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Purpose. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used in cancer imaging to probe tumor vascular
properties. Compressed sensing (CS) theory makes it possible to recover MR images from randomly undersampled 𝑘-space data
using nonlinear recovery schemes. The purpose of this paper is to quantitatively evaluate common temporal sparsity-promoting
regularizers for CS DCE-MRI of the breast.Methods. We considered five ubiquitous temporal regularizers on 4.5x retrospectively
undersampled Cartesian in vivo breast DCE-MRI data: Fourier transform (FT), Haar wavelet transform (WT), total variation (TV),
second-order total generalized variation (TGV2𝛼), and nuclear norm (NN). We measured the signal-to-error ratio (SER) of the
reconstructed images, the error in tumor mean, and concordance correlation coefficients (CCCs) of the derived pharmacokinetic
parameters 𝐾trans (volume transfer constant) and V𝑒 (extravascular-extracellular volume fraction) across a population of random
sampling schemes. Results. NN produced the lowest image error (SER: 29.1), while TV/TGV2𝛼 produced the most accurate 𝐾trans

(CCC: 0.974/0.974) and V𝑒 (CCC: 0.916/0.917). WT produced the highest image error (SER: 21.8), while FT produced the least
accurate𝐾trans (CCC: 0.842) and Ve (CCC: 0.799). Conclusion. TV/TGV2𝛼 should be used as temporal constraints for CS DCE-MRI
of the breast.

1. Introduction

Dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI) involves the continuous acquisition of 𝑇1-
weightedMR images during and after the injection of a para-
magnetic contrast agent (CA). The CA increases the contrast
between different tissues by altering their inherent relaxation
rates. Across serial images each image voxel yields an inten-
sity time course that can be used to estimate physiological
parameters, such as the volume transfer constant, 𝐾trans,
and extravascular-extracellular volume fraction, Ve [1, 2].

Both high temporal and spatial resolutions are beneficial in
DCE-MRI; high temporal resolution is needed for quanti-
tative DCE-MRI analysis, while high spatial resolution aids
clinical reading. However, the requirement for repeated, high
signal-to-noise images limits simultaneous enhancement of
temporal and spatial resolutions by conventional data acqui-
sition methods.

For the acceleration of dynamic MR images, a common
strategy used to balance the trade-off between spatial and
temporal resolution is to subsample the data (also known as
“𝑘-space”) at each frame. Many successful algorithms have
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used this idea, such as keyhole [3], 𝑘-𝑡 FOCUSS (FOcal
Underdetermined System Solver) [4], 𝑘-𝑡 BLAST (Broad-use
Linear Acquisition Speed-up Technique), and 𝑘-𝑡 SENSE
(SENSitivity Encoding) [5]. However these methods suffer
the limitations such as low signal-to-noise ratio (SNR) and
aliasing artifacts for high sampling factors.

Compressed sensing (CS) [6, 7] is a newer strategy to
accelerate data acquisition in dynamic MRI. Using CS, it
is possible to accurately reconstruct an MR image from
less Fourier data than with traditional acceleration methods,
resulting in a further reduced data collection burden [8, 9].
According to CS theory, the reconstruction of dynamic MR
images can be modeled as a constrained reconstruction in
which the resulting image is chosen to have the sparsest
representation in some prior sparse transform while still
being consistent with the collected Fourier data. For dynamic
images, since most of the image is roughly constant in time,
the most significant redundancy (and hence sparsity) often
manifests in the temporal direction.

CS has great potential in cancer MRI [10] because many
protocols in cancer MRI are dynamic. Many applications of
the CS to dynamicMRI have been successfully demonstrated,
such as 𝑘-𝑡 SPARSE [11], 𝑘-𝑡 SLR (Sparse and Low Rank) [12],
and iGRASP (Golden-angle RAdial Sparse ParallelMRI) [13].
For example, Han et al. [14] demonstrated the enhancement
of spatiotemporal resolution of DCE-MRI in an animal
model with a CS-accelerated Cartesian fast low angle shot
(FLASH) sequence. Chen et al. [15] compared different forms
of temporal total variation terms in the reconstruction of
undersampled DCE-MRI data acquired in breast cancer
patients. Ji and Lang [16] applied a difference operator to the
temporal data frames to enhance the spatial signal sparsity
for CS reconstruction. Smith et al. [17, 18] showed the
expected variance in quantitative parameters for spatial TV
regularization across a population of randomly generated
sampling schemes. Although CS has been applied to breast
DCE-MRI, no one has quantitatively compared different
temporal sparsity models for breast DCE-MRI across a large
number of sampling patterns. Thus, the expected effects of
different temporal regularizers on the error in quantitative
DCE-MRI parameters are not known.

