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Abstract

Objectives

To evaluate standard dose-like computed tomography (CT) images generated by a deep

learning method, trained using unpaired low-dose CT (LDCT) and standard-dose CT

(SDCT) images.

Materials and methods

LDCT (80 kVp, 100 mAs, n = 83) and SDCT (120 kVp, 200 mAs, n = 42) images were

divided into training (42 LDCT and 42 SDCT) and validation (41 LDCT) sets. A generative

adversarial network framework was used to train unpaired datasets. The trained deep learn-

ing method generated virtual SDCT images (VIs) from the original LDCT images (OIs). To

test the proposed method, LDCT images (80 kVp, 262 mAs, n = 33) were collected from

another CT scanner using iterative reconstruction (IR). Image analyses were performed to

evaluate the qualities of VIs in the validation set and to compare the performance of deep

learning and IR in the test set.

Results

The noise of the VIs was the lowest in both validation and test sets (all p<0.001). The mean

CT number of the VIs for the portal vein and liver was lower than that of OIs in both validation

and test sets (all p<0.001) and was similar to those of SDCT. The contrast-to-noise ratio of

portal vein and the signal-to-noise ratio (SNR) of portal vein and liver of VIs were higher than

those of SDCT (all p<0.05). The SNR of VIs in test sets was the highest among three

images.

Conclusion

The deep learning method trained by unpaired datasets could reduce noise of LDCT images

and showed similar performance to SAFIRE. It can be applied to LDCT images of older CT

scanners without IR.
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Introduction

Demand for radiation dose reduction is growing as the use of computed tomography (CT) for

pediatric patients increases [1, 2]. Radiation dose reduction is commonly achieved by reducing

the X-ray tube current (milliampere-seconds; mAs) or tube voltage (kilovoltage peak; kVp) [2].

However, low-dose CT (LDCT) images reconstructed using the conventional filtered back projec-

tion method [3] suffer from excessive quantum noise, resulting in degradation of diagnostic per-

formance. With recent advances in CT technology, various commercial iterative reconstruction

(IR) methods have been proposed and have demonstrated the potential to improve the quality of

the images reconstructed from low-dose scans [4–6]. An IR apparatus is usually mounted on rela-

tively new CT scanners, and hence IR reconstructions are not available on older CT scanners.

Deep learning, a type of machine learning [7], has been recently proposed for CT dose

reduction and has shown the potential to reduce noise artifacts [8–10]. Most of these

approaches are based on learning the relationship between LDCT images and standard-dose

CT (SDCT) images by using a pair of low-dose and high-dose CT images. However, obtaining

two scans with low-dose and standard-dose protocols simultaneously is often not feasible in

real medical imaging practices.

To overcome the difficulty of preparing a paired dataset, we consider adopting the genera-

tive adversarial network (GAN) [11] that can learn the translation mapping from a source

domain to another target domain [12, 13]. The GAN is a framework consisting of two compet-

ing neural networks: a generator and a discriminator. The generator attempts to generate sam-

ples in the target domain, while the discriminator attempts to distinguish between the samples

generated by the generator and real samples in the target domain. By competing with each

other, the generator enables the generation of samples in the target domain. In medical imag-

ing, different variants of GANs have been applied to LDCT image denoising [14–16], in which

the generator maps LDCT images to SDCT images. However, paired datasets were used to

train these networks. Recently, some studies have explored the feasibility of applying a GAN

approach for paired but spatially misaligned datasets [17], or unpaired datasets [18–22].

The purpose of this study is to determine whether a deep learning algorithm trained using

unpaired LDCT and SDCT images can generate virtual SDCT images in a clinical environ-

ment. In this study, we adopted the approach described in a previous study [19] to generate

the virtual SDCT images (VIs) from the original LDCT images (OIs) and called it virtual

image generative adversarial network (VIGAN). This study was performed in two stages. First,

we trained the VIGAN using unpaired datasets, which consisted of LDCT (80 kVp) and SDCT

(120 kVp) images collected from various pediatric abdominal CT images. Second, we evalu-

ated the ability of the trained network to generate VIs. Compared with the previous study [19],

the main contributions of this study are as follows: 1) the performance of VIGAN was com-

pared with that of commercial software (SAFIRE); 2) its feasibility was investigated on a rela-

tively large clinical dataset, and was evaluated through an external clinical dataset (i.e., datasets

acquired using a CT scanner not used for training); 3) further analyses (e.g., noise power spec-

trum and qualitative analyses) were performed for image quality evaluation.

Materials and methods

This study was approved by the institutional review board of our institution, and the require-

ment for informed consent was waived.

