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shortening time scale to reduce 
thermal effects in quantum 
transistors
M. A. de ponte  1 & Alan C. santos2

In this article, we present a quantum transistor model based on a network of coupled quantum 
oscillators destined to quantum information processing tasks in linear optics. To this end, we show 
in an analytical way how a set of N quantum oscillators (data-bus) can be used as an optical quantum 
switch, in which the energy gap of the data bus oscillators plays the role of an adjustable “potential 
barrier”. This enables us to “block or allow” the quantum information to flow from the source to the 
drain. In addition, we discuss how this device can be useful for implementing single qubit phase-shift 
quantum gates with high fidelity, so that it can be used as a useful tool. To conclude, during the study 
of the performance of our device when considering the interaction of this with a thermal reservoir, we 
highlight the important role played by the set of oscillators which constitute the data-bus in reducing 
the unwanted effects of the thermal reservoir. This is achieved by reducing the information exchange 
time (shortening time scale) between the desired oscillators. In particular, we have identified a non-
trivial criterion in which the ideal size of the data-bus can be obtained so that it presents the best 
possible performance. We believe that our study can be perfectly adapted to a large number of thermal 
reservoir models.

Providing small devices that operate in quantum regime, maintaining high processing fidelity against the effects 
of decoherence, is of great importance in both quantum computing and information processing. Motivated by 
the important role played by transistors in classical devices, we can imagine how the quantum version of such 
electronic components could help us to achieve even more significant advances in quantum information process-
ing. In classical devices, a transistor can be used as a switch to block or transfer classical information (encoded in 
terms of the intensity of electric current, for example) from some source to a drain. On the other hand, differently 
from the classical transistor, because of the non-clone theorem1, a quantum transistor can not copy arbitrary 
quantum information encoded in the source. Therefore, by making an analogy with its classical counterpart, 
quantum transistors could be used to block or allow the flux of quantum information from a source to a drain. So 
that, to design a quantum transistor, we must focus on the performance of the quantum switch, trying to make 
it as efficient as possible. In this scenario, we need to study the transfer of quantum information between two 
quantum systems (quantum bits - qubits). A greater motivation to design a quantum transistor is associated with 
its applicability in quantum computation, as shown in the context of adiabatic quantum computation2, where 
fault-tolerant universal quantum computation can be efficiently achieved if we can build an “adiabatic quantum 
transistor”. Besides that, the quantum transistors were studied in the adiabatic quantum computing scenario2,3, 
spin chain4,5, ultra-cold atoms6–8, and in the other systems presented in many refs. 9–14. As a contribution of this 
paper, we discuss how a bosonic quantum transistor could be designed by using a particular arrangement of 
coupled quantum harmonic oscillators, providing therefore a quantum device for blocking and/or transferring 
quantum information in linear optics.

In the literature there are similar works to what we aim to investigate here under the approach of Quantum 
State Transfer (QST)15–17. In the works15,16, the authors investigate some particular networks oscillators in the 
strong coupling regime, in which they verify that the transfer of some particular coherent states occur in a short 
time scale inversely proportional to the square root of the number of oscillators, as we verify here. Although the 
authors perceive that the effects of decoherence on this time scale are reduced, an analysis of the temperature 
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effects is absent. In ref.17 the authors analyze the QST in a linear chain of N constituents from the perspective of an 
adiabatic dynamics. In this work the authors also manage to inhibit the effects of decoherence to the situation in 
which the state of the reservoir is the vacuum. They show that the fidelity is so close to unity the smaller the ratio 
between the decay rate γ and the coupling intensity between the constituents for a linear network with N = 39 
elements. In order to extend some of the existing works in the literature, we intend to investigate how the size of 
the data bus in a specific (and different) arrangement can be useful to inhibit the effects of decoherence in the 
presence of a thermal reservoir.

In this paper, we present a quantum transistor model that can be useful for quantum information process-
ing in linear optics. To this end, we consider that two quantum oscillators (source and drain) are coupled to 
each other only indirectly through one or even a network composed of N non-interacting quantum oscillators 
(data-bus) which play the role of the transistor gate (the quantum switch). Through the study carried out on this 
system, it is possible to demonstrate that the performance of quantum information blocking of our transistor is 
associated with the detuning between the resonant frequencies of the source and drain oscillators with the fre-
quencies of the data-bus oscillators. By using the transistor we propose in this work, which is genuinely quantum, 
one show that when the gate is opened to transfer quantum information, we can adjust many parameters (fre-
quencies, coupling strengths and the number of data-bus oscillators), or just a few, in order to implement simple 
qubit logical quantum gates associated to phase shift gates. In this sense, our study provides a model that makes 
logical quantum gates from quantum transistors, as an alternative to adiabatic quantum transistors2. Finally, we 
study the performance against the decoherence of the quantum transistor model.