Before CS can be used clinically in such a critical area
of care as cancer imaging, its effect on the reliability and
accuracy must be understood.The aim of this paper partially
addresses this by quantitatively evaluating five common
temporal sparse regularizers for breast DCE-MRI:

(1) ℓ1-norm of the Fourier transform (FT)

(2) ℓ𝑙-norm of the Haar wavelet transform (WT)

(3) Total variation (TV),

(4) Second-order total generalized variation (TGV2𝛼)

(5) Nuclear norm (NN)

We hypothesize that one of these regularizers will pro-
duce more accurate reconstructed images than the others
and that one regularizer (not necessarily the same one) will
produce the most accurate quantitative parameters.

2. Materials and Methods

2.1. Data Collection. We applied all models retrospectively to
in vivo breast DCE-MRI data [19] collected under a protocol
approved by the institutional review board. The data were
acquired using a spoiled gradient-recalled echo (SPGRE)
sequence on a Philips (Best, Netherlands)Achieva 3T scanner
with TR = 4.33ms, TE = 2.12ms, and flip angle = 12∘. The
dimension of the data was 192 × 192 × 10 × 105, which
consisted of 192 readout points by 192 phase encodes across
10 slices repeated over 105 dynamics. The spatial resolution
was 1.33mm by 1.33mm by 5mm, and the field of view was
256mm by 256mm by 50mm. Further details about the
protocol can be found in [19].

The data that were acquired were fully sampled with a
Cartesian geometry and then retrospectively undersampled
according to a range of random sampling patterns. While
this was less realistic than prospective undersampling, it was
necessary because acquiring hundreds of different sampling
patterns prospectively would be impractical.

To narrow the focus of the paper, we looked only at
the slice that passed through the center of the tumor. For
this particular dataset, the center slice was the sixth slice.
Also, for all reconstructions, we cropped the image posterior
of the chest wall to improve sparsity. The beating heart
caused aliasing artifacts in the first-phase encode direction
(superior-inferior). The final cropped dimensions of our
test data were 192 × 128 in-plane by 105 dynamics. This
cropping procedure can be guided by the undersampled
data, as even on the aliased images the chest wall can be
demarcated.

We generated 200 distinct Cartesian sampling masks
by choosing 200 different random seeds before pattern
generation. The dimensions of the masks were 192 × 128 ×
105, matching the dimensions of the data. For each dynamic,
the low frequency region was fully sampled with a central
window width of 20 𝑘-space lines. Outside the central win-
dow, we randomly chose phase encodes such that each phase
encode was sampled roughly the same number of times, but
at random time points. The total undersampling factor of the
mask on average was 4.5 across all 200 masks. Here we chose
4.5 because of the limitations of the Cartesian undersampling
scheme. Higher undersampling factors can be achieved using
non-Cartesian schemes, such as radial and spiral, which
are not in the scope of this paper. The actual acceleration
delivered for a given seed varied because the exact number
of phase encodes chosen in a mask varied slightly due to
the pseudorandom nature of the pattern generation. Figure 1
shows an example sampling mask.

2.2. Image Reconstruction. We denote the reconstructed spa-
tiotemporal image slice as the matrix 𝑋 ∈ C𝑚𝑛×𝑑, where the
spatial dimensions are𝑚 × 𝑛 with 𝑑 temporal dynamics. The
dynamicmeasurements correspond to the samples in 𝑘-space
corrupted with noise: 𝐵 = 𝐴𝑋 + 𝜖, where 𝐴 = 𝑀F is the
measurement operator, F is a 2D spatial Fourier transform
on each temporal frame, 𝑀 is the sampling mask on each
temporal frame, and 𝜖 is additive complex white Gaussian
noise.
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Figure 1: An example sampling pattern for all dynamics (a) and a 2D sampling for one dynamic (b). The 2D mask on (b) is generated by
repeating one column of the mask on (a). For each dynamic, the central lines are fully sampled and the periphery is randomly sampled. The
total undersampling factor is around 4.5.

