Nuclear p53 is
suggested to activate autophagy through several transcriptional
mechanisms. Many autophagy genes are said to be direct
interacting partners of p53, and that autophagy helps in p53-
dependent apoptosis and cancer suppression (115). In the nucleus,
p53 activates the transcription of pro-autophagic molecules such
as AMPK, damage-regulated autophagy modulator (DRAM),
death-associated protein kinase 1 (DAPK-1), pro-apoptotic Bcl-2
proteins, sestrin 2, and Tuberous Sclerosis Complex 2 (TSC2)
(116–120). However, cytoplasmic p53 inhibits autophagy,
primarily through interactions with autophagic proteins (114).
Cytoplasmic p53 mediates mitochondrial outer membrane
permeabilization, promoting apoptosis and inhibiting autophagy
(121, 122). Although the mechanism of cytoplasmic p53-mediated
autophagy inhibition is not well elucidated, it was observed that
cytoplasmic p53 inhibits AMPK and activates mTOR, leading to
autophagy suppression (123).

p53 also can regulate autophagy by modulating ROS levels.
During oxidative stress, basal p53 induces several antioxidants
such as GPx1, MnSOD, ALDH4, and TPP53INP1 to remove
oxidative stress (124–127). Additionally, p53 also exerts
antioxidant effects by upregulating the expression of several p53
target genes in response to DNA damage and oxidative stress. This
leads to inhibition of mTORC1 activity and autophagy induction.
Sestrin1 and sestrin2 are the links between p53 activation and
mTORC1 activity (119). Sestrins also regulate ROS (128) and
inhibit mTORC1 activity by inducing the expression of the pro-
autophagic AMPK, TSC1, and TSC2 (119).
Frontiers in Oncology | www.frontiersin.org 6
However, p53 can also induce ROS. A study observed that
silibinin, an active constituent extracted from Silybummarianum
(milk thistle), induced ROS-mediated autophagy and apoptosis
in HeLa cells (129). Furthermore, another study by the same
group demonstrated that silibinin promotes p53-mediated ROS
in HeLa cells. The study also observed that p53 inhibition
decreased ROS generation and reversed silibinin’s growth-
inhibitory effect. Moreover, silibinin was not able to induce
ROS in the epithelial carcinoma cells (A431), as they lack p53
activity (p53His273mutation) (130). Another study reports that
silibinin may upregulate p53-mediated autophagy by inhibiting
MAPK and PI3K/Akt pathways and activating ROS/p38 and
JNK pathways (131). Furthermore, upregulation in PI3K and
AKT or downregulation in PTEN activates mTOR and inhibits
autophagy. Thus, these oncogenic alterations suggest the
importance of autophagy suppression during tumor initiation
(132, 133).

Other studies also demonstrated that any defect in the
autophagic machinery promotes tumor initiation, including
liver and breast (114, 134). Tang etal. (114) demonstrated that
low expression of Beclin-1 suggested poor prognosis in Her2,
basal-like, and p53-mutant breast cancer. Autophagy also acts as
a tumor suppressor through its role in cellular senescence, where
cells undergo growth arrest (135). Kang etal. (136) demonstrated
that GATA Binding Protein 4 (GATA4), a transcription factor
regulating senescence, is degraded by p62-selective autophagy.
Autophagic adapters, p62/SQSTM1, act as cargo receptors for
autophagic degradation of ubiquitinated targets (137). p62 is
upregulated under various stresses, including ROS, where ROS-
induced p62 gene expression is mediated by NRF2. Furthermore,
p62 protein activates NRF2 by interacting with the Nrf2-binding
site on Keap1, a component of Cullin 3 (CUL3)-based E3
ubiquitin ligase for Nrf2, resulting in stabilization of Nrf2 and
transcriptional activation of its target genes (138, 139). Another
major autophagy regulator, Atg5 protein, also plays a dual role in
the regulation of autophagy and apoptosis. Studies have
indicated that overexpression of Atg5 protein can sensitize
tumor cells to chemotherapy. In contrast, silencing the ATG5
gene with short interfering RNA made tumor cells partially
resistant to chemotherapy. Atg5 protein is cleaved by calpains,
a family of Ca2+-dependent cysteine proteases, producing an
amino-terminal cleavage product. Calpain induction and
subsequent Atg5 protein cleavage appear to be universal
phenomena in apoptotic cells (140). Similarly, the Atg12
protein also has a dual function, participating in both
autophagy and apoptosis, and is necessary for caspase
activation in response to a range of apoptotic stress inducers.
Non-conjugated Atg12 protein can bind to and inhibit Mcl-1
and Bcl-2 by a BH3-like motif, inducing mitochondria-
dependent apoptosis (141). Knockout of ATG12 gene prevents
Bax activation and cytochrome c in apoptotic cells.

