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Communication subspace dynamics
of the canonical olfactory pathway

Joaquı́n Gonzalez,1,2,4,* Pablo Torterolo,1 Kevin A. Bolding,3 and Adriano B.L. Tort2,*
SUMMARY

Understanding how different brain areas communicate is crucial for elucidating the mechanisms underly-
ing cognition. A possible way for neural populations to interact is through a communication subspace, a
specific region in the state-space enabling the transmission of behaviorally relevant spiking patterns. In
the olfactory system, it remains unclear if different populations employ such a mechanism. Our study re-
veals that neuronal ensembles in the main olfactory pathway (olfactory bulb to olfactory cortex) interact
through a communication subspace, which is driven by nasal respiration and allows feedforward and feed-
back transmission to occur segregated along the sniffing cycle. Moreover, our results demonstrate that
subspace communication depends causally on the activity of both areas, is hindered during anesthesia,
and transmits a low-dimensional representation of odor.

INTRODUCTION

Understanding how different brain areas communicate is a central problem in neuroscience.1,2 Large-scale cortical connections allow infor-

mation to be integrated, a process fundamental for sensory perception, decision-making, and cognition.3 Despite interregional communica-

tion being the basis of brain function, major problems challenge its study. At the circuit scale, communication relies on synapses formed by

large populations of neurons from different areas, where the number of synapses far exceeds the number of neurons.4 Moreover, cross-area

interactions in the mammalian cortex can be feedforward, feedback, or bidirectional5–8 and often comprise both excitatory and inhibitory

connections.

To understand how brain areas communicate, we need to explain how the neuronal populations in each site interact to allow the trans-

mission of behaviorally relevant spiking patterns.9,10 In the neocortex, different areas can interact through a communication subspace,11–18 a

specific region in the state-space (where each dimension corresponds to the activity of a single neuron) of a local population that enables

communication. In simpler words, communication occurs through local co-activity patterns that maximize the correlation between two areas.

This idea implies that all of the variance and information embedded in the activity of a neural population is not equally transmitted to con-

nected brain regions. Rather, there are specific directions and dimensions in neural activity space along which two regions may co-vary, sug-

gesting that selective information relevant to the function of this specific interregional interaction can be transmitted via this communication

subspace. Hence, only the population patterns that align and advance through this subspacewould bemaximally transmitted between areas.

Olfaction in mammals relies on communication between the olfactory bulb (OB) and the olfactory cortex (PCx; piriform cortex).19–25 These

areas are densely connected through long-range connections by which different odor features get transmitted. To date, subspace commu-

nication has not been analyzed in depth for pairs of odor-processing brain areas. Moreover, the properties of communication subspaces have

been studied primarily in the neocortex, raising the question of how similar theymight be in other cytoarchitectural designs (e.g., paleocortex

like the OB and PCx). Therefore, the study of communication between the OB and PCx is likely to offer new insights into the general mech-

anisms of corticocortical interactions in the brain.

Among the factors influencing communication, temporal coordination of spiking activity plays a major role for interregional interactions.

Sniffing patterns impose a natural rhythm to OB and PCx neurons,22,26–32 coordinating local spiking activity and timing computations from a

300–500 ms window during rest to 100 ms during faster breathing rates.33 Besides influencing local activity, it is widely recognized that

the respiratory rhythm itself influences cognition, improving task performance34,35 and regulating cognitive states.36,37 Consistently, respira-

tion-entrained brain oscillations are prominent in olfactory and associative areas (e.g., hippocampus,38 prefrontal cortex39; somatosensory

cortex40; amygdala41), suggesting that this rhythm may play a role in neuronal communication. Yet, we still do not fully comprehend how

this rhythm influences communication at the neuronal firing scale.

Here, we address how population patterns are transmitted in the main olfactory pathway. Our results show that OB and PCx neurons

interact through a communication subspace, which supports feedforward and feedback interactions and is entrained by the respiratory cycle,
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Figure 1. Characterizing the communication subspace between the olfactory bulb and piriform cortex

(A) Experimental recording scheme and probe localization in both olfactory areas (left panels; modified from22), and example single unit recordings along with

the respiration signal (right).

(B) Toy model showing how canonical correlation analysis maximizes cross-area correlations. Canonical correlation achieves this by projecting the local state-

space activity (black traces in left panels) to the subspace which maximizes cross-area correlations (CS1 red dashed axis). Thus, this method allows to obtain

maximally correlated signals across areas (bottom right panel), contrasting with MUA which lacks any correlation (top right panel).

(C) OB-PCx Pearson correlation for MUA andCS1 signals. Boxplots show themedian, 1st, 3rd quartiles, theminimum, and themaximum (excluding outliers); each

line shows an individual session. n = 13 recording sessions from 12 mice. ***p < 0.000001, paired two-sided t-test.

(D) Normalized variance/correlation for each principal component number and CS pair (mean G SEM; n = 13 recording sessions from 12 mice). For each

recording session, variances and correlations were normalized by dividing each value by the maximum variance/correlation.

(E) Comparison of the variance and correlation decay for each recording session. The decays were calculated for the normalized variance/correlation as a function

of the principal component number/CS pair using a negative exponential fit.
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thus revealing how respiration influences spiking transmission.Moreover, experimental manipulations show that subspace activity can be trig-

gered optogenetically and depends on the recurrent PCx connectivity to amplify and filter both OB and PCx responses. From a functional

perspective, our results show that this communication channel is abolished during anesthesia and exploited in a flexible way during olfaction

to transmit a low-dimensional representation of odor identity.

RESULTS
OB and PCx neuronal populations interact through a communication subspace

To understand communication in the main olfactory pathway, we first analyzed simultaneous recordings from OB and PCx populations per-

formed during spontaneous (no odors presented) awake periods in head-restrainedmice (Figure 1A). Because, in principle, any pairwise com-

bination of neurons in each area might form a synapse, we employed canonical correlation analysis (CCA) to study the communication

between these populations. Specifically, CCA seeks tomaximize the correlation between 2 neuronal populations by finding a communication

subspace (CS) in which to project local patterns to yield 2 CS activity signals that are maximally correlated (Figure 1B; see also Figure S1). In

simpler words, the CCA approach identifies which subsets of neurons are correlated between the areas, and the communication subspace of

each area is obtained by ascribing large (positive or negative) weights (hereafter referred as CS weights) to these neurons and low weights to

uncorrelated neurons; finally, for each region, the CS activity is a signal obtained by the weighted sumof its neuronal activity as dictated by the
2 iScience 27, 111275, December 20, 2024
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identified weights. Therefore, while the non-weighted summed activity (i.e., multi-unit activity, MUA) of each areamay seem unrelated, a sub-

set of correlated neurons (or several subsets) can be identified by the CS framework.

First, we validated the CS framework by studying a toy neuronal model in which we could control communication and local activity. We

found that the CS could correctly identify individual subsets of communicating neurons between areas on a background of random local ac-

tivity (Figures S1A and S1B). Moreover, different CS pairs captured the presence of independent linear combinations of neurons (i.e., inde-

pendent subsets of correlated neurons) by ascribing different sets of weights for each combination (Figures S1C and S1D). These toy-model

results provide a ground-truth reference for the use of CS.

When applying this framework to the OB-PCx data, we first identified how many significant CS pairs exist (Figure S2). To this end, we

compared the correlation coefficient (R) of each CS pair against a surrogate distribution of R values computed by circularly time shifting

the spiking activity of one of the populations by random amounts (Figures S2A and S2B). For each surrogate, we computed the CS and ob-

tained the R for the first (i.e., most correlated) pair.We repeated this procedure 100 times for each session.We found that the first CS pair (CS1)

exhibited the largest correlation and that subsequent pairs showed an exponentially decaying distribution of correlation values (Figure S2C).

When comparing against surrogates, only the first four CS pairs showed values above chance for all 13 recording sessions (Figure S2D). Never-

theless, for the remainder of the paper we focused on the first CS pair since it accounted for the largest correlation.