The reconstruction problem solved was

𝑋 = arg min
𝑋

1
2 ‖𝐴𝑋 − 𝐵‖

2
𝐹 + 𝛼𝑆 (𝑋) , (1)

where 𝐵 is the collected (undersampled) data, 𝛼 is a positive,
real parameter that balances between data consistency and
sparsity,𝐹 is Frobenius norm, and 𝑆 is one of the five temporal
sparsity-promoting regularizers. Minimizing 𝑆(𝑋) promotes
the sparsity of the outcome and minimizing ‖𝐴𝑋 − 𝐵‖2𝐹
enforces data consistency.

In this paper, all the sparse models are solved by the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) [20] for
its simplicity and efficiency. FISTA is an operator splitting
algorithm that aims to minimize the following problem:

𝑥 = arg min
𝑥∈C𝑛

𝑓 (𝑥) + 𝑔 (𝑥) , (2)

where 𝑓 is a smooth convex function with Lipschitz constant
𝐿𝑓 and 𝑔 is a convex function which may be nonsmooth.The
outline of FISTA is shown in Algorithm 1.

Here prox𝜏(𝑔)(𝑢) is the proximal map of a function 𝑔(𝑥)
at point 𝑥, which is defined as

prox𝜏 (𝑔) (𝑢) = arg min
𝑥

𝑔 (𝑢) + 12𝜏 ‖𝑢 − 𝑥‖
2
2 . (3)

And the projection operator is defined as follows:

𝑥 = project (𝑥, [𝑙, 𝑢]) =
{{{{
{{{{{

𝑥, if 𝑙 ≤ 𝑥 ≤ 𝑢;
𝑙, if 𝑥 < 𝑙;
𝑢, if 𝑥 > 𝑢.

(4)

The key step of FISTA is to find an efficient algorithm to
solve the proximal map subproblem. As in most compressed

input: 𝜏 = 1/𝐿𝑓, 𝑙, 𝑢, 𝑡1 = 1, 𝑥0 = 𝑟1
for 𝑘 = 1 to 𝐾 do
𝑥𝑔 = 𝑟𝑘 − 𝜏∇𝑓(𝑟𝑘)𝑥𝑘 = prox𝜏(𝑔)(𝑥𝑔)𝑥𝑘 = project(𝑥𝑘, [𝑙, 𝑢])
𝑡𝑘+1 = (1 + √1 + 4(𝑡𝑘)2)/2
𝑟𝑘+1 = 𝑥𝑘 + [(𝑡𝑘 − 1)/𝑡𝑘+1](𝑥𝑘 − 𝑥𝑘−1)

end for

Algorithm 1: Outline of FISTA (Fast Iterative Shrinkage-
Thresholding Algorithm).

sensing models, we use 𝑙1 norm as sparsity term, and the
proximal maps can be efficiently solved by soft thresholding.
For example, let 𝑔(𝑢) = ‖𝑢‖1 in (3). Now subproblem (3)
becomes

prox𝜏 (𝑔) (𝑢) = arg min
𝑢

‖𝑢‖1 + 12𝜏 ‖𝑢 − 𝑥‖
2
2 . (5)

And the solution of (5) is given by

𝑢 = T𝜏 (𝑥) , (6)

where the soft shrinkage operator T𝜏 : C𝑛 → C𝑛 is defined
as

T𝜏 (𝑢) = max (0, 𝑚 − 𝜏) exp (𝑖𝜑) , (7)

where 𝑚 = abs 𝑢, 𝜑 = arg 𝑢, and “max” is the maximum
operator that chooses the largest of two elements.

2.2.1. Regularizer 1: ℓ1-Norm of the Fourier Transform. Dy-
namic MRI often shows temporal redundancy (repeated



4 International Journal of Biomedical Imaging

features of the signal in time), so the 1D Fourier transform
applied along the temporal dimension can be used to sparsify
the signal. The more periodic the signal, the sparser the
representation in the Fourier domain. A nonperiodic, noisy
signal can still be compressed in the Fourier domain due
to the denoising effect of downsampling, although this is
a minor effect. For example, in cardiac cine imaging, the
image can be efficiently sparsified using a temporal Fourier
transform due to the periodic motion of the heart. In 𝑘-𝑡
SPARSE [11], a wavelet on the spatial domain and a Fourier
transform along the temporal direction was used to make the
image sparse. DenotingF𝑡 as 1D temporal Fourier transform,
we get the model

𝑋 = arg min
𝑋

1
2 ‖𝐴𝑋 − 𝐵‖

2
𝐹 + 𝛼 󵄩󵄩󵄩󵄩F𝑡𝑋󵄩󵄩󵄩󵄩1 . (8)