Data preparation

Dataset preparation. All the CT images used for training and validation of VIGAN were

obtained using a 64-channel multidetector CT scanner (Sensation 64; Siemens Healthcare,
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Forchheim, Germany) with a tube current modulation program (CARE Dose4D) and recon-

structed using FBP. This CT scanner does not have an automatic tube voltage selection pro-

gram or an IR method. LDCT (fixed tube voltage of 80 kVp with 100 mAs reference tube

current) from after September 2017 and SDCT (fixed tube voltage of 120 kVp with 200 mAs

reference tube current) before September 2017 were used for training and validation of

VIGAN, respectively.

To test the trained VIGAN, we obtained LDCT (80 kVp with 262 mAs reference tube current)

images taken in 2018 from another CT scanner (SOMATOM Definition Flash; Siemens Health-

care, Forchheim, Germany), which had an automatic tube voltage selection program and used an

IR method. CT images were reconstructed by FBP and sinogram affirmed IR (SAFIRE, I30f,

strength level 3). A summary of the processes used in our study is depicted in Fig 1. We prepared

20 DICOM format files covering the liver around the portal vein for each patient.

Finally, we collected LDCT and SDCT images of 42 patients for training, LDCT images of

41 patients for validation, and LDCT images of 33 patients for testing. A total of 840 LDCT

and 840 SDCT images were used to train VIGAN, 820 LDCT images were used for validation,

and 660 LDCT images were used for test.

Radiation dose measurement. The CT dose index volume (CTDIvol, mGy) and the

dose-length product (DLP, mGy�cm) were recorded. The effective dose (ED, mSv) was calcu-

lated as ED = DLP × K (tissue-weighting factors for abdomen; variable according to tube volt-

age and age).

GAN-based virtual standard-dose image generation model

The VIGAN consisted of three main steps. First, given an OI image of size 512�512, patches of

size 128�128 were extracted with strides of 32 in each direction of the image domain. Second,

the VI patches were generated from extracted OI patches using the proposed network, which

will be explained below. Finally, the patches in the OI were replaced by the VI patches to obtain

the VI. Here, the pixel values in the overlapping region of the patches were averaged. Fig 2 pro-

vides a schematic of the VIGAN.

The proposed network was mainly based on the GANs [11] that consist of two parts: gener-

ator and discriminator. The generator tries to generate VI patches that look similar to real

Fig 1. Flow diagram of study. � VIGAN = generative adversarial network for virtual standard dose CT image, LDCT = low dose computed tomography, SDCT = standard

dose CT, VI = virtual image, SAFIRE = sinogram affirmed iterative reconstruction.

https://doi.org/10.1371/journal.pone.0260369.g001
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SDCT patches, whereas the discriminator tries to distinguish between VI and real SDCT

patches.

The pixel-wise loss between VI patches and OI patches was added to the network. This

allows the VI patches to retain the morphological information of OI patches while reducing

the noise. To improve the training stability and quality of patches for the GAN, a least-squares

loss function was used as a discriminator classifier [23]. The mathematical model is described

in detail in the S1 File.

The architecture of the generator and discriminator of the proposed network is illustrated

in Fig 3. For the generator, we adopted a deep convolutional framelet [24] that consisted of a

contracting path and an expansive path with skipped connection and concatenation layers.

Each step of the contracting and expansive path contained two convolutions with a 3×3 win-

dow, each of which was followed by batch normalization [25] and a leaky rectified linear unit

(ReLU) [26]. Next, the 2D Haar wavelet decomposition and recomposition [27] were used for

downsampling and upsampling, respectively. The high-pass filters from the wavelet decompo-

sition skipped to the expansive path, whereas the low-pass filters were concatenated with the

features in the contracting path during the same step. Finally, an additional 1×1 convolution

layer was added to generate a grayscale output image. Every convolution in our network was

Fig 2. Schematic of the VIGAN. The VI generation is performed in a patch-by-patch manner by the trained generator. G = generator,

D = discriminator. VI = virtual standard-dose CT images, OI = original low-dose CT image, SI = real standard-dose CT image.

https://doi.org/10.1371/journal.pone.0260369.g002
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performed with zero padding to match the sizes of the input and output images. In the adver-

sarial architecture, the discriminator contained four convolutions with a 4×4 window and

strides of 2 in each direction of the domain, each followed by batch normalization and a leaky

ReLU with a slope of 0.2. After the last layer, a 1×1 convolution layer was added to generate

1-D output data.