Notably, our results show that a communication subspace, and not global activity, explains neuronal correlations in the OB-PCx pathway.

To contrast CS results, we compared theOB-PCx CS1 correlation to the null hypothesis that the communication subspace is equivalent to the

population activity (i.e., all neurons considered) in each area. To that end, we computed theMUA signal by summing all single neuron spikes in

each area (employing the same time bins as used to compute the CS). Importantly, across all animals and sessions, OB-PCx CS1 activity ex-

hibited significantly higher correlations than the OB-PCx MUA (Figure 1C; t(12) = 3.80, p < 0.000001).

Furthermore, we show that the CS comprises only a ‘‘small region’’ of the state space of each area. To study how local activity compares to

theOB-PCxCS,wematched thenumberof neurons in eachareaandcomputedPrincipalComponentAnalysis (PCA)andCS.We reasoned that

by comparing thedecay rates of the variances across principal components to thedecay rate of theCS correlations, we can have an ideaof how

‘‘big’’ or ‘‘small’’ the communication subspace actually is compared to the local population patterns. To allow comparisons, we normalized the

variance of each principal component (by dividing it by the maximum variance across components) and the correlation from each CS pair

(by dividing each value by the maximum correlation across pairs). Following this approach, we found that OB-PCx CS correlations decreased

much faster than the individual variances of the principal components of each area (Figure 1D). We quantified the decay rate by a negative

exponential fit of the normalized variances and correlations as a function of the component/CS pair number, which confirmed that OB-PCx

correlations decrease significantly faster than the local variances (Fig, 1E, OB: t(12) = 3.80, p < 0.000001; PCx: t(12) = 3.80, p < 0.0001).

Respiration parses feedforward and feedback neuronal interactions

Next,weshowthat time-lagged interactionscharacterizeCScommunication. Sincewereasoned thatagenuine communication subspaceshould

exhibit a non-zero time lagdue to conduction and synaptic transmissiondelays (Figure 2A), we computed theCSusing firing counts time-lagged

between the regions (seealsoFigureS3 fora toymodel validation), similar to the traditional cross-correlationanalysis.Notably,under thisanalysis,

we found thatOB leads PCx activity by�25ms, the time lagwith the highest correlation between both areas for CS1 (Figure 2B). Thus, hereafter,

we obtained all CS1 signals by projecting the neuronal activity using the communication subspace calculated using this time delay; this only in-

fluences the neuronalweights of eachCS1 since neither theOBnor the PCx activity is laggedprior to theCCAprojection.We further note thatCS

weights can be computed during a given time window and then applied to project population activity in a different period.

To determine whether the communication subspace exhibits directional interactions in the OB-PCx pathway that are not apparent from

the global activity, we next computed the OB-PCx CS1 cross-correlation (Figure 2C; red trace) and directionality (Transfer Entropy, TE; Fig-

ure 2D) and compared them to the same metrics applied to MUA (black trace). Specifically, TE calculates the reduction in uncertainty in the

future values of a time series (e.g., OB activity) given the past values of another time series (e.g., PCx activity). The TE difference between both

directions (OB/PCx vs. PCx/OB) is taken as the net directional information flow (see STAR Methods for details). We found that while OB

leads PCx activity in the CS1 projections, exhibiting a significant OB/PCx directionality (Figures 2C and 2D; t(12) = 3.66, p = 0.003 for DTE,

paired two-sided t-test), the MUA results are more challenging to interpret due to the appearance of several peaks in the cross-correlogram

(Figure 2C) and a non-significant directionality (Figure 2D; t(12) = 1.66, p= 0.12, paired two-sided t-test). Of note, the CS1 directionality results

also hold when computing CS1 weights using non-lagged time series (Figure S4A).

Intrigued by the observation that all CS pairs, on average, exhibited a predominant OB/PCx direction and motivated by the well-

described anatomical feedback from PCx/OB, we next investigated whether any evidence of feedback could be observed through CS1 ac-

tivity. To explore this, we divided the respiratory cycle into different phase bins and measured OB-PCx CS directionality in each phase bin.

Notably, we observed a reversal in directionality during the course of the respiratory cycle (Figure 2E). Initially, following the start of inhalation,

feedforward interactions predominated (t(12) = 2.86, p = 0.01). However, near the start of exhalation, PCx/OB feedback increased and

became predominant during a short period (t(12) =�2.65, p = 0.02, paired two-sided t-test). Thus, despite the predominance of feedforward

directionality, CS1 also supports feedback interactions.

Respiration paces communication subspace activity

Wenext further characterized respiratory influences and found that, during spontaneous awake periods, the sniffing cycle entrains CS activity.

First, we plotted raw and filtered CS1 signals along with the nasal respiration recordings and observed each CS1 signal to be rhythmically
iScience 27, 111275, December 20, 2024 3



Figure 2. Measuring directionality in the OB-PCx communication subspace

(A) Schematic drawing depicting the OB-PCx pathway and their possible temporal relationships.

(B) CS1 correlation as a function of the time delay between both areas (mean G SEM; n = 13 recording sessions from 12 mice). Notice that by time-lagging one

area against the other we find the temporal delay which maximizes the correlation.

(C) Cross-correlogram between both areas for the communication subspace (CS1, red) and multiunit (MUA, black) activity (mean G SEM; n = 13 recording

sessions from 12 mice). The cross-correlation for each session was normalized by dividing it by its maximum value.

(D) Directionality analysis (Transfer Entropy) between both areas for CS1 and MUA. The difference (delta) between OB/PCx and OB)PCx transfer entropy

estimates is plotted for each signal. Boxplots show the median, 1st, 3rd quartiles, the minimum, and the maximum, n = 13 recording sessions from 12 mice;

**p < 0.01, paired two-sided t-test.

(E) Directionality analysis (Transfer Entropy) as function of the phase of the respiration signal (meanG SEM; n= 13 recording sessions from 12mice). As in panel D,

the difference (delta) between both directions is plotted. Note a short period of directionality reversal from OB/PCx to OB)PCx at the start of expiration.
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modulated by respiration (Figure 3A). These results hold across animals (Figure 3B). Note that the OB to PCx CS1 lead was already evident in

the raw (solid line), filtered (dashed line; 1–4 Hz), and averagedCS1 signals (Figure 3B top left panel) within each breathing cycle. Consistently,

both OB and PCx CS1 signals show a prominent 2.5 Hz power spectrum peak (Figure 3B top right), coinciding with the respiratory peak fre-

quency and coherent to the respiration signal (Figure 3B bottom). Of note, respiratory entrainment was not restricted toCS1 andwas also seen

for subsequent CS pairs (Figure S4B). Interestingly, when contrasting CS1 andMUA coherence to respiration, we found that both OB and PCx

CS1 are significantly more coupled to the respiratory activity (Figure 3B bottom; CS1 vs. MUA OB-Resp Coherence: t(12) = 6.02, p < 0.0001;

PCx-Resp Coherence: t(12) = 5.12, p = 0.0002, paired two-sided t-test), suggesting that respiration preferentially entrains subspace activity.

We next show that respiration drives CS1 activity. We started by computing cross-correlograms between OB/PCx CS1 signals and respi-

ration. Importantly, we found that the cross-correlation function was not symmetrical and was heavily skewed toward negative lags, corre-

sponding to respiration leading CS1 activity in both areas. Note that, consistent with the previous OB-PCx directionality results, the OB

CS1 exhibited a shorter lag in the respiration cross-correlogram compared to the PCx CS1.These results were confirmed through transfer en-

tropy analysis showing significant Resp/CS1 results for both OB and PCx (Figure 3C, right; OB: t(12) = 6.19., p < 0.0001; PCx: t(12) = 10.39,

p < 0.000001).