2.2.2. Regularizer 2: ℓ𝑙-Norm of the Haar Wavelet. Wavelets
are a family of sparsifying transforms commonly used in CS
reconstructions. In particular for MRI, Haar wavelets have
two features of interest. First, piecewise constant signals are
known to be sparse under the Haar wavelet transform. And
second the Haar wavelet in particular has a high mutual
incoherence [8] with the Fourier transform, the domain
of data collection for MRI. Based on the results of CS
theory, this should lead to a better reconstruction for a
given undersampling factor. For example, 𝑘-𝑡 SPARSE [11]
has successfully employed spatial wavelets in cardiac imaging.
Herewe define𝑊𝑡 as the 1D temporalHaarwavelet transform,
yielding the model

𝑋 = arg min
𝑋

1
2 ‖𝐴𝑋 − 𝐵‖

2
𝐹 + 𝛼 󵄩󵄩󵄩󵄩𝑊𝑡𝑋󵄩󵄩󵄩󵄩1 . (9)

2.2.3. Regularizer 3: Total Variation. In the first application of
compressed sensing in MRI, Lustig et al. [8] used total varia-
tion (TV) as the sparsifying transform in the model. The TV
operator considers an equally weighted combination of finite
differences along space and time, essentially representing the
image in terms of its gradient. TV is maximally incoherent
with the Fourier domain and as such should yield on average
a more accurate reconstruction for a given undersampling
factor than any other sparse basis.

However, real MR images are not piecewise constant, and
constraining the gradient of these images produces “staircase”
artifacts. Staircase artifacts manifest when higher-order vari-
ations in the signal intensity are reduced to piecewise constant
regions.This occurs because the smallest gradient coefficients
are being reduced to zero in the reconstruction in order to
sparsify the image under the gradient transform.

TV or finite difference based strategies, which were origi-
nally designed for image denoising [21], have recently gained
wide interest in manyMRI applications beyond denoising. In
𝑘-𝑡 SLR, a three-dimensional total variation transform was
used which is defined as follows:

‖⋅‖TV = √(∇𝑥⋅)2 + (∇𝑦⋅)2 + (∇𝑡⋅)2, (10)

where∇𝑥,∇𝑦, and∇𝑡 are finite difference operators along 𝑥, 𝑦,
and 𝑡. Several works have successfully used temporal gradient

only in CS models, such as DLTG [22] and iGRASP [13]. In
this paper, we focus on the temporal gradient and evaluate the
performance of the following model:

𝑋 = arg min
𝑋

1
2 ‖𝐴𝑋 − 𝐵‖

2
𝐹 + 𝛼 󵄩󵄩󵄩󵄩∇𝑡𝑋󵄩󵄩󵄩󵄩1 . (11)

2.2.4. Regularizer 4: Total Generalized Variation. As men-
tioned above, finite difference operators are well suited to
sparsify MR images, but the first-order finite difference
can introduce staircase artifacts. Total generalized variation
(TGV) [23] was introduced in part to address this issue.
Under the TGV, linear intensity changes in the image are pre-
served because theTGVoperates on second-order andhigher
derivatives.

The discrete second-order TGV is defined as follows:

TGV2𝛼 (𝑥) = arg min
V

𝛼1 ‖∇𝑥 − V‖1 + 𝛼0 ‖E (V)‖1 . (12)

Here the minimum is taken over all discrete complex vector
fields V on 𝑉 ∈ C2𝑚𝑛, ∇V = (∇𝑥V1, ∇𝑦V2) denotes the first-
order finite difference, and E(V) = (∇V + ∇V𝑇)/2 denotes
the symmetrized derivative. Here V1 ∈ C𝑚𝑛 and V2 ∈ C𝑚𝑛

are the components of V along the first and second direction,
respectively. Such a definition provides a way of balancing the
first and second derivative of the function.

As can be seen from the definition, TGV2𝛼 involves higher-
order derivatives to measure image features. TGV2𝛼 gen-
eralizes TV and is more suitable to model intensity variations
in smooth regions of the image. Reconstruction with TGV2𝛼
is capable of preserving sharp edges without causing staircase
artifacts.

Like the case in total variation, we denote TGV2𝛼 in
temporal dimension as TGV2𝛼 and the model becomes

𝑋 = arg min
𝑋

1
2𝜆 ‖𝐴𝑋 − 𝐵‖

2
𝐹 + TGV2𝛼 (𝑋) , (13)

where ∇V = ∇𝑡V with V ∈ 𝑉 ∈ C𝑚𝑛×𝑑.
2.2.5. Regularizer 5: Nuclear Norm. Low-rank matrix com-
pletion has been applied to dynamic MRI by considering
each temporal frame as a column of a spatiotemporal matrix,
where the spatiotemporal correlations produce a low-rank
matrix. The combination of compressed sensing and low-
rank matrix completion [24] has produced further increases
in imaging speed.