As suggested by Park et al. [19], the proposed model was minimized using an Adam opti-

mizer [28] with a learning rate of 0.0002 and mini-batch size of 40, and 200 epochs were uti-

lized for training. The training was implemented using TensorFlow [29] on a GPU (NVIDIA,

Titan Xp. 12GB) system. It required approximately one day to train our network. The network

weights were initialized following a Gaussian distribution with a mean of 0 and a standard

deviation of 0.01. Fig 4 shows the graph of generator loss over the number of epochs, as well as

the generated VIs at each epoch during the training process.

Data analysis

Quantitative analysis of virtual images. OIs and VIs were analyzed by a board-certified

radiologist (S.K.Y., with 6 years of experience in pediatric radiology). Each DICOM file was

displayed on a picture archiving and communication system workstation with soft tissue win-

dow settings (width, 250 HU; level, 125 HU). The mean CT attenuation was measured by man-

ually placing a round region of interest (ROI) in each organ (portal vein, liver parenchyma,

and paraspinal muscles). All measurements were performed at the main portal vein level. The

size and shape of each ROI was kept constant in each patient. We used the copy and paste

function to place ROIs in exactly the same location on the OI and VI. The attenuation of the

portal vein was measured at the main portal vein using a single ROI; that of the liver was

Fig 3. Network architectures of the VIGAN: generator (a) and discriminator (b). The number below the yellow

box denotes the number of features used for training. VIGAN = generative adversarial network for virtual standard

dose CT image generation. bnorm = batch normalization, conv = convolution, LReLU = leaky rectified linear unit,

concat = concatenation.

https://doi.org/10.1371/journal.pone.0260369.g003
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recorded using the mean of four ROIs by avoiding the inhomogeneous area and vessels; and

that of the paraspinal muscle was recorded using the mean of the ROIs measured on both

sides. The mean standard deviation for the paraspinal muscles was measured as image noise

(SDn).

The contrast-to noise ratio (CNR) and signal-to-noise ratio (SNR) were calculated using

the following equations: CNR = (ROIo–ROIm) / SDn and SNR = ROIo / SDn, where ROIo is

the attenuation of the organ and ROIm is the attenuation of the paraspinal muscle.

The image quality was further evaluated using the noise power spectrum (NPS) [30] which

represents the properties of image noise. For each image, multiple patches with a size of 32×32

were selected from homogeneous regions of the liver. The selected patches were normalized to

their mean intensities and were used to calculate the NPS. The smaller the area under the

curve (AUC) and peak frequency (i.e., the frequency at which the NPS has the maximum mag-

nitude) of the NPS curve, the lower the noise level and image sharpness, respectively [31].

Qualitative analysis of virtual images. The qualitative analysis was performed indepen-

dently by two board-certified radiologists (S.K.Y., with 6 years of experience in pediatric radi-

ology, and J.E.L., with 8 years of experience in abdominal radiology). The readers assessed the

image contrast, image noise, and overall image quality, by using a five-point scoring system.

Before starting the subjective analysis, the two reviewers defined the assessment scale for the

qualitative analysis of each item by consensus.

The five-point scale used to score the enhancement of the liver and portal vein is as follows:

1: very poor, 2: suboptimal, 3: acceptable, 4: above average, and 5: excellent. The five-point

scale employed to assess the image noise is as follows: 1: unacceptable noise, 2: above-average

noise, 3: average noise on an acceptable image, 4: less-than-average noise, and 5: minimum or

Fig 4. Graph of generator loss over the number of epochs, and the generated virtual SDCT images (VIs) at each epoch during the training process. (See Eq. (2) in

the S1 File section for a mathematical expression of the generator loss J(G)).

https://doi.org/10.1371/journal.pone.0260369.g004
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no image noise. Finally, the five-point scale used to describe the overall image quality is as fol-

lows: 1: unacceptable diagnostic image quality, 2: sub-diagnostic, 3: average, 4: better than

average, and 5: excellent.

Image distinction possibility. We also evaluated the “image distinction possibility” by

assessing whether the reviewers could distinguish between SDCT and virtual SDCT by visual

assessment. Two readers (H.S.K, and H.J.), who had not previously reviewed the virtual SDCT,

reviewed the CT images in random order and determined whether the images were real or

virtual.

Statistical analysis. The data were analyzed using IBM SPSS Statistics for Windows (Ver-

sion 22.0., IBM Corp., Armonk, NY) and MedCalc (version 17.2, Mariakerke, Belgium). The

statistical significance was defined as p< 0.05. The one-way analysis of variance (ANOVA)

with a Tukey multiple-comparison post-hoc test was used to compare the linear measurements

among the three groups. The significance levels of the post hoc tests were set at p< 0.016 to

rectify the alpha error associated with multiple comparisons. A student’s t-test was used per-

formed to assess the differences between the two groups and a p-value of<0.05 was considered

statistically significant. The Cohen’s kappa statistic was used to assess the degree of inter-

observer agreement of the qualitative analysis. The weighted kappa value was interpreted as

follows: 0.81–1.00: excellent agreement, 0.61–0.80: substantial agreement, 0.41–0.60: moderate

agreement, 0.21–0.40: fair agreement, and<0.20: poor agreement.