Besides finding respiratory entrainment of local CS signals, we further investigated whether OB-PCx correlations depend on the phase of

the breathing cycle. This idea implies that maximal communication occurs during a specific phase of the respiratory cycle. To test this hypoth-

esis, we binned the spontaneous CS1 activity according to the respiratory phase andmeasured the OB-PCx CS1 correlation in each phase bin

(using different respiratory cycles as samples; Figure 3D). We found a significant modulation of the CS1 correlations (Z(12) = 4.26, p = 0.01,

Rayleigh test); in particular, correlations increased following the start of inspiration and then declined in the later part of the respiratory cycle

(Figure 3E). Consistent with this result, OB-PCx CS1 coherence showed a synchronization peak at the respiratory frequency (Figure 3E). More-

over, OB-PCx CS1 coherence was significantly higher than OB-PCx MUA coherence (Figure 3E inset; OB-PCx Coherence: t(12) = 7.97,
4 iScience 27, 111275, December 20, 2024



Figure 3. Respiration drives the activity of the communication subspace

(A) Left: Example of OB and PCx CS1 along with the respiration signal. Dashed vertical lines indicate inhalation starts. Dashed colored lines show the 1–4 Hz

filtered CS1 for each area.

(B) Top Left: CS1 as a function of respiratory phase (meanG SEM; n = 13 recording sessions from 12 mice). Top Right: Power spectrum of the CS1 and respiration

signals (meanG SEM; n = 13 recording sessions from 12 mice). Bottom: CS1 andMUA coherence to respiration (meanG SEM; n = 13 recording sessions from 12

mice). Insets: Boxplots comparing peak CS1 and MUA coherence to respiration (frequency indicated by the dot); each line shows an individual session. Boxplots

show the median, 1st, 3rd quartiles, the minimum, and the maximum (excluding outliers). ***p < 0.001, paired two-sided t-test.

(C) Left: Average cross-correlogram between respiration and OB/PCx CS1 (GSEM; n = 13 recording sessions from 12 mice). Right: Directionality analysis

(Transfer Entropy) between respiration and OB/PCx CS1. The difference (D) between Resp/CS1 and CS1/Resp transfer entropy estimates is plotted for

each signal. ***p < 0.001, paired two-sided t-test.

(D) OB-PCx CS1 correlation as a function of the respiratory phase. The top panel shows an example correlation from a single recording session; the red lines show

best linear fit for each respiratory phase. Below we show for the same recording session the average respiratory waveform.

(E) Left: CS1 correlation (mean G SEM; n = 13 recording sessions from 12 mice) during the respiratory cycle. Right: CS1 and MUA OB-PCx coherence (mean G

SEM). Inset: Boxplots comparing CS1 and MUA in the frequency indicated by the dot. ***p < 0.001, paired two-sided t-test.
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p < 0.0001), further confirming that OB and PCx are likely to interact through a communication subspace and not through the global

population.

CS membership relates to spiking phase preference during the respiratory cycle

Next, we show that CS1 weights relate to the spiking phase preference of single neurons during the respiratory cycle. We plotted the average

activity of all recorded cells in each area as a function of the respiratory phase and sorted them according to their CS1 weights (Figure 4A).
iScience 27, 111275, December 20, 2024 5



Figure 4. Excitatory-inhibitory spike relations characterize OB-PCx CS1 communication

(A) Neuron spiking during each phase bin of the respiration cycle (right; 0� corresponds to the start of the inhalation); neurons are sorted according to the CS1
weights (shown on the left panel). OB: 320 cells; PCx: 849 cells. We note that the respiratory phase tiling can also be observed by sorting cells according to their

preferred phase (see Figure S5 and ref.22 and 42).

(B) Correlation between absolute CS1 weights and the respiratory coupling strength (Modulation Index) of single cells. Note that bins were only employed for

representational purposes. Error bars show the mean and 95% CI of the mean (n = OB: 320 cells; PCx: 849 cells).

(C) Example spike-spike cross-correlations between a single OB neuron (largest CS1 weight) and 10 PCx neurons (top 5 most positive [top row] and negative

[bottom row] CS1 weights).

(D) Spike-spike cross-correlogram (mean G SEM; n = 13 recording sessions from 12 mice) for the most positive OB vs. most positive (teal) and most negative

(magenta) PCx CS1 weighted neurons. Boxplot: Activity at the +25 ms time delay; Boxplots show the median, 1st, 3rd quartiles, the minimum, and the

maximum (excluding outliers); each line shows an individual session. ***p < 0.001, paired two-sided t-test.

(E) Histogram showing the distribution of maximum excitation (teal) andmaximum inhibition (magenta) times for the 10most positive and 10most negatively CS1
weighted neurons across animals. Boxplot: Average time to maximum excitation/inhibition of positive/negative CS1 weighted PCx neurons across animals.

Boxplots show the median, 1st, 3rd quartiles, the minimum, and the maximum (excluding outliers); each line shows an individual session. ***p < 0.001,

paired two-sided t-test.
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We found that most OB neurons exhibited a single preferred respiratory phase near the inhalation start (40–140o), and that the most positive

PCx neurons (+CS1 weights) showed a similar phase preference to OB neurons. Nevertheless, the remaining PCx neurons (�CS1 cells) ex-

hibited an anti-phase pattern (that is, preferred the opposite phase than OB neurons or PCx +CS1 cells). Moreover, the z-scored firing during

the 40-140o respiratory phase significantly correlatedwith the CS1 weights in both areas (OB: R = 0.23,p< 0.0001; PCx: R = 0.34, p < 13 10�20).

Note that while +CS1 cells in either region exhibited similar firing levels during this phase bin,�CS1 cells fired close to baseline in the OB and

decreased their average spiking in the PCx (Figure 4A). Consistently, the distribution of CS1 weights was skewed toward negative values in the
6 iScience 27, 111275, December 20, 2024



Figure 5. Probing the mechanisms behind the OB-PCx communication subspace

(A) Top: Experimental recording conditions for each group. OB and PCx recordings were made from the hemisphere containing TeLC expression

(modified from22) during optogenetic stimulation of the OB (laser duration = 1 s). Bottom: Schematic of circuit changes after TeLC expression in principle

cells (PCs) of the piriform circuit (MTCs: mitral/tufted cells; FFIs: feedforward interneurons; FBIs: feedback interneurons). TeLC expression blocks synapses

from PCx principal cells (red crosses).

(B) OB and PCx CS1 activity triggered by optogenetic stimulation of OB projecting neurons (meanG SEM; Control: n = 5 recording sessions from 5 mice; TeLC:

n = 14 recording sessions from 7 animals). Insets highlight the initial response.

(C) CS1 activity as a function of the laser intensity (meanG SEMControl: n= 5 recording sessions from 5mice; TeLC: n= 14 recording sessions from 7 animals). The

laser stimulation period was divided into an initial (0–25 ms) and a sustained response (500–1000 ms). p values were obtained from a two-way ANOVA test.

(D) Triggered spiking activity of ‘‘positive’’ and ‘‘negative’’ cells according to their CS1 weights (meanG SEMControl: n= 5 recording sessions from 5mice; TeLC:

n= 14 recording sessions from 7 animals). Themost positive andmost negative cell from each session was employed here. The panel shows a zoom-in view of the

first 50 ms following laser onset.
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PCx, corresponding to the large majority of (likely inhibited) anti-phase neurons, and was significantly different from the CS1 weight distribu-

tion of OB (D(110) = 0.12, p < 0.0001, Kolmogorov-Smirnov test). Importantly, we found a significant correlation between the absolute CS1
weights and the respiratory coupling strength of single cells (Figure 4B, OB: R = 0.41, p < 13 10�13; PCx: R = 0.37, p < 13 10�29), suggesting

that respiration preferentially entrains communicating neurons in both areas.