In dynamicMRI, previous work on this combination pro-
posed a solution that is both low rank and sparse. In 𝑘-𝑡 SLR
[12], both nuclear norm and total variation transform were
used to demonstrate significant improvement in performance
of phantoms and in vivo cardiac perfusionMRI data. Nuclear
norm (NN) is denoted by ‖𝑋‖∗, which is the sum of singular
values of 𝑋. Here we use only temporal constraints, so the
formulation is as follows:

𝑋 = arg min
𝑋

1
2 ‖𝐴𝑋 − 𝐵‖

2
𝐹 + 𝛼 ‖𝑋‖∗ . (14)
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Table 1: FISTA parameters.

Regularizer 𝛼 Iter 𝜎 𝜏 𝜆
FT 0.059 35 — — —
WT 0.008 60 — — —
TV 0.5 100 0.2 0.2 0.5
TGV2𝛼 0.5 100 0.2 0.2 0.5
NN 0.3 40 — — —

2.2.6. Parameter Selection. The choice of parameters for each
sparse model was crucial, as comparisons were only possible
if each model were optimized. In the experiments, the data
were rescaled to [0, 1] before reconstruction. This rescaling
simplified the tuning process. Table 1 shows the parameters
used for all sparse models. Here 𝛼 was the weight for 𝑆(𝑥),
“iter” was the number of iterations for the main function, 𝜎,
𝜏, and 𝜆 were the first-order step size, second-order step size,
and weight of fidelity term, respectively, in TV and TGV2𝛼
based models. We started with very low regularization (𝛼 =
10−5) and then increased the parameters step by step until
artifacts were visually eliminated from the resulting image.
In each iteration, we tracked the relative norm of the image
difference between two iterations. Once it went lower than a
chosen threshold (10−3), we terminated the reconstruction.

2.3. Pharmacokinetic Modeling. One of the most commonly
used pharmacokinetic models is the standard Tofts-Kety
model [25]. This model provides information about the
influx forward volume transfer constant from plasma into
the extravascular-extracellular space (EES) and fractional
volume of EES per unit of tissue. The standard Tofts-Kety
model, with both spatial and temporal dependencies made
explicit, is

𝐶𝑇 (x, 𝑡)
= 𝐾trans (x) ∫𝑡

0
𝐶𝑃 (𝑠) exp [𝐾trans (x) (𝑠 − 𝑡)

V𝑒 (x) ] 𝑑𝑠, (15)

where 𝐶𝑇 is the concentration of CA in the tissue and 𝐶𝑃
is the concentration of CA delivered by the blood plasma.
In our experiments, this model was fit using nonlinear least
squares [18] for every voxel in the reconstructed data that
enhanced by a factor of two ormore relative to the precontrast
baselines, calculated by dividing the mean signal in the first
three dynamics to the mean signal in the last three dynamics.

2.4. Assessments. Weused twomethods to quantitatively eva-
luate the temporal transforms. For consistency with previous
paper [12], the first assessment we used was the image-based
signal-to-error ratio (SER), defined as

SER = −20 log10
󵄩󵄩󵄩󵄩󵄩𝑋 − 𝑋FS

󵄩󵄩󵄩󵄩󵄩𝐹󵄩󵄩󵄩󵄩𝑋FS
󵄩󵄩󵄩󵄩𝐹 , (16)

where𝑋FS is the image reconstructed from the original, fully
sampled data.

The second assessment was the concordance correlation
coefficients (CCCs) of the parametric maps 𝐾trans and V𝑒,

Table 2: Mean SER and CCC across all sampling patterns.

Constraints SER (dB) CCC {𝐾trans} CCC {V𝑒}
Zero-filled 15.1 0.694 0.636
FT 26.4 0.763 0.575
WT 21.8 0.878 0.733
TV 27.7 0.974 0.916
TGV 27.8 0.974 0.917
NN 29.1 0.842 0.799

which iswidely used in the quantitative analysis ofDCE-MRI.
In statistics, the CCC measures the agreement between two
variables and is given by

CCC = 2𝜎FS𝜎CS
𝜎2FS + 𝜎2CS + (𝜇FS − 𝜇CS)2

, (17)

where 𝜇FS and 𝜇CS are the means of 𝐾trans or V𝑒 for fully
sampled and compressed sensing (CS) reconstructed images,
respectively, and𝜎FS and𝜎CS are the corresponding variances.