Although autophagy functions as a tumor suppressor during
the initiation of tumorigenesis (6), other studies have revealed
that autophagy can also act as a tumor promoter (132; 142).
Furthermore, autophagy can also promote resistance to many
anticancer therapies (27). The pro-survival role of autophagy can
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be seen during stress conditions, including hypoxia and nutrient
deprivation. Autophagy rapidly degrades unfolded proteins
during stress and provides the substrate for ATP production
(143, 144). Thus, autophagy is generally upregulated in hypoxic
regions of a tumor and promotes cell survival (25).

During later stages of tumor initiation, autophagy is required
for cell transformation by the RAS oncogene to promote cell
tolerance to stress A high basal level of autophagy is observed in
RAS-mutated cancers, including lung, colon, and pancreatic
(145, 146). Furthermore, mutations in the RAS genes promote
uncontrollable cell proliferation and apoptosis inhibition (147,
148). Herein, autophagy promotes cancer cell survival by
providing nutrients during starvation or other stress conditions
(149). Consequently, autophagy inhibition increases the
accumulation of damaged mitochondria and promotes cell
death (150). Thus, tumor cells utilize autophagy to survive
metabolic stress, and autophagy mitigates cellular damage
(151). Autophagy inhibition leads to slower tumor growth and
increased sensitivity to cancer treatments. This has led
researchers to assess the efficacy of autophagy inhibitors
combined with chemotherapy to increase therapeutic responses
in cancers.

Consistently, autophagy inhibition reduced malignant
transformation and proliferation of mouse embryonic
fibroblasts (MEFs) transformed with Harvey Rat Sarcoma
Virus (HRAS) and MDA-MB-231 breast cancer cells
presenting with KRAS expression (152). Other studies have
shown that model systems such as immortalized baby mouse
k idney ( iBMK) , MCF-10A, and pancrea t i c ducta l
adenocarcinoma (PDAC) cell lines harboring ectopic
expression of the oncogenic KRAS has high basal autophagy
levels. However, inhibiting autophagy by deleting the gene ATG5
or ATG7 prevented RAS-mediated cancer cell proliferation (145;
70, 153). It can be stated that mitochondrial respiration is
required for RAS-induced tumorigenesis, and active autophagy
maintains cellular homeostasis (154). Thus, RAS-mediated
cancers are addicted to autophagy for survival, and
dysregulated autophagy in these cancer types is proportional to
decreased cancer cell survival, accumulation of damaged
mitochondria, and oxidative stress that may ultimately
promote cell death (155; 25). Furthermore, p62/SQSTM1
deficiency also reduces tumorigenicity and increases ROS levels
following RAS activation (145, 156, 157). Another study also
states that autophagy inhibition by FIP200 (FAK family-
interacting protein of 200 kDa) deletion suppressed the breast
cancer initiation in vivo driven by the polyoma virus middle T
(PyMT) oncogene. The study demonstrated that FIP200 ablation
promoted accumulation of p62/SQSTM1, ubiquitinated protein
aggregates, and deficient LC3 conversion with an increased
number of abnormal mitochondria confirming the pro-
tumorigenic role of autophagy (158). Interestingly, FIP200
deletion did not affect apoptosis but significantly reduced the
proliferation of breast cancer cells or Ras-transformed MEFs.

Taken together, these studies confirm the complex and
paradoxical role of autophagy and ROS in cancer initiation
and progression (Figure 3). However, this dual role also
Frontiers in Oncology | www.frontiersin.org 7
provides several therapeutic windows that could be exploited
to develop targeted anticancer therapies.
ROLE OF AUTOPHAGY AND REACTIVE
OXYGEN SPECIES IN EPITHELIAL TO
MESENCHYMAL TRANSITION AND
CANCER METASTASIS

Metastasis is a complex mechanism in which cancer cells
undergo epithelial to mesenchymal transition (EMT) and
spread from the tissue of origin to distant organs. It is the
main reason behind high cancer mortality (159–161). EMT
promotes contact inhibition in cancer cells, leading to invasive
tumor epithelial phenotype (162). EMT can be regulated by
several mechanisms, including epigenetics, transcriptional
control, miRNAs, protein stability, alternative splicing, ROS,
and autophagy (163, 164).