Results

Patients and radiation dose

The characteristics of the patients are summarized in Table 1. There were no significant differ-

ences in the sex and age of the patients included in the training and test datasets. The mean

CTDIvol, DLP, and ED of LDCT were statistically lower than those of SDCT by 36.6%, 32.5%,

and 31.8%, respectively.

Quantitative analysis of validation set

The CT numbers, image noise, CNRs, and SNRs of the OIs, Cycle-GAN, VIs, and SDCT are

summarized in Table 2. The image noise of VIs was the lowest among those in validation set

(p< 0.001, Fig 5). The mean CT numbers of the portal vein, liver, and paraspinal muscles of

OIs were the highest among those in validation set (p< 0.001). The mean CNR of the portal

vein and the mean CNR and SNR of the liver of VIs were higher than those of Cycle-GAN (all

p<0.016). Based on a comparison of the results of of VIs and SDCT of training set, image

Table 1. Patient characteristics and radiation dose.

Training set Validation set p-value Dose reduction��� (%)

Standard-dose CT (120 kVp, n = 42) Low-dose CT (80 kVp, n = 42) Low-dose CT (80 kVp, n = 41)

Sex (boys/girls) 24/18 31/11 24/17 0.21�

Age (years) 6.2±2.2 7.2±2.5 7.4±2.2 0.59

CTDIvol (mGy) 4.1±1.1 2.6±0.5 2.5±0.4 < 0.001�� 36.6

DLP (mGy�cm) 156.2±54.3 105.4±30.0 98.9 ± 22.9 < 0.001�� 32.5

ED (mSv) 4.4±1.1 3.0±0.6 2.8±0.5 < 0.001�� 31.8

� Pearson chi-square.

�� Differences between standard dose CT and low dose CT from ANOVA test.

��� Calculated in training datasets between standard dose CT and low dose CT.

https://doi.org/10.1371/journal.pone.0260369.t001
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noise of VIs was lower than those of SDCT (p = 0.006). There was no statistically significant

difference of mean CT numbers of the portal vein, liver, and paraspinal muscles between VIs

and SDCT(all p>0.05). The CNR of portal vein and the SNR of portal vein and liver of VIs

were higher than those of SDCT (all p<0.05).

Quantitative analysis of test set

The CT numbers, image noise, CNRs, and SNRs of the OIs, SAFIRE, and VIs are summarized

in Table 3. The mean CT numbers of VIS in the portal vein, liver, and paraspinal muscles were

lower than those of OIs and SAFIRE (p< 0.001). The mean image noise of the VIs was the

lowest among the three images (p< 0.001, Fig 6). In post-hoc test, there was statistically signif-

icant difference in image noise between the OI and SAFIRE, and between the OI and the VI

(p = 0.011, p< 0.001, respectively). However, there was no statistically significant difference in

image noise between the VI and SAFIRE (p = 0.059). The mean CNR of VIs of the portal vein

and liver were higher than OIs and similar to SAFIRE, without any significant statistical differ-

ence. The mean SNR of VI of the portal vein and liver were highest among the three images

(p< 0.006 and 0.003, respectively). In the post-hoc test, there was a significant difference only

between the OI and the VI (p = 0.007, 0.003, respectively). Fig 7 shows the NPS curves for orig-

inal LDCT, SAFIRE, and VIGAN. As shown in the figure, the AUC of VIGAN was lower than

that of SAFIRE and original LDCT, however, the peak frequency was the same. This results

indicate that VIGAN achieves better noise reduction while maintaining an adequate image

sharpness compared with SAFIRE and original LDCT.

Qualitative analysis of validation set

The results of the qualitative analysis performed by the two readers are presented in Table 4.

The inter-observer agreement was substantial to excellent because the weighted kappa values

ranged from 0.68 to 0.93. The image contrast (enhancement of the liver and portal vein) and

the overall image quality of the two groups were not significantly different (all p> 0.05). The

Table 2. Quantitative image analysis of training and validation dataset.

OI of Validation

dataset (n = 41)

Cycle-GAN of

Validation dataset

(n = 41)

VI of Validation

dataset (n = 41)

SDCT of

Training dataset

(n = 42)

p-value of ANOVA

-test among

Validation dataset

OI v.s.