To visually evaluate the accuracy in determining time
profiles, we computed the difference in signal intensity curves
with respect to the fully sampled data in specific regions
within the tumor. For consistently plotting these curves, we
first manually generated a mask for the tumor and applied
the mask to all reconstructions. Additional visual assessment
of parameter agreement was conducted using Bland-Altman
plots of the average of the undersampled parameters and the
fully sampled parameters relative to the fully sampled para-
meter values.

2.5. Implementation. The CS reconstruction was written
in MATLAB, and the DCE analysis software used was
DCEMRI.jl [26] and was written in Julia. All experiments
were run on a dual Xeon E5-2665 2.40GHz workstation with
20GB of RAM with MATLAB 2015b (Mathworks, Natick,
MA) and Julia 0.4.3. The full code to generate the results and
figures here has been provided as open source [27].

3. Results and Discussions

3.1. Image Quality. We first evaluated the performance of the
five constraints on image error. The first column of Table 2
represents the signal-to-error ratio (SER) comparisons over
200 runs. We found that NN produced the highest SER (29.1,
higher is better) among the five constraints tested while WT
produced the lowest (21.8). FT (26.4) came in between WT
and TV. TV and TGV2𝛼 produced similar SERs with TGV2𝛼
(27.8) being slightly higher than TV (27.7).

Figure 2(a) shows the 105th dynamic of the reconstruc-
tion for each of the five constraints using the first randomly
generatedmask.The red arrows indicate background artifacts
that remained in the TGV2𝛼 and TV cases, where NN greatly
reduced those artifacts. The background artifacts were also
suppressed in the WT and FT reconstructions, but WT and
FT performed the worst in reconstructing the tumor.

Figure 2(b) shows the first dynamic of the reconstructions
using the five constraints for the first sampling pattern
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Figure 2: Reconstruction using the first mask for all five temporal constraints. (a)The 105th dynamic; (b) the first dynamic. In each subfigure,
the first row shows the fully sampled, zero-filled,WT, FT, TV, TGV2𝛼, andNN, respectively, and the second row is the corresponding difference
images scaled up by a factor of 10. The aliasing artifacts are greatly reduced in the areas indicated by the arrows by TV, TGV, and NN.

out of the 200 tested patterns. We can see from the red
arrows that TV and TGV2𝛼 performed visually the best in the
reconstruction of tumor area, which is where the majority of
voxels used in the 𝐾trans and V𝑒 calculations were located. FT
performed visually the worst in the tumor area.

Figure 3 shows the boxplot of SER using 200 different
sampling patterns for all five regularizers. We can observe
from the boxplot that, for each regularizer, the variance in
SER was small relative to the mean and all of the results are
statistically significantly different except for TV and TGV2𝛼.
Also it can be seen that NN produced the highest mean SER
(29.1), and WT produced the lowest mean SER (21.8).

3.2. Parameter Accuracy. The second and third columns
of Table 2 show the CCC comparisons of 𝐾trans and V𝑒,
respectively. The highest CCCs for both 𝐾trans and V𝑒 were

seen using TV (0.974 for 𝐾trans and 0.916 for V𝑒) and TGV2𝛼
(0.974 for 𝐾trans and 0.917 for V𝑒). Although NN produced
the best SER (29.1), it did not give the highest CCCs for𝐾trans

(0.842) and V𝑒 (0.799). The same phenomenon can be found
betweenWT and FT, whereWT (21.8) produced a lower SER
than FT (26.4), but WT produced a higher CCC (0.878 for
𝐾trans and 0.733 for V𝑒).

A zoomed image of𝐾trans and V𝑒maps of the first run can
be seen in Figure 4. Both TV and TGV2𝛼 produced accurate
𝐾trans and V𝑒 with respect to the fully sampled data, while FT
produced the worst 𝐾trans and V𝑒. Although NN produced a
more accurate V𝑒 map than WT, the 𝐾trans map was blurred
and less accurate.

Bland-Altman plots of 𝐾trans and V𝑒 using the five reg-
ularizers in the first run can be seen in Figure 5. TV and
TGV2𝛼 produced nearly unbiased𝐾trans and V𝑒 while WT, FT,
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Figure 3: Boxplots of SER over 200 different sampling patterns. In the boxplot, the results of the five temporal regularizers are statistically
different from each other except the ones between TV and TGV2𝛼. We can observe that NN produced the highest SER, while WT yielded the
lowest SER, which is an illustration of Table 2.