We next show that putative excitatory and inhibitory interactions explain CS1 weights. First, we selected the most positive CS1 OB neuron

from a representative recording and analyzed the spike counts of the top five +CS1 and �CS1 PCx cells. We found that the +CS1 PCx cells

tended to spike shortly after OB spikes, while �CS1 PCx cells tended to be inhibited (Figure 4C). This result was consistent across animals

when analyzing the top ten +CS1 OB neurons against the top ten +CS1 and �CS1 PCx neurons (Figure 4D, t(12) = 7.38, p < 0.001). Note

that inhibition occurred later compared to excitation in the PCx (t(12) = 2.25, p < 0.001; Figure 4E), suggesting that inhibition, on average,

may take more synaptic steps than excitation. These results suggest that subspace interactions and respiratory firing phase preferences

are likely to be intrinsically related.

OB-PCx communication subspace interactions depend on intact synaptic connectivity

We next demonstrate that, as expected based on the dense anatomical connectivity, direct communication underlies OB-PCx subspace in-

teractions. To this end, we analyzed CS1 activity during optogenetic stimulation of OB excitatory cells (Figure 5A). For these analyses, we

calculated CS1 weights employing the laser stimulation periods. We found that light stimulation caused a large amplitude, transient CS1
response (Figure 5B). As expected, the transient response first occurred in the OB CS1 activity and appeared after a short <10-ms latency
iScience 27, 111275, December 20, 2024 7
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in the receiving PCx population (Figure 5B; Time to CS1 peak: t(4) = 5.65, p = 0.004, paired two-sided t-test), confirming the predominant OB-

PCx communication directionality. In the OB, the transient response was followed by a lower amplitude sustained activity lasting through the

entire stimulation period (Figure 5B). Noteworthy, the spontaneous activity of the cells identified during laser stimulation also exhibited the

phase-antiphase CS1 spike pattern segregation within respiratory cycles (Figure S6) as found in our earlier analysis (cf. Figure 4A).

Next, we show that (1) recurrent excitation within the PCx amplifies the initial (transient) CS1 response, (2) lateral inhibition shuts down the

sustained component of the CS1 response, and (3) feedback projections from the PCx influenceOB CS1 activity. To probe thesemechanisms,

we compared control animals with animals expressing TeLC in the PCx. TeLC expression blocks all synapses from PCx principal cells while

preserving principal cell excitability (i.e., from afferent inputs),22 allowing us to probe how local PCx interactions shape the CS1 activity in

response to optogenetic stimulation of the OB (Figure 5A). Notably, we found that the initial, transient CS1 response (0–25 ms) decreased

in both areas of TeLC-infected animals (Figures 5B and 5C). Interestingly, however, the sustainedCS1 response (500–1000ms) increased signif-

icantly also for both areas in the TeLC group (Figure 5C; note that the sustained response is nonexistent in the PCx of control animals). Hence,

these results causally demonstrate that OB-PCx subspace communication involves both feedforward (OB/PCx) and feedback (PCx/OB)

projections, with the latter conclusion inferred from the fact that altering PCx connectivity alters OB CS1 activity. These results are consistent

with previous connectivity and imaging studies performed in this system.19,20,43

We next compared the activity of the most positive and negative CS weighted cells following OB stimulation (Figure 5D). In control

animals, +CS1 OB cells fired more than �CS1 cells during the first 25 ms (t(4) = 4.08, p = 0.01, paired two-sided t-test). In addition, +CS1
PCx cells fired earlier than �CS1 cells (t(4) = 3.98, p = 0.01, paired two-sided t-test). In TeLC recordings, +CS1 and �CS1 OB cells showed

a similar firing rate difference as in control animals (t(13) = 2.14, p = 0.04, paired two-sided t-test). On the other hand, the time difference

previously observed for +CS1 and �CS1 PCx cells disappeared in TeLC animals (t(13) = 0.17, p = 0.86, paired two-sided t-test). Thus, these

results suggest that +CS1 PCx cells actively recruit inhibition and suppress�CS1 spiking during the first 10 ms of OB laser stimulation, leading

to their different spike time-courses, and that, consequently, this effect is lost in TeLC recordings due to the lack of feedback inhibition

recruitment.

Anesthesia disrupts OB-PCx subspace communication

Next, we show that subspace communication depends on the cognitive state and, consequently, is altered during anesthesia. First, we

compared CS1 correlations between awake and ketamine/xylazine anesthesia recordings. For this analysis, we computed CS1 weights during

awake periods and used them to project neuronal activity during anesthesia (Figure 6A). We found that CS1 correlations significantly

decreased during loss of consciousness (Figure 6B left; t(9) = 4.44, p = 0.001, paired two-sided t-test), confirming that the subspace that al-

lowed for communication during wakefulness no longer does during anesthesia. Thus, this result suggests a cognitive role for CS1
communication.

Moreover, we analyzed how neuronal communication occurs during anesthesia and found that a new CS emerges unrelated to the awake

channel. For these analyses, we computed CS weights exclusively using neuronal activity during anesthesia and compared them to the awake

subspace weights. Interestingly, we found that both subspaces accounted for similar correlation gains above MUA correlations (Figure 6B

right; t(9) = 0.13, p = 0.89, paired two-sided t-test). This control is important since MUA correlations greatly increased during anesthesia (Fig-

ure 6B middle; t(9) = 3.76, p = 0.004, paired two-sided t-test). Notably, anesthesia and awake CS1 weights were not positively correlated (Fig-

ure 6C, OB: R =�0.17, p = 0.02; PCx: R = 0.01, p = 0.8, Pearson correlation), confirming that different groups of neurons communicate within

each state. Moreover, despite respiratory entrainment of single neurons significantly increasing during anesthesia (Figure 6D, left panel, OB:

t(247) = 10.46, p = 1.93 10�21; PCx: t(652) = 20.0, p= 1.13 10�69, paired two-sided t-test), the CS1 weights were not positively correlated with

the level of respiratory coupling in this state (Figure 6D, right panel, OB: R = �0.13, p = 0.04; PCx: R = �0.05, p = 0.22, Pearson correlation),

contrasting therefore with the results obtained for the awake CS1 (cf., Figure 4B). The lack of positive correlation between CS weights and

spike-respiration coupling during anesthesia (despite the overall coupling increase) demonstrates that respiratory CS entrainment is not a

mere consequence of high respiratory modulation of single cells, and further suggests a cognitive role for the differential respiratory entrain-

ment of communicating cells.

Olfactory communication occurs through a general and a specialized channel

We investigated the functional role of the OB-PCx CS and show that communication during olfaction occurs through a general (‘‘sponta-

neous’’ CS1) and a specialized channel (‘‘odor’’ CS1). We took two complementary approaches in these analyses: we derivedCSweights exclu-

sively during either (1) spontaneous periods or (2) during odor sampling. We found that spontaneous CS1 and odor CS1 weights were weakly

but significantly correlated (OB: R = 0.3, p < 13 10�7; PCx: R = 0.3, p < 13 10�18; Figures S7A and S7B). Prior to analyzing group data of CS1
activity, we multiplied all CS1 traces by the sign of their response to odors; this was necessary since two animals exhibited CS1 activity de-

creases to odors in both areas (Fig.S8) and we wanted to study changes in the magnitude of CS1 activity. When analyzing odor and odorless

sniffs, we found an increase in both the spontaneous and odor CS1 activity magnitude during odor sampling in both areas (time-stamps

marked by blue and orange dots in Figure 7B; p < 0.05, paired one-sided t-test). Note that odor CS1 showed a more sustained odor-evoked

response (0–200 ms) compared to the spontaneous CS1 (Figure 7B).

Notably, we observed a functional switch in CS communication during odor presentations. Namely, OB-PCx spontaneous CS1 correlations

decreased during odor presentations compared to odorless periods (Figures 7C and S7; t(12) = 5.29, p = 0.00019, paired two-sided t-test),

while odor CS1 correlations increased (Figure 7C, t(12) = 7.21, p = 0.00001, paired two-sided t-test). These changes were accompanied by a
8 iScience 27, 111275, December 20, 2024



Figure 6. Ketamine-xylazine anesthesia alters CS1 communication

(A) Example CS1 traces during head-fixed wakefulness and after ketamine-xylazine anesthesia. CS1 weights were computed during awake periods and later used

to project neuronal activity during anesthesia.