A study by Avivar-Valderas etal. (165) observed that in
mammary tumor cells, autophagy was induced due to matrix
detachment or integrin blockade in response to ROS-dependent
upregulation of protein kinase R-like ER kinase (PERK1).
Consistently, autophagy or PERK inhibition during matrix
detachment or integrin signaling blockade induced cell death
and reduced clonogenic recovery following detachment,
highlighting the role of PERK-induced autophagy in mammary
tumor cell survival during matrix detachment (165, 166).
Furthermore, hepatocellular carcinoma and melanoma cells
also require autophagy to survive following matrix detachment,
leading to increased lung colonization during metastasis (167–
169). Moreover, high ROS levels induced by matrix detachment
may further promote autophagy activation through direct
activation of Atg4 protein (26, 170).

One of the major contributors of EMT is transforming growth
factor-beta 1 (TGF-b1) (171). Exogenous TGF-b1 regulates
urokinase-type plasminogen activator (uPA) and Matrix
metalloproteinase 9 (MMP9) to promote cell migration and
invasion by activating NF-kB via the Rac1-NOXs-ROS-
dependent mec`ism (172). ROS also regulates EMT via the
non-canonical TGF-b1–TGF-b-activated kinase 1 (TAK1)
pathway. TAK1 deficiency promotes integrin:Rac-induced
ROS, further accelerating the EMT process. Consistently, low
TAK1 expression was observed in invasive squamous cell
carcinoma (SCC) but not in benign SCCs (173). ROS-mediated
activation of Nrf2 also promotes Notch signaling and EMT
induction (174). ROS can also activate TGF-b1 in response to
ionizing radiation (175). Thus, these studies significantly
highlight the role of ROS in EMT induction. Moreover, it is
well characterized that cancer cells have a high metabolic rate.
Therefore, to fulfill the bioenergetic needs of the cancer cells, an
increase in ATP production and tricarboxylic acid (TCA) cycle is
required. In turn, ROS is accumulated due to increased oxidative
metabolism, disturbing the cellular homeostasis, dysregulating
autophagy, inducing EMT, and promoting cancer cell survival
and metastasis (6, 176, 177).
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Furthermore, self-aggregation of TGF-b1-induced
antiapoptotic factor (TIAF1) was observed in the cancer
stroma and peritumor capsules of solid tumors, which is
indicative of aggregation-dependent control of cancer
progression and metastasis (178).

Autophagy also helps tumor cells adapt to hypoxic conditions
before vascularization during in vivo tumor formation (179).
High autophagy levels were observed in the hypoxic regions of
the tumors. Autophagy can also be activated by ischemia to
promote cancer cell survival and growth (25, 94, 95). Moreover,
hypoxia can also induce ROS and stabilizes HIF-1a, the primary
regulator of oxygen homeostasis (180). HIF-1a induces
mitophagy via Bcl-2/adenovirus E1B 19-kDa-interacting
protein 3 (BNIP3), along with a constitutive expression of
Beclin-1 and Atg5 protein promotes cell survival during
prolonged hypoxia by preventing increased ROS levels (181).
BNIP3, a target gene for HIF-1a, induces autophagy by
disrupting the Beclin 1–Bcl2 interaction (182). Autophagy
Frontiers in Oncology | www.frontiersin.org 8
dysregulation due to BECLIN-1, ATG5 gene, or ATG7 gene
knockdown promotes hypoxia-induced cell death. Indeed,
BNIP3-induced autophagy is required to prevent aberrant ROS
levels during hypoxia and thus presents a survival mechanism
(183–185). Autophagy is also induced in a HIF-1a-independent
manner via AMPK and unfolded protein response (UPR) during
hypoxia (186, 187).