Fully sampled Zero-�lled FT WT TV TGV NN

KＮＬ；ＨＭ

e

Figure 4: Zoomed 𝐾trans and V𝑒 maps of the first mask for all five temporal constraints. The first row shows the 𝐾trans map for (from left to
right) the fully sampled, zero-filled, WT, FT, TV, TGV2𝛼, and NN. The second row is the corresponding V𝑒 map. TV and TGV produced the
most visually similar tumor maps to the fully sampled, without excessively denoising or filtering the image.

and NN underestimated both parameters. Also althoughWT
produced relatively accurate CCCs, it greatly underestimated
the tumor means.

Figure 6 shows the difference between the mean intensity
curves in the undersampled and the fully sampled cases for all
voxels (panel (a)) in the tumor ROI and for a single example
voxel (panel (b)). In Figure 6, the zero-filled reconstruction
was accurate for the first five dynamics. But after CA injec-
tion, the intensity became underestimated, decreasing the
SER, 𝐾trans, and V𝑒. In Figure 6(a), WT underestimated the
mean intensity curve across all the dynamics. In Figure 6(a),
FT failed to fit the mean curve in the first five dynamics, and,
in the last five dynamics, and the oscillation behavior is more
obviouswith FT in Figure 6(b). TGV2𝛼 andTVbest fit both the
mean intensity curves and single voxel intensity curves. NN
overestimated the intensity in the first fewdynamics, affecting
the accuracy of𝐾trans and V𝑒.

Since predictable accuracy is important in breast CS
DCE-MRI, standard boxplots of CCCs and the tumor mean
𝐾trans and V𝑒 are presented in Figure 7. Through all the
boxplots, the interquartile ranges are small, which suggests
that CS undersampling can have a predictable accuracy for

Cartesian DCE-MRI of the breast. In the first three boxes
(SER and CCCs), the results are all statistically significantly
different except between TV and TGV2𝛼. Similar to our
findings in Figure 6, TV and TGV2𝛼 led to the most accurate
CCCs with high mean and low variance. The tumor means
of both regularizers are closest to the ground truth. Again
FT was the least accurate in reproducing both the tumor
mean and the voxel-wise CCCs, and the tumor mean 𝐾trans

and V𝑒 were far from the ground truth. Although WT
produced relatively accurate tumor mean 𝐾trans and V𝑒, the
variances were the highest among the five, which suggests less
predictable accuracy.

3.3. Discussions. The quantitative comparisons of the five
temporal constraints showed that NN was most capable
of suppressing background artifacts and thus produced the
highest SER. We believe this is due to its better artifact
suppression ability and better edge preservation. The reason
is that the minimization of the nuclear norm will suppress
features that are not the same in all dynamics, such as
interference and noise, while keeping static features, such as
the breast and the tumor.Thus, at least in compressed sensing
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Figure 5: Bland-Altman plots of 𝐾trans and V𝑒 of the first mask for all five temporal regularizers. (a) is 𝐾trans, and (b) is V𝑒. Rows from top
to bottom correspond to WT, FT, TV, TGV2𝛼, and NN, respectively. TV and TGV appear to produce the most accurate and least biased
parameters. FT was the most biased, and WT was the least accurate. NN was relatively inaccurate but had only a small bias.

DCE-MRI of the breast, if one needs relatively higher image
quality (SER in our case), nuclear normwould be a reasonable
choice.

On the other hand, TV and TGV2𝛼 provided the highest
CCCs for𝐾trans and V𝑒 among the five regularizers tested and