(B) Left: OB-PCx CS1 correlation during awake and anesthesia periods. CS1 weights were computed during awake periods and later used during anesthesia, as in

the previous panel. Right: OB-PCx CS1 correlation, but with anesthesia CS1 weights computed during anesthesia. Boxplots show the median, 1st, 3rd quartiles,

the minimum, and the maximum (excluding outliers); each line shows an individual session. n = 10 recording sessions from 9 mice. Of note, since OB-PCx

correlations largely increase during anesthesia, CS1 correlations were normalized by subtracting theOB-PCxMUA correlation. **p< 0.01, paired two-sided t-test.

(C) Correlation between CS1 weights computed exclusively during awake and anesthesia periods. Error bars show the mean and 95% CI of the mean (OB: 248

cells; PCx: 653 cells).

(D) Left: Distribution of respiratory coupling strength (Modulation Index) for all single cells during awake and anesthesia recordings. The vertical arrows show the

distribution mean for each case. p was obtained from a paired two-sided t-test. Right: Correlation between absolute CS1 weights and the respiratory coupling of

single cells. Note in C and D that bins were only employed for representational purposes. Error bars show the mean and 95% CI of the mean (OB: 248 cells; PCx:

653 cells).
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significant decrease in OB/PCx directionality during odor sampling for the spontaneous CS1 (Figure 7C; t(12) = 3.29, p = 0.006, paired two-

sided t-test) and a significant increase in OB/PCx directionality for the odor CS1 (Figure 7C; t(12) = 3.84, p = 0.002, paired two-sided t-test).

We next analyzed spontaneous CS1 activity in response to increasing concentrations of a single odorant (Figure S9A). Our results showed

that for both spontaneous and odor CS1, OB activity increased with odorant concentration, while PCx did not (Figure S9A). Nonetheless,

spontaneous OB-PCx CS1 correlations decreased as concentration increased, while odor CS1 correlations did not depend on concentration

(Figure S9B). Thus, these results further suggest that communication during olfaction involves a mixture of a common (concentration-depen-

dent) and a specialized (concentration-independent) channel.
Odor identity is transmitted through the communication subspace

Finally, we demonstrate that the OB-PCx CS transmits odor identity as a low-dimensional representation. We analyzed the activity of several

CS pairs since odors are likely representedby different neuronal combinations spanningmultiple CSpairs (recall that independent linear com-

binations give rise to different CS pairs; Figures S1C and S1D).When plotting the average amplitude of threeCS pairs for the presentation of 2

different odorants (0–500 ms after inhalation, 0.03, 0.01, 0.3, 1.0 v./v. concentrations), we found that regardless of concentration, different
iScience 27, 111275, December 20, 2024 9



Figure 7. The OB-PCx communication subspace allows the transmission of odor identity

(A) Experimental recording scheme and odor panel employed in the experiments (modified from22).

(B) CS1 activity difference (between odor and odorless sniffs) triggered by inhalation start (meanG SEM; n = 13 recording sessions from 12 mice). Dots indicate

significant differences, p < 0.05, paired one-sided t-test.

(C) Top: OB-PCx CS1 correlations after odor and no odor sniffs. Bottom: Directionality analysis (Transfer Entropy) between both areas for CS1 during odor and

odorless sniffs. The difference (delta) between OB/PCx and PCx/OB transfer entropy estimates is plotted for each condition. Boxplots show the median, 1st,

3rd quartiles, the minimum, and the maximum (excluding outliers). Each line shows an individual session (n = 13 recording sessions from 12 mice). **p < 0.001,

paired two-sided t-test.

(D) Example CS activity for 3 CS pairs from a representative animal obtained during the presentation of 2 different odorants at different concentrations. Each dot

shows the average CS activity (0–500 ms following inhalation start) during an individual trial. Note the clustering of purple shaded vs. green shaded points,

indicating odor separation.

(E) Identity/concentration decoding accuracy (mean G SEM; n = 13 recording sessions from 12 mice) as a function of the number of aggregated CS pairs

(‘‘CS dimensions’’) considered for the analysis. The data employed consisted of the average CS activity (for each dimension) during the first 500 ms following

inhalation start. For all panels, CS1 weights were computed either during exclusive no odor sniffs (spontaneous CS1) or exclusively during odor sniffs (odor CS1).

ll
OPEN ACCESS

iScience
Article
odors segregated in this low-dimensional subspace (Figures 7D and S10). Similar results held for 6 odorants at equal concentrations (Fig-

ure S11). Importantly, the intersection of odor clusters likely suggests that the transmission of odorant identity occurs through overlapping,

not independent, combinations of neurons (Data. S1).

Subsequently, we trained and tested a linear decoder employing all available odor presentations to either decode identity from a six-

odorant panel at 0.3 v./v. concentration or decode concentration from a two-odorant panel at 0.03, 0.1, 0.3, 1.0 v./v. As shown in Figure 7E,

we successfully decoded identity and concentration above chance levels (1/6 for odors, 1/4 for concentrations) for increasing combinations of
10 iScience 27, 111275, December 20, 2024
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CS pairs (i.e., CS1, [CS1,CS2], [CS1,CS2,CS3], etc.; p < 0.05 for all dimensions >2, one sample t-test against chance levels). Comparing identity

and concentration decoding (note the normalization of accuracies to their chance levels), we found that CS activity was significantly more

specific to odor identity than concentration (OB Odor CS: F(1,14) = 93.2, p < 10�18; OB Spontaneous CS: F(1,14) = 64.13, p < 10�13; PCx

Odor CS: F(1,14) = 133.1, p < 10�24; PCx Spontaneous CS: F(1,14) = 49.1, p < 10�10, two-way ANOVA). Importantly, when comparing spon-

taneous and odor CS identity decoding accuracies, we found for the PCx that its odor CS provided significantly better decoding results than

the spontaneous CS (p < 0.05 for all dimensions, paired two-sided t-test), confirming that the olfactory cortex likely employs both a general

and a specialized channel for representing odor.
DISCUSSION

Here, we addressed how population patterns are transmitted in the main olfactory pathway. Our results unveil that a low-dimensional shared

subspace (i.e., a communication subspace) forms themajor communication channel betweenOB and PCx neuronal populations. Notably, this

communication subspace is paced by nasal respiration and allows feedforward and feedback interactions to occur in different phases of the

sniffing cycle.We show that subspace activity can be commandedbyOBoptogenetic stimulation and that it depends on lateral excitation and

inhibition in the PCx to shape initial and sustained responses.

From a functional perspective, our results suggest a cognitive role for CS communication since (1) anesthesia disrupts CS communication,

(2) subspace activity increases during odor sampling, and (3) this communication channel transmits a low-dimensional representation of odor

identity. This low-dimensional representation carriesmore identity than intensity information, consistent with previous experimental results,22

though concentration information could still be decoded above chance from CS activity, also consistent with experimental and modeling

results.23,44

Notably, several of our results can be related to the primacy theory of odor perception.45 Under this model, early (concentration stable)

activatedOB cells encode odor identity and transmit identity information to the PCx. OB cells activated later (more sensitive to concentration)

would be suppressed through feedback inhibition in the PCx. These ideas are consistent with the abovementioned results and with CS1 OB

latencies decreasing with increasing concentration (Figure S9), as also observed in previous OB recordings.45 Thus, these results suggest that

the primacy coding cells may take part in subspace communication.