Results
Any new quantum transistor proposal must be composed of three fundamental parts: source, gate and drain. If 
we want to use it in quantum computing, the most appropriate way would be to consider the source and drain 
as two-level systems (a single qubit), whereas the gate represents a quantum channel (consisting of one or more 
qubits) that indirectly connects the source with the drain.

Let us consider hereafter that the subscript = s d, , where s (d) represents the source (drain) oscillator, and 
the gate oscillators are labeled by m and/or n. In general, considering a gate as a network of non-interacting quan-
tum oscillators, instead of a single oscillator, the Hamiltonian that describes the dynamics of this system can be 
written as H = H0 + V, in which we defined

  ∑ ∑ ∑ω ω λ λ= + = +


  



   

† † † ⁎ †H a a a a V a a a a, and ( ),
(1)m

m m m
m

m m m m0
,

such that ω’s are the natural frequencies of respective oscillators, whereas λ’s are the coupling strengths between 
two oscillators characterized by the pair of subscripted indices. The operators a†’s (a’s) represent the creation 
(annihilation) of a quanta in the respective oscillator. In left Fig. 1 we consider a transistor composed of three 
parts, each part consisting of a quantum oscillator: the source oscillator (the left), the drain oscillator (the right), 
and the gate oscillator (in the middle) which is coupled to the first two.

The quantum transistor. Since a quantum transistor must be able to control the quantum information flow, 
we will consider, in our study, that the state ψs , of the source oscillator, has the information that can be encoded 
in a quantum bit whereas the state of the drain oscillator and that of the gate are in the vacuum state. In this way, 
the initial state of the whole system can be written as a tensor product of the states of each oscillator in the form 

ψ ψΨ = ⊗ ⊗ ≡(0) {0 } 0 , {0 }, 0s g d s g d . It is known in the literature that for a non-zero weak coupling 
between the resonant oscillators that unknown information will flow from the source to the drain in a transfer 
time τtrans proportional to the coupling18–20. The challenge of building a quantum transistor can be achieved when 
we use a certain system parameter to allow or block this transfer. If we could easily connect and disconnect the 
gate couplings with the source and drain oscillators, this task would be trivially executed in the situation where all 
oscillators are resonant. However, in this work we are interested in nontrivial situations, in which the couplings 

Figure 1. Left: Schematic representation of our quantum device, where the source and drain quantum 
oscillators are indirectly linked through a data bus. The data bus is constituted of N quantum oscillators, in 
which κ of them are at resonance with the source and drain (with frequency ω), meanwhile N − κ are far from 
resonance (with frequency ω ω≠

 ). Right: Scheme showing how the quantum gate (for the case of κ = 1) works, 
where the spacing between energy levels of the gate oscillator plays an important role for the performance of our 
transistor.
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between oscillators are kept constant. To this end, we aim for our quantum transistor to use our ability to increase 
or decrease the frequency of one or more gate oscillators – thus modifying the interval between the energy levels 
of this oscillator – so as to simulate the gate in our device.

In order to discuss the behavior of our transistor for various situations of interest, we will restrict ourselves to 
the parameter settings in Eq. (1) for the situation where the drain and source have same natural frequencies 
ωs = ωd = ω and the real coupling strengths between the oscillators are identical {λsm} = {λgm} = λ. As the main 
element of our system, the data bus configuration develops an important role in our transistor, as we shall see 
below. To illustrate the importance of this component, we will consider that κ data-bus oscillators are in reso-
nance with the source and the drain, meanwhile the others (N − κ) are out of resonance, such that we can write 
ωm = ω, if 1 ≤ m ≤ κ, otherwise, ω ω ω= = + Δ

m , as shown in right Fig. 1. Starting from the initial arbitrary 
state of the source oscillator ψ α β= + θe0 1s s

i
s  and assuming that the time evolution can be performed by the 

operator = −U t e( ) iHt/ , then we can conclude that the time evolution of the initial state, using the fact that 
=H 0 , {0 }, 0 0s g d , will be given by

α βΨ = + .θt e U t( ) 0 , {0 }, 0 ( ) 1 , {0 }, 0 (2)s g d
i

s g d

From Eq. (2) it is easy to show that the probabilities ps(t) and pd(t) of finding the original information in the 
qubit source and drain are, respectively, given by

α β= 〈Ψ |Ψ 〉 = + 〈 | | 〉p t t U t( ) (0) ( ) 1 , {0 }, 0 ( ) 1 , {0 }, 0 , (3)s s g d s g d
2 2 2 2

α β= 〈Φ |Ψ 〉 = + 〈 | | 〉p t t U t( ) (0) ( ) 0 , {0 }, 1 ( ) 1 , {0 }, 0 , (4)d s g d s g d
2 2 2 2

where we define the state ψ α β|Φ 〉 = | 〉 = | 〉 ⊗ | 〉 + | 〉θe(0) 0 , {0 }, 0 , {0 } ( 0 1 )s g d s g d
i

d
.