Starvation-induced autophagy can also induce EMT and is
required for HepG2 and BEL7402 HCC cell invasion in vitro.
Thus, knockdown of autophagy genes like ATG7 or ATG3 in these
cells suppressed EMT and invasion and decreased the expression
of Fibronectin 1 (FN1), TGF-b1, and activated SMAD family
member 3 (SMAD3) (188). Kim etal. (189) observed that another
autophagy regulator, Unc-51 Like Autophagy Activating Kinase 2
(ULK2), promotes EMT by downregulating E-cadherin and
increasing the invasiveness of lung cancer cells in vitro.
Increased autophagy also promotes mesenchymal stem-like
phenotype and invasion/migration of glioblastoma stem cell
FIGURE 3 | Role of autophagy and ROS in cancer promotion and suppression. Autophagy in cancer works in a context-dependent manner based on tumor type
and stage. It acts as a suppressor during tumor initiation but plays a protective role in established tumors. During tumor initiation, autophagy targets ROS-damaged
organelles, DNA, and protein toward degradation, leading to inhibition of tumorigenesis. Autophagy eliminates ROS-induced stress during tumor progression and
metastasis and provides much-needed nutrients to cells, including cancer cells. ROS is also induced in cancer cells during hypoxic conditions, activating autophagy
in stromal cells. These cells then provide high-energy nutrients for cancer cell survival.
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lines. Hence, autophagy dysregulation via ATG12 gene
knockdown or p62/SQSTM1 deficiency reduced invasion and
migration phenotypes in glioblastoma cells (190, 191).

Contrarily, another study argues that autophagy reduces
migration of glioblastoma tumor cells via SNAIL and SLUG
inhibition (192). Similarly, in hepatocytes, autophagy inhibition
via liver-specific knockout of ATG7 gene (Alb-Cre;Atg7fl/fl)
promoted the expression of vimentin and SNAIL. The study
further reports that autophagy degraded Snail in a p62/SQSTM1-
dependent manner. Moreover, treating wild-type MMH (murine
hepatocytes) with TGF-b1 suppressed autophagy, whereas
starvation-induced autophagy inhibited TGF-b1-mediated
EMT (193).

Low basal autophagy levels also correlate with an increased
propensity for migration and invasion in Skov-3 ovarian cancer
cells compared to cells with high basal autophagy. Furthermore,
a decrease in migration, invasion, and expression of the
mesenchymal markers was observed due to starvation-induced
autophagy, which was reversed following siRNA-mediated
knockdown of ATG7 gene. Moreover, EMT transition in these
cells was regulated via increased ROS and heme oxygenase 1
(HMOX1), highlighting a role of autophagy in the ROS–
HMOX1–EMT signaling axis (194). Similarly, autophagy can
also inhibit EMT by degrading SNAIL and TWIST, two major
mesenchymal markers that promote the invasion phenotype in
cancer cells (195). Apart from TGF-b1, EMT is also induced by
IL-1, IL-6 that regulate SNAIL or TWIST. ROS also induces HIF-
1a and lysyl oxidase (LOX), decreasing E-Cadherin levels and
activating EMT and cancer cell migration. Thus, it is plausible
that autophagy may also be detrimental to EMT by inhibiting
inflammation and removing ROS (196).

The autophagy receptor p62/SQSTM1 stabilizes the
transcription factor TWIST and induces EMT (197, 198).
Autophagy inhibi t ion a lso promotes p62/SQSTM1
accumulation and contributes to tumorigenesis. Autophagy
loss promoted the expression of TWIST in a p62-dependent
manner, where it directly binds to TWIST and prevents its
proteasomal degradation, promoting EMT and metastasis in
vivo (197). Another study also demonstrated that accumulation
of p62/SQSTM1 stabilizes TWIST and activates TGF-b1–SMAD
signaling, further promoting EMT-associated junction
remodeling (198).

It is evident that a complex link exists between autophagy,
ROS, and EMT (Figure 4). Thus, to design better treatment
modalities, extensive knowledge of the interlinked cellular events
would be necessary to regulate cellular homeostasis.
ROLE OF AUTOPHAGY AND REACTIVE
OXYGEN SPECIES IN CANCER THERAPY

For the past two decades, autophagy has been an attractive target
for researchers to develop better anticancer therapies. Several
cancer drugs either induce cytoprotective autophagy or promote
autophagic cell death or autophagy-mediated apoptosis in cancer
cells. Indeed, the cytoprotective role of autophagy was observed
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against temozolomide (199), tamoxifen (200), the histone
deacetylase inhibitor SAHA (201), cyclophosphamide (27),
irradiation (202), imatinib mesylate (203), and cisplatin (204).
Thus, autophagy inhibitors such as hydroxychloroquine were
used combined with standard chemotherapeutics in clinical trials
to increase the therapeutic potential of the drugs (205). However,
it should be noted that the stage at which autophagy is inhibited
may alter drug sensitivity and plays a critical role in deciding the
fate of cancer cells.