Moreover, the primacy model might also explain why concentration information may not be accurately represented by CS members. Un-

der this scenario, later responding cells carry more concentration information, but their influence would be suppressed by feedback inhibition

within the PCx and through centrifugal projections targeting interneurons in the OB (Figures 5B and 5C and ref. 19,21,22). As a result, con-

centration information would not be a main feature encoded by the conjoint activity of OB-PCx subspace members, though it is present in

their activation latency (Figure S9). On the other hand, concentration information transmission might be more prevalent in other OB sub-

spaces, for instance, in those presumably established with the anterior olfactory nucleus.19
CS analysis offers a comprehensive view of neuronal interactions in the OB-PCx pathway

Several factors complicate our understanding of the olfactory system and how its neurons communicate and represent smell across all major

olfactory hubs. One significant challenge is its spatial heterogeneity. Olfactory sensory neurons (OSNs) located in the olfactory epithelium,

each expressing a single olfactory receptor, converge into functional units known as glomeruli inside the OB.46 Despite the order in OSN

projections, OB glomeruli lack a detailed chemotopic structure and only exhibit some coarse organization.47 Mitral and tufted cells

(MTCs) contact these glomeruli and project to other olfactory centers, sending spatially diverse projections, principally to the

PCx.19,20,22,25,43,48–51 Consequently, the PCx inherits this lack of a chemotopic map, meaning that the same odorant can activate neurons

in distant sites of the same area.20,28,48,49,52–54

To identify coordinated neuronal assemblies across these areas, we analyzed the OB-PCx CS, similar to recent efforts in the visual and

motor systems.11–14 This analysis allowed us to pinpoint groups of cells across areas that exhibit maximal correlation in time and form func-

tional partnerships following each sniff. Crucially, by examining the CS weights of each neuron, we could differentiate between putative excit-

atory and inhibitory relationships occurring during the respiratory cycle. Although CS weights could be attributed to respiratory phase pref-

erences, the inactivation of the local piriform recurrent circuitry demonstrated that local inhibition causes the firing pattern differences

between +CS and �CS cells. Therefore, our results suggest that subspace interactions and the respiratory firing phase preference of single

cells are likely to be intrinsically related.
Respiration drives neuronal communication

It has become increasingly clear that the respiratory rhythm influences the activity of a wide variety of brain areas – well beyond olfactory

centers.27,33,34,38,40,41,55–59 This rhythm, impacting faster local oscillations,26,27 is proposed to play a role in integrating information across

the brain.33,60 Our findings provide direct support for this notion by demonstrating at the neuronal level that: (1) respiration exerts a more

pronouncedmodulation on local communication subspace (CS) activity compared tomulti-unit activity (MUA), (2) absoluteCSweights predict

respiratory entrainment of individual cells only during awake recordings, and (3) respiration modulates synchronization between the OB and

PCx within the communicating populations. These results highlight the direct impact of this body rhythm on neuronal communication in the

main olfactory pathway, suggesting it may also serve similar functions in other upstream areas.
iScience 27, 111275, December 20, 2024 11
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How does respiration influence interregional communication? Our study suggests that it does so by modulating specific directions in neu-

ral state-space that define theCS. Additionally, and possibly related, by providing awindowof enhanced temporal coordination (most likely in

the source population, i.e., theOB), the respiratory rhythmwould favor spike transmission. This would occur because synchronous inputs have

a higher probability of firing a target neuron than asynchronous inputs.9,61,62 Hence, we suggest that the combination of subspace commu-

nication and temporal coordination might be a canonical strategy to facilitate corticocortical interactions.

We note that our results were obtained in head-fixed mice; as such, future studies should address if subspaces are employed during more

naturalistic conditions. For example, analyzing an odor-discrimination task could provide further insights into how this communication

channel might be used for information routing. We hypothesize that subspace interactions within breathing cycles aid odor discrimination,

allowing flexible switches between sensory-driven and action-oriented neuronal communication.
Directionality in the canonical olfactory pathway

Long-range loops play a crucial role in various sensory andmotor systems across the brain.63,64 In olfaction, the primary long-range pathway is

formedby the connection from theOB to the PCx, althoughother significant loops exist (e.g., OB to anterior olfactory nucleus).19,22,48,52 Tradi-

tionally, these pathways are conceptualized in terms of their information flow8,12,65 as either feedforward (proceeding from the lower sensory

area to a higher area, as in the case of OB/PCx) or feedback (going from the higher to the lower sensory area, as in the case of PCx/OB).

Our results demonstrate that while feedforward interactions are predominant, feedback also occurs in theOB-PCx communication subspace,

constituting a genuine loop. Notably, feedforward communication primarily occurred during inhalation, while feedback took place in a brief

window during exhalation. This result contrasts with subspace properties described in the neocortex, where different CS pairs support

different directions of communication,12 suggesting that subspace characteristics may depend on the cytoarchitectural design.

Furthermore, by analyzing how the local recurrent PCx circuit affects CS activity, we were able to show that PCx activity inhibits OB neurons

(Figure 5B, inferred from TeLC recordings showing a higher sustained OB response compared to control), consistent with previous reports

showing that the excitatory centrifugal PCx output contacts granule cells within the OB and produces inhibition.19,21 From a functional

perspective, previous results showed that PCx inhibition into OB decorrelates odor representations in this area and changes the tuning prop-

erties of single cells.21 This mechanism could potentially explain why OB-PCx spontaneous CS correlations decrease during odor stimulation.

Under this scenario, during odor presentations PCx feedback changes OB activity, thereby promoting communication through the odor spe-

cific channel and decreasing communication through the spontaneous CS.
Spontaneous vs. evoked activity and the representation of odor in the main olfactory pathway

How does spontaneously organized neural patterns relate to stimulus-driven activity? Through an examination of spontaneous communica-

tion and subsequent analysis of how these patterns change with sensory stimuli, we demonstrate that neuronal populations exhibiting spon-

taneous correlation also transmit odor information during sensory stimulation. Additionally, we observed that certain neuronal groups seem

to communicate more robustly during odor stimulation, evidencing the recruitment of additional neurons during olfaction, a result evidenced

more strongly in the PCx, where the odor CS contained more odor identity information than the spontaneous CS.

A possible interpretation of these results is that spontaneously correlated neurons form a fundamental scaffold for olfaction, providing a

‘‘good-enough’’ odor representation. On the other hand, neurons that communicate exclusively during odor stimulation contribute finer-

grained details, enriching the overall representation. In support of these ideas, data from flies and mice shows that odor encoding popula-

tions fall between two extremes, either exhibiting reliable firing patterns across trials or displaying high trial-to-trial variability.66 The former

property potentially adds robustness of the code while the latter might add discriminatory power.
Limitations of the study

This studyhas several limitations to considerwhen interpretingour results. First, animalswere recordedunderhead-restricted conditions. Thus,

future studies should address how subspace communication changes during freely moving conditions under varying respiratory frequencies.

Second, the absence of a behavioral task limits understanding of how animals utilize subspace communication during behavior. Exploring this

subject could be particularly important, as subspace communication is thought to be a flexible information routingmechanism. Finally, we did

not have themeans to identify howdifferent neuronal subgroups in theOB and PCx contribute to subspace activity. Therefore, elucidating the

distinct contributions of each cell type is likely to provide important insights into communication within this system and the brain as a whole.
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Data and code availability

� Data: All the data employed came from the previously Published Datasets: Bolding and Franks, 2018b Collaborative Research in Computational Neuro-
science. ‘Simultaneous extracellular recordings from mice OB and PCx and respiration data in response to odor stimuli and optogenetic stimulation of
OB’. Accession numbers are listed in the key resources table.

� Code: Codes have been deposited at GitHub and Zenodo and are publicly available as of the date of publication. Accession numbers are listed in the key
resources table.

� Additional information: Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

pcx-1 dataset http://crcns.org https://doi.org/10.6080/K00C4SZB

Software and algorithms

CS_OB-PCx https://github.com/

https://zenodo.org/

https://github.com/joaqgonzar/CS_OB-PCx

https://doi.org/10.5281/zenodo.13755624
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

We analyzed simultaneous OB and PCx recordings generously made available by Bolding and Franks through the Collaborative Research in

Computational Neuroscience data-sharing website (http://crcns.org, pcx-1 dataset). The SIMUL and TeLC-THY experiments were employed.