Blocking and transferring quantum information. From Eq. (3) it is possible to show that ps(t) = 1 and pd(t) = |α|4 
if, and only if, the matrix element defined by u+(t) = 〈1s, {0g}, 0d|U(t)|1s, {0g}, 0d〉 = 1 and, simultaneously, 
u−(t) = 〈0s, {0g}, 1d|U(t)|1s, {0g}, 0d〉 = 0. For the parameter regime we are considering, it is possible to perform 
the analytical calculation to determine both eigenvalues and eigenvectors in order to obtain the expressions (see 
methods section for more details) u±(t) = [Λ(t) ± 1]e−iωt/2, where we defined

Λ = + +−
+

−
−

−+ −t e e e( ) , (5)iR t iR t iR t
0
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In this way, if we consider the case where λ ∆ −N/ (3 ) 1, disregarding quadratic or superior terms, we can 
approximate θ θ κ λ≈ ≈ Δsin 6 /  and cosθ ≈ 1, and, consequently, the frequencies can be approximate to the 
values R0 ≈ 3Δ, κ λ≈± R 3 2  and the amplitudes to  ≈ 00  and ≈± 1/4 . With these values in hand, one 
can easily determine the quantities

κ λ κ λ=






 = −







.ω ω

+
−

−
−u t e t u t e t( ) cos

2
, and ( ) sin

2 (6)
i t i t2 2

Note from Eq. (6) that when none of the data bus oscillators is resonant with the source and drain (i.e., κ = 0), 
we get u + (t) = e−iωt and u−(t) = 0. This result shows that in the regime where λ ∆ −N/ (3 ) 1, the system 
dynamics becomes the same as a single isolated oscillator evolving over time. The role of this oscillating phase in 
Eq. (6) can be better understood when we write the evolution of the state Ψ(0)  in the regime λ ∆ −

 N/ (3 ) 1 
with κ = 0, that turns to be

α βΨ ≈ + ⊗ | 〉.θ ω−t e( ) ( 0 1 ) {0 }, 0 (7)s
i t

s g d
( )

Note that the information is maintained at the source, despite the appearance of a time-dependent local phase. 
As the value of this phase varies, we may have (1 − 2β2)2 ≤ ps(t) ≤ 1, which does not mean that the information 
flows from the source to the drain (or be partially destroyed), once the drain state remains in the vacuum, as we 
can see from u−(t) = 0. Moreover, it is important to highlight the fact that pd(t) = |α|4 and not zero. This value is 
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not null because the information contained in the state Ψ(0)  has a component 0 , whose probability amplitude 
is α = Ψ0 (0) , regardless of whether or not there is a dynamic between the source and drain oscillators.

Despite this, the performance of our model is not affected by this “unwanted” phase. In addition, if we let the 
system evolve indefinitely, whenever time t is a positive integer, n, multiple of the recurrence time τR = 2π/ω, we 
get exactly the input state ψs  encoded in the source qubit. Further on, we will see that this “unwanted” phase 
becomes indispensable if we are to use our device to implement quantum gates. Therefore, using the scheme in 
Fig. 1, it is possible to use the Δ-dissonance to block the quantum information indefinitely. Since the blocking 
situation is associated with our ability to adjust λ Δ N/ 1/(3 ), our model can be efficiently implemented using 
quantum dot-cavity systems21,22, coupled-cavity array23–25, bosonic lattice systems26,27 or cold atoms28, for 
example.

To analyze the quantum information transfer it is desirable to imagine that the gate configuration of the tran-
sistor (open or closed) should be controlled by the adjustment of a single physical parameter, otherwise we may 
have some technical difficulties in handling a set of parameters. In this way, as we use the dissonance Δ to close 
the gate, we need to show how this same parameter could be used to open it. In other words, from Eq. (6) we must 
discuss how a new adjustment of Δ allows us to obtain pd(t) = 1. If we want that the state Ψ(0)  will be transferred 
to the drain oscillator, two adjustments must be made simultaneously: e−iωt = −1 and tsin ( /2 ) 12 κ λ = . These 
adjustments imply that ωt and κ λt/2  must be an odd number multiple of π and π/2, respectively. That is, we 
need to have t = (2j + 1)π/ω and π λ κ= ′ +t j(2 1) /( 2 ), respectively, with j and j′ integers. To find the exact value 
of the transfer time τtrans, we must find the integers j and j′ that satisfy the equality