Certain anticancer treatments also promote ROS-induced
autophagy that can promote drug resistance. In this case, using
autophagy inhibitors with the chemotherapy agents may help
restore the sensitivity to the treatment. Moreover, the type and
dosage of drugs used, along with the cancer genotype, are other
factors that may decide the outcome of autophagy activation.
Consistently, Beclin-1-dependent protective autophagy was
induced when pancreatic cancer cells were exposed to
sorafenib, a pan-kinase inhibitor combined with HDACI, a
histone deacetylase inhibitor. However, Bcl-2 knockdown or
inhibition conditioned Beclin 1-dependent autophagy to
promote apoptosis into a toxic pathway promoting intrinsic
apoptosis (206). Another study demonstrated that ROS-
mediated activation of c-Jun N-terminal kinase (JNK) induced
cytoprotective autophagy when human rhabdomyosarcoma
(Rh30 and RD) cells were treated with ciclopirox olamine
(CPX). However, inhibiting autophagy via chloroquine (CQ)
promoted CPX-induced cell death (207).

Hahm et al. (208) reported that honokiol, derived from the
bark of Magnolia officinalis , induced ROS-induced
cytoprotective autophagy and promoted drug resistance in
prostate cancer. However, inhibiting autophagy via 3-
methyladenine (3-MA) or ATG5 gene siRNA sensitized cancer
cells to apoptosis (208). Moreover, exposing breast and
glioblastoma cancer cells to mitoquinone and quercetin,
respectively, also promoted cytoprotective autophagy (209,
210). Hence, it can be hypothesized that any changes in the
mitochondrial homeostasis would induce ROS and autophagy,
which may lead to cell survival by autophagy-mediated
degradation of damaged mitochondria. Therefore, autophagy
inhibitors or siRNA-mediated silencing of ATG genes can turn
protective ROS deleterious to cancer cells and promote apoptosis.

Another study showed that using 3-bromopyruvate (3-BrPA),
a hexokinase II inhibitor, induced autophagy in breast cancer
cells (MDA-MB-231435 and MDA-MB-435). However, ROS-
mediated cell death was observed when 3-BrPA was used in
combination with chloroquine, an autophagy inhibitor. The
authors also concluded that autophagy induction was not
dependent on ROS accumulation (211). Similar results were
observed when A549 lung cancer cells were exposed to
artemisinin, an antimalarial drug. Treatment with artemisinin
induced autophagy that was attenuated by chloroquine.
Autophagy inhibition promoted the accumulation of damaged
mitochondria and ROS generation, resulting in apoptosis.
Furthermore, apoptosis was ROS-dependent, as using a ROS
scavenger N-acetyl-cysteine (NAC) rescued A549 cells from
apoptosis via caspase-3 inhibition (212).
March 2022 | Volume 12 | Article 852424

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hasan et al. Autophagy and ROS in Cancer
However, autophagy-induced apoptosis has also been reported.
Carnosol, a polyphenol, inhibited the cell viability inMDA-MB-231
breast cancer cells. The study reported that carnosol caused DNA
and mitochondrial damage and promoted ROS-dependent early
autophagy and late apoptosis (213). Thus, this could be another
mechanism of action that a drug could follow to induce cancer cell
death. Some chemotherapy agents like 2-methoxyestradiol (2-ME)
and arsenic trioxide (As2O3) also promote oxidative stress-
mediated autophagic cell death (214). Nevertheless, ROS is
essential for As2O3-mediated autophagic cell death in glioma cells
(215). 2-ME also upregulates ROS levels by inhibiting complex I of
themitochondrial electron transport chain andmitochondrial SOD
(77, 216, 217). Furthermore, 2-ME, a ROS-generating agent,
induced autophagic cell death in a transformed cell line HEK293
and the cancer cell lines HeLa and U87 (77). However, both 2-ME
and As2O3 can induce autophagy and apoptosis (17, 215).