Detailed descriptions of the experimental procedures are found in previous publications.22,23,67 The Institutional Animal Care and Use Com-

mittee of Duke University approved all protocols according to protocols A243-12-09 and A220-15-08. Below we describe the analytical

methods employed and the relevant experimental procedures from the original publication.

Female and male adult mice were employed (>P60, 20–24 g); animals were housed in single cages on a normal light-dark cycle

(n = 12mice). For the optogenetic experiments, themice employedwere adult Thy1ChR2/ChR2-YFP, line 18 (Thy1-COP4/EYFP, Jackson Lab-

oratory, 007612, n= 5mice). For the combined optogenetics and TeLC expression experiments, adult offspring of Emx1Cre/Cremice crossed

with Thy1ChR2/ChR2-YFP mice were employed (n = 7 mice).
METHOD DETAILS

Adeno-associated viral vectors

For the TeLC experiments, AAV5-DIO-TeLC-GFPwas expressed under CBA control (6/7mice) or synapsin (1/7mice); since effects were similar

in either, data were pooled together. Three 500 nL injections in the PCx (AP, ML, DV: +1.8, 2.7, 3.85; +0.5, 3.5, 3.8; �1.5, 3.9, 4.2 mm; DV

measured from brain surface) were employed to achieve TeLC expression. All recordings took place �14 days after the promoter injection.

All viruses were obtained from the University of North Carolina-Chapel Hill (UNC Vector Core).
Data acquisition

The electrophysiological signals were recorded through 32-site polytrode acute probes (A1x32-Poly3-5mm- 25 s-177, Neuronexus) with an

A32-OM32 adaptor (Neuronexus) through a Cereplex digital headstage (Blackrock Microsystems). Data were acquired at 30 kHz, unfiltered,

employing a Cerebus multichannel data acquisition system (BlackRock Microsystems). Respiration was acquired at 2 kHz by analog inputs of

the Cerebus system. The respiration signal was measured employing a microbridge mass airflow sensor (Honeywell AWM3300V), which was

positioned opposite to the animal’s nose. Inhalation generated a negative airflow and thus negative changes in the voltage of the sensor

output.
Electrode and optic fiber placement

For OB recordings, a Patchstar Micromanipulator (Scientifica) holding the silicon probe was set to a 10-degree angle in the coronal plane to

target the ventrolateral mitral cell layer. The probe was first positioned above the OB center (4.85 mmAP, 0.6 mmML from bregma) and then

lowered following this angle until dense spiking activity was found from the mitral cell layer, typically between 1.5 and 2.5 mm from the

OB surface. For PCx recordings, the micromanipulator was employed to position the recording probe in the anterior PCx (1.32 mm AP

and 3.8 mm ML). Recordings were targeted 3.5–4 mm ventral from the brain surface at this position and were further adjusted according

to the LFP and spiking activity monitored online. The electrode sites spanned 275 mm along the dorsal-ventral axis. The probe was lowered

until an intense spiking band was found, which covered 30–40% of electrode sites near the correct ventral coordinate, thus reflecting the piri-

form layer II. For the optogenetic experiments stimulating OB cells in Thy1ChR2/ChR2-YFP mice, the optic fiber was placed <500 mm above

the OB dorsal surface.
Spike sorting and waveform characteristics

Spyking-Circus software was employed to isolate individual units (https://github.com/spyking-circus). All clusters which had more than 1% of

ISIs violating the refractory period (<2 ms) or appearing contaminated were manually removed. Units that showed similar waveforms and
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coordinated refractory periods were merged into single clusters. The number of single cells simultaneously recorded per area during each

session is shown in Table S1. Figures S12A and S12B shows all refractory period violations and the average waveform amplitudes for each

isolated single unit. The reader is referred to ref.23 for representative isolation distance results of putative single cells (5/13 simultaneous

OB/PCx recordings).

Odor delivery

Stimuli consisted of monomolecular odorants diluted in mineral oil. The odorants employed were: hexanal, ethyl butyrate, ethyl acetate,

2-hexanone, isoamyl acetate, and ethyl tiglate. Odor stimuli were presented for 1 s through an olfactometer controlled by MATLAB scripts

and repeated every 10 s. Average firing rates during spontaneous activity and the whole period of odor deliveries are shown in Figure S12C.

Note that average firing rates did not change in the OB during odor presentations and slightly decreased in the PCx, consistent with ref.68,69

For single cell responses to different odorants, the reader is referred to ref.22,23

Anesthesia recordings

In 11 out of 13 mice, a combination of ketamine and xylazine at a dose of 100/10 mg/kg was injected intraperitoneally, leading to consistent

anesthesia for 30–45 min. Body temperature was regulated using a heating pad throughout this period. The initial 30 min after the onset of

slow oscillation were utilized for all assessments. One mouse was excluded from the analysis due to the absence of any physiological indica-

tions of anesthesia.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all analyses, we used Python 3 with numpy (https://numpy.org/), scipy (https://docs.scipy.org/), matplotlib (https://matplotlib.org/),

sklearn (https://scikit-learn.org/stable/), and pyinform (https://elife-asu.github.io/PyInform/).

INDIVIDUAL CELL SPIKING PREPROCESSING

The spike times were rounded tomatch the respiration signal resolution (0.5ms or 2000 Hz sampling rate). Then, we convolved the spike times

of each unit with a 10 ms standard deviation Gaussian kernel employing the convolve scipy function (in close similarity with the original pub-

lication), which gave rise to a smoothed spiking activity. To obtain the MUA signals, we summed the smoothed firing rate of each individual

neuron within a population, obtaining a 1-d signal.

CANONICAL CORRELATION ANALYSIS TO STUDY THE COMMUNICATION SUBSPACE

Before performing canonical correlation analysis (CCA), all smoothed spike trains were z-scored by subtracting the mean firing rate and

dividing the result by the standard deviation. CCA seeks to find the sets of weights Wx and Wy that maximize the Pearson correlation

coefficient between the X and Y vectors (when weighted by Wx and Wy). In our case, X and Y correspond to the smoothed firing rates of

two different neuronal populations. CCA is thus defined by:

Wx ;Wy = argmaxWx;Wy

�
r
�
WxX ;WyY

��

where:

r
�
WxX;WyY

�
=

COV
�
WxX ;WyY

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARð WxXÞ VAR

�
WyY

�q

COVðÞ and VARðÞ being the covariance and variance respectively.

Wx and Wy are the weight vectors that point-by-point multiply X and Y activity (i.e., Wx X = Wx1 x1+Wx2 x2+ :::+WxN xN). They are

related to the X and Y firing vectors through their Sxy covariance matrix:

r2Wy =
�
Syy� 1 Syx Sxx� 1 Sxy

�
Wy
r2Wx =
�
Sxx� 1 Sxy Syy� 1 Syx

�
Wx

We can see that the above equation is in the form of the standard eigenvalue problem Av = lv, where l = r2 is the eigenvalue of the

A = Syy� 1 Syx Sxx� 1 Sxy matrix, andWy = v is the corresponding eigenvector. Thus, theWy andWx vectors are found as the eigenvectors

of the Syy� 1 Syx Sxx� 1 Sxy and Sxx� 1 Sxy Syy� 1 Syx modified covariance matrices respectively.

Note that there exist M Wy and Wx vectors that satisfy the previous equations, which are all the eigenvectors of the above mentioned

covariance matrices, where = minðNx;NyÞ , that is, the minimum number of neurons in either the X or Y population. EachM vector pair de-

fines one communication subspace (CS) pair. These pairs are ordered according to the correlation coefficient (R) they produce, i.e., RðCS1Þ>
RðCS2Þ > RðCS3Þ > :::>RðCSMÞ. Of note, because each CS pair is one of the eigenvectors of the modified covariance matrix, they are

orthogonal against each other, implying that the different CS dimensions for a given area are not correlated.
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For the practical implementation, we employed the CCA sklearn function employingmax_iter=100000, tol = 1e-12. The weights were ob-

tained through the x_weights_ and y_weights_ methods of the CCA object. The CS activity was obtained through the fit.transform CCA

method. CS and MUA signals were z-scored to allow comparisons.