τ
ω

π
λ κ

π=
+

=
′ +

.
j j2 1 2 1

2 (8)trans

Note that this equality can only be satisfied when λ κ ω2 /  is the ratio between two odd numbers C1/C2, which 
can always be achieved, regardless of the values of λ and ω, with the convenient adjust of κ. Once we have made 
this adjustment, the transfer time becomes

τ
ω

π τ
λ κ

π=
+

=
+′j j2 1 or 2 1
2

,trans trans

where we must choose the smallest values of j or j′ for which C1(2j + 1) = C2(2j′ + 1).
To better understand this adjustment of κ, let us consider a numerical example. For the case where ω = 1010 Hz 

and λ = 104 Hz, we can adjust κ = 211 = 2048 in order to eliminate the powers of two from the decomposition in 
prime numbers of λ and ω and so λ κ ω2 /  becomes the ratio between two odd numbers. For this choice, we 
obtain C1 = 1 and C2 = 56 and consequently we have j′ = 0 and j = (106 − 1)/2 = 7812. With these values, the trans-
fer time will be multiple integers of τtrans = π/64λ. Another important point to highlight is the following: since 
e−iωt is a function that oscillates very quickly when compared to κ λtsin ( /2 )2 , we observe the existence of second-
ary peaks approaching the unit at time π λ κ=t /( 2 )ex , such that κ λ =tsin ( /2 ) 12

ex . This characteristic time of 
the system, which represents the information exchange time between the source and drain oscillator, is inversely 
proportional to λ κ2 , so that the larger κ, the shorter tex. (In the literature the characteristic time of the system is 
sometimes called a short time scale, i.e., it is the minimum time required for there to be a significant change in the 
state due to the dynamics of the system. When we focus on the interaction picture, this time is proportional to the 
inverse of the coupling and when we look at a network system interacting, this time also becomes to be propor-
tional to the square root of the number of oscillators N15,16). This reduction of time will be the key point to the 
study of the performance of our device against the effects of the thermal reservoirs, as we will see later.

Detuning control with atom-field interaction. In order to obtain a optimum control of our transistor it is nec-
essary that we are able to adjust the detuning parameter Δ between the data bus oscillators frequencies with the 
source and drain oscillators. This control can be accomplished through a dispersive interaction29 between an atom 
and the field inside the cavity, for example.

To illustrate this procedure, we consider the Hamiltonian Hdisp = Hfield + Hatom + Hatom−field, where 
ω=

 

†H a afield 0  is the free Hamiltonian of a single interacting mode , σ=H n zatom   is the Hamiltonian of a 
two-level atom and χ σ=−  

†H a aatom field 3  is the Hamiltonian of the dispersive interaction between the atom 
and the field, where σz = |e〉〈e| − |g〉〈g| and σ = | | − | |⟩⟨ ⟩⟨i i e e ,3  | ⟩e  ( i ) denotes the excited (virtual intermediate) 
state of the atom. The constant χ = g2/δ is given in terms of the atom-field coupling intensity, g, and the detuning 
δ = ω0 − ν between the field and atom frequencies. It is important to remember that the validity of this dispersive 
Hamiltonian is confined in situations where δ γ+g n2 2 2, where n is the mean number of photons in the field 
and γ is the spontaneous emission rate. The time evolution of an atom-field state, according to the Hamiltonian 
Hdisp, will be given by the operator = −U t e( ) iH t

disp
/disp . Since the commutator ω χσ σ+ =

 

†a a[ ( ), ] 0z0 3 , we can 
decompose the time evolution between Hfield + Hatom−field and Hatom, so that for an initial state of the atom-field 
system given by ψ = + ⊗− a b e(0) ( 0 1 )atom field , we obtain the following state evolved in time

ψ| = | ⊗ | + |

= | + | ⊗ | .ω χ

−
− − +

− − −

−





⟩ ⟩ ⟩ ⟩

⟩ ⟩ ⟩
† ( )

t e e e a b

e a b e e

( ) ( 0 1 )

( 0 1 )
(9)

i H t i H H t

i a a i H t

atom field
( )

( )
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Thus, one can see from (9) that the field state is factorized and can therefore be discarded at the end of the 
process. Moreover, we conclude that the temporal evolution of the field can be determined by the effective 
Hamiltonian

ω χ= −
∼

 

†H a a( ) ,field 0

demonstrating that the field behaves effectively with a shift in the energy ω0 → ω0 − χ, when it interacts disper-
sively with the atom. The same result can be verified when we take into account the interaction between the 
quantum oscillators.