Autophagy-induced apoptosis was also observed in A375,
HT144, and Hs294T cells treated with the H1 histamine receptor
antagonist terfenadine, which may increase ROS depending on
culture condition (218). Similarly, in melanoma cancer cells (A375
Frontiers in Oncology | www.frontiersin.org 10
and BLM), bortezomib, a proteasome inhibitor, at least in part via
ROS-mitochondrial dysregulation-associated pathways (219).
Another study revealed that sasanquasaponin III (SQS III)
inhibited the viability of A375 cells by inducing apoptosis and
autophagy. The authors further observed that both, apoptosis as
well as autophagy induction was ROS dependent. (220). Moreover,
resveratrol and psoralidin promoted ROS-triggered autophagy
induction followed by apoptosis in colon and lung cancer cell
death, respectively (221, 222).

Other studies also highlight the role of autophagyandROS levels
in cancer treatment. It was shown that 2-deoxy-D-glucose (2DG),
when combined with cisplatin or staurosporine, promoted
apoptosis but promoted cytoprotective autophagy and decreased
ROS levels when combined with pyrimethamine. Moreover, 2DG
alone promoted protective autophagy, inhibited ROS levels, and
increased mitochondrial membrane potential in melanoma cells
(8863 and 501) (223, 224).

Thus, several treatment studies can be used to induce cancer
cell death. As cancer develops high resistance against apoptosis,
causing autophagic cell death could be an option. Moreover,
FIGURE 4 | Role of autophagy and ROS in the EMT process. Autophagy induces tumor invasiveness by promoting stem cell phenotype linked to hypoxia and TGF-
b. Matrix detachment leads to ROS-induced EMT transition and autophagy induction. Furthermore, p62/Sqstm1 autophagy cargo adapter interacts with Twist, an
EMT regulator, preventing its proteasomal degradation and promoting invasion.
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TABLE 2 | ROS-inducing or -inhibiting chemotherapeutic agents and their effect on autophagy.

Drug Cancer type Mechanism of action Reference

1 Arsenic trioxide Ovarian cancer cells
(HEY, OVCA429, and SKOV3)

Induced Beclin 1-independent autophagic pathway by modulating
SnoN/SkiL expression and altering TGFb signaling via ROS
generation

(225)

2 Artemisinin Different cancer cells Weakens the levels of
glutathione, elevates ROS levels, and Self-amplification of
oxidative stress
Induces cytoprotective autophagy

(212, 226)

3 Buthionine
sulfoximine

Phase I/II studies Inhibitor of GSH synthesis (227, 228)
Cancer cells
(Human gallbladder cancer (GBC-SD), human
cholangiocarcinoma (RBE) and osteosarcoma
cells (DLM8 and K7M3)

Depletes intracellular GSH; increased apoptosis may affect the
STAT3 pathway, induces oxidative stress and autophagy

(226, 229, 230)

4 b-Lapachone
(ARQ501)

Pancreatic cancers, squamous cell carcinoma
and glioma cells

Produces ROS by undergoing futile redox-cycles catalyzed
by NQO1
Induces autophagic cell death in glioma cells

(231–233)

5 Chloroquine Cancer cells (MCF-7, HT29, U373) Inhibition of autophagy; increased ROS generation and
subsequent cell death

(183)

6 Cisplatin Head and neck cancer patients
Bladder cancer cells

Induced ROS levels and DNA damage
Induces cytoprotective autophagy

(234, 235)

7 Curcumin Colon cancer cells (HCT116) Induced ROS production and autophagic cell death (236)
8 Daunorubicin T-lymphoblastic leukemia cells (CCRF-CEM and

MOLT-4), B-lymphoblastic leukemia cells (SUP-
B15) and Chronic myelogenous leukemia (K562
cells)

Increased expression of SOD2 and lower ROS production
Induces cytoprotective autophagy

(237, 238)

9 Doxorubicin
(Adriamycin)

Different cancers Cell death through multiple intracellular targets: ROS generation,
DNA adduct formation, topoisomerase II inhibition, histone
eviction, Ca2+, and iron hemostasis regulation, and ceramide
overproduction.
Inhibits autophagy to induce cancer cell death

(239, 240)