also appeared to most closely match the true voxel intensity
curves in the tumor area, suggesting that error in fitting the
voxel intensity curves may predict the ultimate quantitative
parameter accuracy. This is because TV and TGV𝛼2 , as
opposed to the nuclear norm, better preserve high-SNR
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Figure 6: Difference plots of tumor mean intensity curves (a) and voxel intensity curves (b) in tumor area. Here the coordinate of the voxel
is (96, 96). Panel (a) shows that the zero-filled reconstruction underestimated the mean intensity after CA injection. WT underestimated the
mean intensity over all the dynamics. FT failed to capture the mean intensity curve in the first and last 5 dynamics. TV and TGV2𝛼 best fit the
mean intensity curve. NN overestimated the intensity curve before the CA injection and slightly underestimated the intensity curve after the
CA injection. Panel (b) shows that zero-filled reconstruction underestimated the voxel intensity after the CA injection. FT andWT oscillated
with large amplitude, showing an inaccurate approximation. Both TV and TGV2𝛼 reconstructions fluctuated less. NN overestimated the signal
in the preinjection period.
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Figure 7: Boxplots of CCCs and tumor means over 200 different
sampling patterns. In the first two boxes, the results of the five
temporal regularizers are statistically different from each other
except the ones between TV and TGV2𝛼. We can observe TV and
TGV2𝛼 yielded the highest CCCs, which is an illustration of Table 2.
In the last two boxes, the red horizontal lines indicate the true
tumor mean 𝐾trans and V𝑒, which are 0.425 and 0.635, respectively.
Consistent with the results in Table 2, TV and TGV2𝛼 produced
the most accurate tumor mean 𝐾trans and V𝑒 compared to the true
values. Interestingly, NN tended to greatly underestimate 𝐾trans but
accurately found V𝑒 on average with a slight underestimation.

information that varies across dynamics, which in this case is
the contrast enhancement in the tumor area. This produces a
better reconstruction in the tumor and hence more accurate
CCCs. If so, then the fit residuals may prospectively inform
the parameter accuracy in cases where ground truths are not
available. Thus, at least in compressed sensing DCE-MRI of
the breast, if one needs to get more accurate quantitative
parameters, TV and TGV𝛼2 would be promising choices.
Since the nuclear norm captures the background information
and TV and TGV𝛼2 capture the dynamic information, the
combination of nuclear norm and TV/TGV𝛼2 could be the
best reconstruction model for breast DCE-MRI. This is also
our work in the future.

The boxplots in Figure 7 show that there is no statistically
significant difference between TV and TGV2𝛼, so it is hard to
distinguish between the utility of the two for this application.
This may change for other anatomical sites; however, espe-
cially those where more regions of a roughly linear intensity
gradient are present, rather than areas of mostly piecewise
constant intensity, such as the breast.

The results of the quantitative comparisons presented
here should inform clinical and research imaging recon-
struction methods. For techniques that value image fidelity
above accurate quantitative parameters, the best temporal
regularizer may be the nuclear norm. For techniques that
value quantitative parameter accuracy above image quality,
TVor TGV should be preferred.The same datamay be recon-
structed multiple ways, of course.

Prior to this work, no measurements of the quantita-
tive accuracy obtained from common temporal regularizers
across a range of Cartesian sampling patterns had beenmade.
This work addresses that gap, but with three major caveats.
First, only one breast DCE-MRI data set was used: it is
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possible that the results will vary across subjects, although
they are not expected to significantly. Second, though we
obtained a fairly normal distribution of errors, the entire
space of sampling patterns is astronomically large compared
to the 200 tested ones here. It is improbable, but still
possible, that a nonrepresentative set of sampling patterns
was selected.Third, tuning the FISTAparameters to create the
best reconstruction for each constraint is an inexact process.
It is possible that slightly different results could be obtained
with different FISTA parameters, but we have no reason to
think that the general patterns would change.

4. Conclusion and Future Research

In this paper, we compare the quantitative performance of
five temporal regularizers for CS DCE-MRI of the breast. We
find that the Fourier transform is the least suitable regularizer
because of the nonperiodic behavior of breast DCE-MRI
data.TheHaarwavelet transformwas average in performance
but was the least consistent in accuracy across the range of
sampling patterns. The nuclear norm best suppressed back-
ground artifacts caused by undersampling, thus maximizing
SER, but was less accurate in the recovery of pharmacokinetic
parameters. Total variation and total generalized variation
retrieved the most accurate pharmacokinetic parameters,
with TGV2𝛼 slightly edging out TV in both image quality and
parameter accuracy.

Since the goal of CS DCE-MRI is to accurately measure
tumor properties, we recommend using TV or TGV2𝛼 as the
temporal constraint in CS reconstructions of breast DCE-
MRI.

Future work includes testing on the full 3D breast DCE-
MRI datasets instead of only a single slice. Since performing
the computations required for this work on the whole 3D
data in MATLAB would be prohibitively slow, we intend to
use state-of-the-art GPU acceleration techniques to reduce
the computation time. We will also examine prospective
non-Cartesian sampling schemes such as radial and spiral
to explore the effect of higher acceleration on the quality
of reconstructions achieved with the temporal regularizers
examined here.
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