Application to quantum computation. In general, the conditions previously discussed (for transferring 
and blocking quantum information) lead us to think about what happens if we ignore them. As we will show in 
this section, by violating the condition ωt = (2j + 1)π (for j = 0, 1, 2, …), but maintaining the condition 
λ π κ= ′ +t j(2 1) / 2  (for j′ = 0, 1, 2, …), we can implement quantum phase-shift gates. In particular, we are 
interested in a situation where we simultaneously transfer the information and apply a quantum gate, such that we 
will define κ > 0 hereafter.

In order to demonstrate how the quantum transistor we propose in this paper allows us to implement a par-
ticular set of quantum gates, let us consider the system input state as |ψs,{0g},0d〉. We know that at time 

π λ κ=t /( 2 )ex , the system output state is given by

⟩ ⟩ ⟩ ⟩α β|Ψ = | ⊗ | − | .θ ωπ λ κ−t e( ) 0 , {0 } ( 0 1 ) (10)s g d
i

dex
[ /( 2 )]

From Eq. (10), it can be seen that the output state is identical to the input state, except for a local phase that 
must be applied to the state |1〉. This result resembles that obtained by the phase shift gates R(φ), which are 
single-qubit gates that can be combined with other one- and/or two-qubit gates to provide a set of universal quan-
tum gates30,31. In general, given any input state ψ α β| 〉 = + θe0 1i

inp , after the unitary operation R(φ), the 
output state becomes ψ φ φ ψ α β= | 〉 = + θ φ+R e( ) ( ) 0 1i

out inp
( ) , for any real φ. Thus, by considering the result 

in Eq. (10) and the properties of R(φ), one can see that the drain output state becomes ψ φ φ ψ= | 〉R( ) ( )out inp , 
when we performed the adjustment for ω λ κ/( 2 ) given by

ω
λ κ

φ
π

= − >

2
0,

(11)

where  must be odd.
For any given φ, the expression (11) above shows us how we should make the adjustment in ω, if λ and κ are 

fixed. As a first important remark of the data bus role in our device, in case we have a physical system in which ω 
and λ are fixed, for example in cavity QED, we can choose the best fit of the integer κ in order to implement the 
gate. It is important to note that the equality in (11) can be obtained without any restriction with respect to the 
weak (λ ω≈N ) or strong (λN ≈ ω) coupling regime due to the presence of the term , which can be an odd large 
or small number.

In conclusion, with the adjustment made in Eq. (11), the final state becomes

α β φ ψ|Ψ = | ⊗ | + | = | ⊗ | .θ φ+⟩ ⟩ ⟩ ⟩ ⟩ ⟩t e R( ) 0 , {0 } [ 0 1 ] 0 , {0 } [ ( ) ]s g d
i

d s gex
( )

inp

Therefore, that the control can be done by simultaneous adjustment of ω, κ and, whenever available, the 
parameter λ. That shows that the quantum transistor proposed here can be used to make logic quantum gates, in 
the same way that classical transistors can implement logic classical gates.

Performance against decoherence. In order to study the performance of our quantum transistor model 
against the decoherence effects, we will consider that the system is coupled to dissipative reservoirs according to 
a Lindblad equation32. As shown in Fig. 1, in a quasi realistic scenario, each oscillator of our system is evolving 
under action of individual thermal baths, where each one is at temperature T and it is constituted by a infinite set 
of oscillators whose the average value of the frequency is around to ν. In this case, the dynamics of the system can 
be written15,16,18,20 as

ρ ρ ρ ρ= + +


t
i

H t t t( ) 1 [ , ( )] [ ( )] [ ( )], (12)se th�
L L

where the operators are defined by





∑

∑

γ

γ

= −

= − + . . .

∙ ∙ ∙

∙ ∙ ∙

† †

† †

a a a a

n a a a a

[ ]
2
[2 { , }],

[ ]
2

[2 { , } h c ]
(13)

k

k
k k k k

k

k k
k k k k

se

th

The operator •[ ]se  is associated with spontaneous emission effects while the operator •[ ]th  takes into 
account the dispersion process associated with a thermal reservoir at temperature T ≠ 0. Here γk is the emission 
rate of the k-th oscillator (k = s, d, 1, 2, 3, …), nk is the average number of thermal photons in the k-th reservoir as 
calculated from the Planck distribution with = −νn e1/( 1)h k T/ B , and kB is the Boltzmann constant. In particular, 
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it is worth mentioning that non-unitary effects on quantum transistor has been addressed in superconducting 
quantum transistor models5, where the authors considered the transfer performance of the device against dephas-
ing noise. Thus, the effects of thermal baths on such models is yet a open question.