Time-lagged CCA

The correlation between CS activities was computed using the Pearson correlation coefficient pearsonr stats.scipy function. To find the

optimal lag between both OB and PCx CS signals, we temporally lagged PCx activity by different times and computed CCA to find the

time-lag which maximizes the OB-PCx CS correlation. The weights obtained for this time-maximizing correlations were employed subse-

quently to obtain the respective CS signals.

Surrogate analysis

To understand how many significant CS pairs exist, we contrasted CS correlations through a surrogate analysis. To generate a surrogate dis-

tribution to compare CS correlation values, we circularly shifted the spiking activity of one of the populations in time by random amounts. For

each surrogate data, we computed the CCA and obtained the correlation coefficient for the first most correlated pair (CS1). The procedure

was repeated 100 times for each session, and all surrogate correlation coefficients were pooled together to yield an N = 1300 surrogate dis-

tribution (100 surrogates from 13 sessions across 12 animals). We then assessed the significance by comparing the correlation coefficient for

each CS pair against the null surrogate distribution. Only correlation values above the 99th percentile were deemed significant (p < 0.01).

Cross-correlation analysis

Cross-correlations between OB-PCx CS signals or MUA signals were estimated employing the correlate signal.scipy function using themod-

e=’same’ and method=’fft’ parameters.

Directionality analysis

We calculated the transfer entropy between the binarized CS1 signals to study the directionality between OB and PCx CS1 signals. The

binarization procedure assigned a 0 when the CS1 signal was below the mean CS1 or a 1 when the CS1 signal was above the mean. Then,

transfer entropy was estimated using a 10 ms history length between signals.

Specifically, transfer entropy is defined as:

TEX/Y = HðY =Yt� 1:t� lÞ � HðY =Yt� 1:t� l;Xt� 1:t� l Þ
where HðY =Yt� 1:t� lÞ is the conditional Shannon entropy of the Y signal given its previous history. l = 10 ms in our analysis (20 time points).

The same analysis was employed to study Resp-CS1 directionality, the only difference being that Resp andCS1 signals were down-sampled

to 40 Hz and l = 500 ms in our analysis (20 time points).

Principal component analysis

PCA finds subsets of correlated neurons within each area. The principal components (PCs) are found through the eigenvectors (v) of the

covariancematrix (Sxx), Sxx v = lv, where l are the eigenvalues (explained variance of that PC) of Sxx. We employed the PCA sklearn func-

tion to compute the PCs of the OB and PCx activity (the same OB and PCx activity vectors employed for CCA were used for PCA).

Power spectrum and coherence

We computedWelch’s modified periodogram to estimate the CS spectra (welch scipy function). Specifically, we employed a 1 s moving win-

dow with half a window overlap, setting the numerical frequency resolution to 0.1 Hz (by setting the nfft parameter to 10 times the sampling

rate). Similarly, we computed the magnitude squared coherence (OB-Resp, PCx-Resp, OB-PCx) through the coherence scipy function em-

ploying the abovementioned parameters.

To obtain a surrogate CS-Resp coherence distribution (Figure S4B), we circularly shifted the Resp signal in time by random amounts and

repeated the procedure 100 times per session. Individual CS-Resp coherence values were then compared against the null distribution

(made from CS1- shuffled Resp coherence), and only the values above the 99th percentile were considered significant (p < 0.01).

Spike-phase, correlation-phase, and directionality-phase plots

We computed the average spiking activity per respiration phase by first band-pass filtering the respiration signal using the eegfilt function

adapted for Python 3 (available at https://github.com/joaqgonzar/Gamma_Oscillations_PCx). We filtered the signal between 1 and 3 Hz

to obtain the slower frequency component. The phase (angle) of the filtered respiration signal was estimated from their analytical represen-

tation based on the Hilbert transform. We then binned the phase time series into 300 bins and computed the mean spiking activity of each

neuron for each respiration phase bin. Similarly, for each respiration phase bin, the correlation between the OB CS1 and PCx CS1 was

computed using only the time points associated to it. For the directionality-phase plot, we computed transfer entropy for each phase bin

employing a history length of 10 ms (see transfer entropy details above).
18 iScience 27, 111275, December 20, 2024
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Spike-spike histogram

For each recording session, we measured spike-spike histograms between OB and PCx neurons. We first selected the ten most positive

OB neurons according to their CS1 weights and the ten most positive and negative CS1-weighted PCx neurons. We constructed histograms

(employing 10 ms bins) of the time differences between an OB neuron spike and the spikes of a PCx neuron. To compare the shape of the

histograms (Figure 4D), we z-scored them by subtracting the mean and dividing them by the standard deviation. Peak activity (excitation/in-

hibition) shown in Figure 4E was obtained by selecting from each normalized histogram the time lag that had the largest positive (excitation)

or negative (inhibition) value.
Odor decoding from CS activity

We employed a supervised linear classifier to decode either odor identity (six different odorants at 0.3% v./v. concentration) or odor concen-

tration (four concentrations from 2 different odorants) from the CS activity. We supplied the average CS activity (CS1, [CS1,CS2], [CS1,CS2,CS3]

etc.) during the first 500 ms following the inhalation start. The classification algorithm was a linear support vector machine with a stochastic

gradient descent optimization, implemented using the sgdclassifier sklearn function. Each session was trained and tested separately using

leave-one-out cross-validation through the LeaveOneOut sklearn function; for each iteration, a single odor trial was withheld from training

and tested later; the procedure was repeated for all odor trials, and the mean accuracy was reported.

Odor cluster distances were computed by first calculating the center of mass of each cluster and then computing the Euclidean distance

between the center of mass of 2 clusters. Surrogate distributions were obtained by shuffling odor labels and computing the distance of the

surrogate clusters. This procedure was repeated 500 times for each animal.
Toy model for studying cross-area communication

We employed two different strategies to construct a toy model to validate CCA.

1) We generated two 103 10000 randomfiring ratematrices (X and Y areas in Figure S1), representing ten neurons in each area and 10000

time points. On top of that, we imposed several activation times (specific moments in time when firing rates increased substantially).

These activation times could be either local (occurring in only one matrix) or shared between both matrices (Figures S1A and S1B). To

study lagged communication (Figure S3), we made the common activation times (shared between both matrices) to be lagged in time

by two time points. To overcome the fact that CCA cannot deal with lagged correlations, we either convolved the matrices with a

Gaussian kernel or lagged one of the two matrices in time before performing CCA.

2) We also tested a synthetic case in which a set of Y neurons would receive a linear combination of X outputs (without any common

activation times). In the example of Figure S1C,

Y1 = � 0:24X1+ 0:7X2+ 0:68X3
Y5 = 0:96X4+ 0:09X5+ 0:25X6
Y9 = � 0:12X7 � 0:71X8+ 0:69X9

Where Y1 stands for neuron 1 of the Y area and so on. The weights of the combinations were picked to be orthogonal vectors to make the

different combinations independent. For Figure S1D, we increased the number of independent combinations from 0 to 10 andmeasured the

correlations obtained from each CS activity pair.
Statistics

We show group data as either mean G SEM or regular boxplots showing the median, 1st, 3rd quartiles, and the distribution range without

outliers. We employed paired one-sided (Figure 7B) and two-sided paired t-test (all remaining results except 5C and 7E) to compare between

groups. For Figures 5C and 7E we employed two-way ANOVAs. We additionally employed a one-sample one-sided t-test to compare de-

coding accuracies against chance levels. We set p < 0.05 to be considered significant (in the figure panels, *, ** and *** denote p < 0.05,

p < 0.01, and p < 0.001, respectively). Figure panels (and main text) provide the statistical tests used, exact value of n, what n represents,

definition of center, dispersion, and precision measures.
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