10 Diphenylene
iodonium

Pancreatic cancer
Colon cancer cells (HT-29), colon cancer cells
(HCT-116)
Macrophages

Jak/STAT pathway inhibited
dephosphorylation of AKT/ASK1 pathway and low ROS levels
promotes apoptosis
Inhibit ROS level
Inhibits autophagy in macrophages

(241–243)

11 Disulfiram Advanced non-small lung cancer carcinoma,
Metastatic melanoma cells (c81-46A, c81-61,
and c83-2C)
Lung cancer
Pancreatic, breast and colorectal cancer cells

Inhibitor of cytosolic SOD1
Induces cytoprotective autophagy in lung cancer
Induces autophagy-dependent apoptosis in pancreatic and breast
cancer cells
Induces autophagic cell death in colorectal cancer cells

(244–248)

12 Fullerene C60
(Nano-C60)

Normal and drug-resistant cancer cells MCF-7
and HeLa)

Induced autophagy and sensitizes chemotherapeutic agents to kill
drug-resistant cancer cells in a ROS-dependent and photo-
enhanced fashion

(249)

13 Gemcitabine Head and neck cancer,
pancreatic cancer
Triple-negative breast cancer cells (TNBC),
bladder cancer

Activate antioxidant agents, suppress Nox4, block ROS-related
signaling pathways
Induces cytoprotective autophagy in TNBC, pancreatic cancer,
and bladder cancer

(234, 250–253)

14 Idarubicin (IDR) Breast cancer, cardiac muscle cell (HL-1)
Leukemia (K562 cells)

Induces ROS, oxidative DNA damage, and apoptosis
Induces autophagy and promotes apoptosis in leukemia

(254–256)

15 Imexon Phase I/II studies
leukemia

Binds to thiol to disrupt GSH activity
elevate oxidative stress and stimulate apoptosis in cancer cells.

(257, 258)

16 Itraconazole Liver cancer, glioblastoma, colon cancer Increases ROS and activates apoptosis in liver cancer
Induces autophagic cell death in glioblastoma
Induces autophagy-mediated apoptosis in colon cancer

(259–261)

17 Mangafodipir Cancer cell line (CT26, Hepa1.6, and A549)/
Phase II studies in combination with
chemotherapy in liver cancer

Increased H2O2 levels, specifically in cancer cells.
SOD, catalase, and GSH reductase mimetic

(262)

18 Medroxyprogesterone Head and neck cancer
Glioblastoma

Induction of 15d-PGJ2-ligand of PPAR, increased ROS and
Induced apoptosis
Induces autophagy in C6 glioma cells when used in combination
with tibolone or temozolomide

(234, 263, 264)

19 Metformin Colorectal, Pancreatic cancer, Hepatocellular
carcinoma, preneoplastic JB6 Cl 41-5a cells

Increases ROS production
Induces autophagy to promote cell death in pancreatic,
hepatocellular carcinoma and preneoplastic cells

(265–268)

(Continued)
Fron
tiers in Oncology | www
.frontiersin.org
 March 2022 | Volume11
 12 | Article 852424

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hasan et al. Autophagy and ROS in Cancer
combining ROS and autophagy-inducing agents could also
promote cancer cell death. Other strategies include combining
apoptosis inducers with autophagy inhibitors in cancer cells
harboring protective autophagy (Table 2). Taken together,
choosing correct cancer treatment strategies is highly complex
and should be based on tumor phenotype and genotype.
CONCLUSION

Thus, it can be concluded that ROS and autophagy work in a tight
regulation with each other to maintain cellular homeostasis. They
can either help cancer cells adapt to severe stress, which may
otherwise be detrimental to cells, or induce cell death. This
paradoxical role of ROS and autophagy in cancer is mainly
dependent on the cancer types and their microenvironment.
Frontiers in Oncology | www.frontiersin.org 12
Therefore, it is imperative to decipher the crosslinked
mechanisms in tumorigenesis with respect to ROS and
autophagy so that autophagy modulators may be designed to
target cancer.

This review highlights the role of ROS and autophagy in cancer
survival and suppression mechanisms. The major mechanisms
include response to hypoxia, turnover of antioxidant enzymes,
oxidative damage-induced protein aggregation of regulatory
molecules like TGF-b1, p53, enhanced survival in RAS-mutated
cancers, EMT transition, and drug resistance. However, consistent
with the role of autophagy and ROS in cancer, they provide large
windows of opportunities to develop better treatment strategies
that may help fulfill the unmet needs of cancer patients.