Since our main interest is in the final state of the drain oscillator, where we will find the quantum information 
derived from the logic gate result, the state’s fidelity will be computed through  ψ ρ ψ= 〈 | | 〉t( )out ex out , where ρ(tex) 
is the whole density matrix of the system which comes from the solution of Eq.(12) while |ψout〉 = |0s, 
{0g}〉 ⊗ R(φ)|ψ〉 is the ideal output state resulting of the logical operation R(φ) on a arbitrary input single qubit 
state ψ α β| 〉 = + θe0 1i  encoded in drain oscillator.

For the regime of parameters we are considering in this work (ωs = ωd = ω and {λsm} = {λdm} = λ) it is possi-
ble to obtain an analytical solution of master equation Eq. (12) for the initial state in which the information is 
encoded in the source oscillator. If furthermore we also consider that all of data-bus oscillators are at resonance 
with the source and drain oscillators, that is, κ = N, the fidelity of finding the desired output state from the unit 
operation R(φ), encoded in the drain oscillators, is written as (see Method Section)

 α α α

α α

=






+ −












+ + −

+
−

+ −
+ − −










πγ
λ κ

κ πγ
λ κ

πγ
λ κ

πγ
λ κ

−
− +

−

−

n e n e

n e n
e n

1 (1 ) 2 (1 )

2(1 )

(1 )
( 1 ) ,

(14)

2

(3 )
2 2 2 2 2

2 2

2

2 2

where we already used the normalization condition α2 + β2 = 1 and we set ω as provided by Eq. (11). As expected, 
  depends on the initial state and so that it is convenient to define an average value  = 〈 〉ψ over all initial state 
|ψ〉. Therefore, we have
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The non-trivial form of   with respect to the physical parameters involved does not allow us to find optimal 
strategies to analyze the effects of noisy environment through an analytical approach. For this reason, we consider 
a numerical study of the behavior of   as given in the density graph shown in Fig. 2. Firstly, in Fig. 2 (top) we 
present the behavior of   as a function of the dimensionless parameters γ/λ and kBT/hν, which are associated to 
the reservoir parameters γ and T, for different values of the data-bus size κ. The range of values considered here 

Figure 2. Density plot for   according to two sets of dimensionless parameters: (top) as a function of the ratio 
between the emission rate γ with the coupling strength λ and the temperature of the thermal baths through the 
ratio kBT/hν, and (bottom) as a function of γ/λ and the number κ of resonant data-bus oscillators for different 
values of kBT/hν. Note that the optimality criteria of  , concerning the parameter κ, becomes evident with the 
highlight for the line that divides the densities regions larger and smaller than 0.9 in the graphs with 
kBT/hν = 2 · 10−1, kBT/hν = 5 · 10−1 and kBT/hν = 1 · 100.
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for the quantity kBT/hν is constrained to temperature range in which ≤n 1, which is associated with the validity 
regime of the solution in Eq. (14). It is important to emphasize the role played by the data-bus in reducing the 
decoherence effects in our system. It can be seen that for a given range of kBT/hν, we can use the size of the 
data-bus as a strategic tool to enhance the performance of the system against the effects of a thermal environment. 
Second, the Fig. 2 (bottom) presents an analysis of the fidelity  , as a function of the dimensionless parameter γ/λ 
and κ, for different choices to the thermal reservoir temperature through the parameter kBT/hν. As a complement 
to previous results, the Fig. 2 (bottom) suggests that we can not increase the data-bus indefinitely in order to get 
an optimal performance against decoherence. It establishes an optimal relationship between the data-bus size and 
the thermal reservoir parameters (γ/λ, kBT/hν), in which we could perform hardware engineering in order to 
minimize undesired thermal effects on our transistors. Such a result can be seen most clearly through the maxi-
mum point on the line separating the regions of density above and below 0.9 in Fig. 2 (bottom) for the parameters 
kBT/hν = 2 ⋅ 10−1, kBT/hν = 5 ⋅ 10−1 and kBT/hν = 1 ⋅ 100. In addition, from the Eqs (14) and (15), it is noted that 
the probability of success is independent on the phase-shift gate φ that will be implemented in our quantum 
device. Therefore, the results present in Fig. 2 are valid for any φ.

In order to give an experimental notion of how useful can be our transistor against decoherence effect, let us 
give a realistic example. Firstly, it is important to mention, in the rotating wave and Markov approximations, that 
the relevant coupling between each oscillator of the transistor with the thermal bath happens when the frequency 
ν is around to ω33,34, where the characteristic value of ω in several system is of order of about 10 GHz35,36. With 
this approximate value of ω we can estimate the value of the temperature of the thermal bath from the quantity 
kBT/hν that appears on each graph in Fig. 2 (bottom). In fact, by using the experimental values of the constants37,38 
kB = 1.380 ⋅ 10−34 J K−1 and h = 6.626 ⋅ 10−23 J s, for the case in which we have kBT/hν = 5 ⋅ 10−1, for example, the 
temperature obtained will be T ≈ 0.24 K. Thus, by considering the graph in Fig. 2 (bottom), one can conclude 
that, for the reservoir in which γ/λ ≤ 0.1 and T ≤ 0.24 K, the quantum transistor will work with high fidelity if we 
design a data-bus with approximately 10 oscillators.

Discussion
In this paper, we present a quantum transistor model based on quantum oscillators networks. We believe that 
it can be a useful device for the quantum information processing with optical devices implemented experimen-
tally in both cavity-QED and circuit-QED, for example. Our model explores the frequency detuning between 
the data-bus oscillators (the gate) with the source and drain oscillators so that the data-bus allow us to create a 
“potential barrier” to block or transfer the quantum information from the source to the drain. In this sense, the 
gate oscillators can be seen as an optical quantum switch for quantum information currents. In addition to block-
ing or transferring quantum information (when the barrier is removed), the transistor proposed here can be used 
to apply individual quantum gates when the oscillator frequency, the coupling strength between the oscillators 
and the number of resonant data-bus oscillators is properly adjusted. When considering the inevitable coupling 
of the system with a thermal reservoir, the performance of the transistor is dictated by the parameters of the envi-
ronment, namely, the bath temperature T and the emission rate γ. As expected, the system is strongly affected as 
the temperature T increases. However, we can maintain the high fidelity transfers (as well as the implementation 
of the phase-shift gate) for cavities with low γ emission rate or high quality factor. In particular, we have shown 
that the size of the data-bus (κ) can be used as a parameter to control the decoherence effects of the system. In 
the cases we consider here, we find graphically the existence of an optimal non-trivial criterion for the parameter 
κ, which depends on both the temperature and the spontaneous emission rate. The knowledge of this criterion 
allows us to design specific quantum devices where we can enhance the transfer/blocking fidelity against the 
effects of the thermal bath, in which the temperature and spontaneous emission rate are known. Obviously, the 
adaptability of our device depends heavily on our experimental ability to turn data-bus quantum oscillators on 
or off through the atom-field dispersive interaction. Provided that it can be done without too much difficulty, our 
model can be perfectly adapted to a wide variety of situations imposed by the thermal bath.

Since in our model we are interested in the weak coupling regime between the oscillators (i.e., λ ωN ), the 
rotating wave approximation can be performed. In the hypothesis that it is possible to implement the strong cou-
pling regime between the oscillators, we know from literature15,16,18–20 that there will be cross-dissipation channels 
that increase the fidelity of some particular state to be transferred or even eliminate the decoherence effect 
(dark-states). In view of this result, a natural extension of our work to the strong coupling regime should reveal us 
some additional gains in fidelity to some initial states and loss to others. As for the entanglement between the 
source-drain oscillators, what we expect, based on the refs. 15,16,18–20, we knows that in a state recurrence time and/
or state transfer time the entanglement degree goes to zero, because the states factorize from each other, and it is 
maximum in half this time, when we have a state entangled with the all data-bus oscillators. The fact that we have 
a reduction in the short time scale with the increase in the number of resonant data bus oscillators will only tell us 
that the degree of entanglement reaches its maximum value faster and not that the entanglement increases. This 
is because the topology of the network, which we propose in this article, is a sum of several transmission lines 
connected only by the extreme oscillators (each line comprises 3 oscillators). An understanding of the classical 
point of view can be made here: by increasing the number of these transmission lines, we reduce the fraction of 
the state to be transmitted between each line, reducing the short time scale and, according to the network adjust-
ment, we can reduce the transfer time and consequently decrease the harmful effects of a thermal reservoir whose 
time scale remains unchanged.

Throughout this paper, we have studied a device that can be applied to short-range communication, once we 
are interested in controlling quantum information within quantum devices. However, it is reasonable to believe 
that our model could be extended to provide long-range communication, where it would require a growth in the 
number of quantum oscillators or a change in data bus topology. We believe that our proposal opens perspectives 
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for the development of other schemes of optical quantum transistors, or more complex optical devices derived 
from it. In addition, other approaches to the development of new quantum transistors can be considered from 
the quantum transistor models mentioned here. For example, the adiabatic quantum transistor model2 uses slow 
evolutions to accomplish the task of transferring quantum information. In this sense, we can use adiabaticity 
shortcuts39–41 to speed up this task, where we could provide a superadiabatic quantum transistor. Since such STA 
method can be implemented in an arbitrary finite time42,43, the use of advanced methods of STA44–53 to develop 
such quantum devices could be appreciated for superadiabatic quantum computing42,54. In addition, since this 
extended model could be efficiently implemented using different physical systems21–28, a theoretical and experi-
mental studies will be considered in future researches.