A better understanding of the molecular and chemical
mechanisms of the redox regulation of autophagy is required.
There are still some unanswered questions like 1) How does
TABLE 2 | Continued

Drug Cancer type Mechanism of action Reference

20 Motexafin gadolinium
(gadolinium
texaphyrin)

Hematological malignancies Inducer of superoxide by futile redox cycling, an inhibitor of Trx,
induces apoptosis in lymphoma cells.

(269; 144)

21 OSU-03012
(celecoxib derivative)

Hepatocellular carcinoma Caused ROS accumulation and subsequent autophagic cell death (270)

22 Panitumumab (EGFR
antibody)

EGFR-expressing metastatic colorectal
carcinoma

ROS accumulation and autophagic cell
Death

(271)

23 Proton pump inhibitor
esomeprazole

Melanoma Induced ROS and protective autophagy (272)

24 Photodynamic
therapy (PDT)

Head and neck, brain, lung, bile duct,
esophagus, bladder, ovarian, skin, ophthalmic,
pancreatic, cervical, colorectal, and bladder
carcinoma

Photochemical generation of cytotoxic ROS through the light-
activation of a photosensitizer
accumulated in cancer cells or tumor vasculature
Induces cytoprotective autophagy

(273–277)

25 Proscillaridin A
(PSD-A)

Breast cancer, colorectal cancer ROS generation, Ca2+ Oscillation, inhibits STAT3 activation,
induces apoptosis and
Autophagy

(278)

26 Recombinant human
HMGB1

Glioblastoma
Pancreatic cancer

Activate MAPK and NF-kB, release cytokines, and induce NADPH
oxidase to produce ROS.
Induces cytoprotective autophagy in pancreatic cancer

(279–281)

27 Resveratrol Colon cancer cells Induced ROS and subsequent cytotoxic autophagy (222)
28 Ruthenium(II)

complexes
Cancer cells Induced ROS and subsequent protective autophagy along with

apoptosis
(282)

29 Suberoylanilide
hydroxamic acid
(Zolinza, Vorinostat)

Cutaneous T-cell lymphoma Induced ROS and autophagy, prosurvival (283, 284)

30 Sulforaphane Therapy-resistant pancreatic carcinoma cells Promoted mitochondria-derived ROS to initiate diverse cellular
responses, including protective autophagy

(285, 286)

31 Sulindac colon and lung cancer mitochondrial damage, elevate ROS production and induces
cytoprotective autophagy

(287, 288)

32 Tamoxifen Breast cancer cells (MCF-7) Induced ROS and subsequent protective autophagy (289)
33 Temozolomide Human glioblastoma cell lines (U87 MG,

GBM8401, and GBM-SKH)
Induced ROS/ERK-mediated autophagy, protected glioma cells
from apoptosis

(290)

34 Tetrathiomolybdate
(ATN-224)

Phase II studies in myeloma, melanoma,
prostate, and breast
carcinoma

Inhibitor of cytosolic SOD1
copper chelation via tetrathiomolybdate induces cytoprotective
autophagy in pancreatic cancer cells

(291–293)

35
Valproic acid Glioma cells Oxidative stress activated the ERK1/2 pathway, autophagic cell

death
(294)

36 Vitamin A Testis tumor Leydig cell lines Modulated antioxidant enzyme activities, induced protective
autophagy or apoptosis at different doses

(295)

38 2-Methoxyestradiol Phase II studies in different tumors,
Chondrosarcoma

Generates superoxide by inhibition of SOD
Induces autophagy in chondrosarcoma whose inhibition promotes
apoptosis

(296, 297)

39 7-formyl-10-
methylisoellipticine

Acute myeloid leukemia Increase mitochondrial ROS production and apoptosis induction (298)
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autophagy modulate the turnover of regulatory enzymes required
for maintaining redox potential? 2) How do autophagy and ROS
regulate the posttranslational modifications of specific tumor
suppressors? 3) How does excessive ROS impair autophagy and
dysregulate the cellular microenvironment to promote invasive
phenotype? Answer to these questions may help develop better
anticancer treatment options.
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