Methods
For our purposes, we will consider a data bus consisting of a network of N non-interacting oscillators, which, 
however, each one is coupled with the source and drain oscillator with a real coupling strength {λsm} = {λdm} = λ. 
In addition, let’s consider that the frequencies of κ data-bus oscillators are in resonance with the frequencies of the 
source and drain, ωs = ωd = ω, while the others data-bus oscillators have dissonant frequencies ω ω= + Δ


. 

Under these conditions, we can obtain analytical expressions that are written in terms of the eigenvalues and 
eigenvectors of the matrix , defined by

H H� �
ω

ω

Λ
Λ Λ

Λ
=













0

0
,

(16)
DB

where Λ is a 1 × N matrix, whose elements are Λm = λ, ΛT is the transposed matrix of Λ, whereas the square 
N × N matrix DB  is a diagonal matrix whose elements are defined by  ωδ=mn mn
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Considering that j and j′ vary from 0 to N + 1, the eigenvalues and orthonormal eigenvectors of  can be 
labeled as follows:

•	 Regardless of the value of κ we will always have an eigenvalue Ω0 = ω, whose eigenvector ϑ0 has the compo-
nents =C 1/ 2j0 , if j = 0; = −C 1/ 2j0 , if j = N + 1; and Cj0 = 0 for any other value of j.

•	 When 2 ≤ κ ≤ N we find κ − 1 identical eigenvalues, which can be labeled by j′ as follows: For 1 ≤ j′ ≤ κ − 1, 
we obtain the eigenvalue ωΩ =′j , whose eigenvector ϑj′ has the components = +′C j j1/ ( 1)jj , if 1 ≤ j ≤ j′; 

= − − −′C j j j( 1)/ ( 1)jj , if j = j′ + 1; and Cjj′ = 0 for any other value of j.
•	 When 0 ≤ κ ≤ N − 2 we find N − κ − 1 equal eigenvalues, which will be labeled by j′ as follows: For 

κ  ≤  j′  ≤  N  −  2, we have the eigenvalue ωΩ =′ j ,  whose eigenvector ϑ j′ has the components 
κ κ= − + −′C j j1/ ( 1)( )jj , if κ + 1 ≤ j ≤ j′ + 1; κ κ κ= − − − − − −′C j j j( 1)/ ( )( 1)jj , if j = j′ + 2; 

and Cjj′ = 0 for any other value of j.
•	 Setting the parameters Φ = Δ2 + 6Nλ2, η κ λ= Δ Δ + −N[ 9( 3 ) ]2 2 , and θ =
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write the last three eigenvalues in compact form as
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where ′ = − +j N N N1, , 1. The eigenvector ϑ ′j  associated with each of these eigenvalues has coefficients 
defined by: =′ ′Cjj j , if j = 0 or j = N + 1; λ ω= Ω ′ −′ ′C j2 /( )jj j , if 1 ≤ j ≤ κ; and λ ω= Ω ′ −′ ′ 

C j2 /( )jj j , if 
κ < j ≤ N, where we define the normalization coefficient by
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Once the matrix C is obtained, whose columns are the eigenvectors of , we can diagonalize the Hamiltonian 
so that  ⋅ ⋅ =−C C D

1 , where the elements of the diagonal matrix D are the eigenvalues defined above. The 
new A operators, which follow the same canonical commutation rules as the original operators a, are defined by
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∑=′ ′
−A C a ,
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j
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j j j
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remembering that C−1 = CT and that we define a0 = as and aN+1 = ad.
In the situation where we have a thermal reservoir coupled to each of the oscillators of our system, according 

to ref.18, we can write the temporal evolution through the elements of a matrix Θ(t), defined by:
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The diffusion of the system occurs due to the presence of the matrix J(t), which for situations in which the 
reservoirs are identical, that is, they have the same spontaneous decay rate γj = γ and the same average number of 
thermal photons =n nj , can be written as

δ= − .γ
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−
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If we consider the initial state of the system given by ψ| 〉 = + ⊗ | 〉b b(0) ( 0 1 ) {0 }, 0s s g dsgd 0 1 , we will verify 
that the time evolution of the density operator becomes18
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where we are considering the fact that δ[x] = 1 if x = 0 and δ[x] = 0 if x ≠ 0.
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