Cycle-

GAN

OI v.s.

VI

Cycle-

GAN v.s.

VI

p-value of t-test

between VI and

SDCT

Image noise 14.2 ± 6.3 10.8 ± 2.1 9.4 ± 1.9 10.6 ± 2.5 < 0.001 < 0.001 <

0.001

0.008 0.006

CT number (mean±SD)

Portal vein 247.3 ± 47.2 194.4 ± 30.8 199.5 ± 33.6 187.6 ± 23.4 < 0.001 < 0.001 <

0.001

0.82 0.72

Liver 145.6 ± 42.2 118.2 ± 15.9 119.2 ± 12.0 120.7 ± 12.6 < 0.001 < 0.001 <

0.001

0.967 0.561

Paraspinal

muscle

75.8 ± 9.7 71.4 ± 6.2 69.8 ± 5.7 70.7 ± 5.7 0.001 0.021 0.001 0.582 0.425

CNR (mean±SD)

Portal vein 13.1 ± 4.7 11.6 ± 3.4 14.2 ± 4.5 11.6 ± 4.7 0.024 0.139 0.640 0.016 0.001

Liver 5.3 ± 3.9 4.4 ± 1.7 5.4±1.7 5.0 ± 2.0 0.162 0.420 0.448 0.039 0.097

SNR (mean±SD)

Portal vein 18.9 ± 5.4 18.5 ± 4.4 21.9 ± 5.5 18.6 ± 6.4 0.005 0.731 0.059 0.008 0.001

Liver 11.1 ± 4.4 11.3 ± 2.7 13.1 ± 2.9 12.0 ± 3.7 0.017 0.779 0.001 0.008 0.018

� OI; original image, VI; virtual image, SDCT; standard dose CT.

https://doi.org/10.1371/journal.pone.0260369.t002
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image noise of VIs was estimated to be less than that of OIs (p< 0.001). Both OIs and VIs

were assigned more than 3 points, indicating "average noise in an acceptable image."

Image distinction possibility of validation set

The sensitivity and specificity for correct differentiation between SDCT in the training set and

VIs were obtained by a visual assessment. Reader 1 recorded a sensitivity and specificity of 55.0%

and 42.5%, respectively, and reader 2 recorded values of 67.5% and 27.5%, respectively. The over-

all sensitivity and specificity of the reader performance were 61.2% and 35.0%, respectively.

Fig 5. Images of original LDCT, Cycle-GAN, and VIGAN for validation set. Second and fourth rows show zoomed

regions-of-interests marked with red rectangles in the images of the first and third rows. VIGAN achieves the lowest

image noise (i.e., standard deviation(SD)) compared to Cycle-GAN and original LDCT. WL/WW = 115/250 for

original LDCT. WL/WW = 85/250 for Cycle-GAN and VIGAN.

https://doi.org/10.1371/journal.pone.0260369.g005
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Discussion

Machine learning, as a branch of artificial intelligence, has been one of the most important

topics in medical imaging, and deep learning, a specific artificial neural network technique, is

considered a promising type of machine learning in medical imaging [32, 33]. In this study, we

adopted a deep-learning method to convert an original LDCT image into a virtual SDCT

image. The results show that it is possible to train the VIGAN using an unpaired set of LDCT

and SDCT images and use it for the denoising of LDCT.

In the quantitative analysis, not only the image noise of the VIs but also the CT attenuation

was reduced. The CT numbers of the portal vein, liver, and paraspinal muscle were higher in

the OIs than in the VIs and original SDCT. The reason for the high CT attenuation observed

Table 3. Quantitative image analysis test data.

OI SAFIRE VI p-value

(n = 33) (n = 33) (n = 33) OI v.s.SAFIRE OI v.s. VI SAFIRE v.s. VI

Image noise (mean±SD) 12.4 ± 5.0 9.5 ± 4 7.1 ± 2.7 < 0.001 0.011 < 0.001 0.059

CT number (mean±SD)

Portal vein 248.9 ± 50.9 247.8 ±48.5 200.6 ± 45.5 < 0.001 0.995 < 0.001 < 0.001

Liver 139.8 ± 24.3 140. ± 24.4 118.3 ± 14.4 < 0.001 1 < 0.001 < 0.001

Paraspinal muscle 71.2 ± 10.3 71.5 ± 9.3 66 ± 7.8 0.027 0.99 0.061 0.044

CNR (mean±SD)

Portal vein 16.2± 7.5 21.2± 9.8 21.2± 10.1 0.04 0.075 0.077 1

Liver 6.4± 3.7 8.5± 5.0 8.5± 4.3 0.1 0.154 0.153 1

SNR (mean±SD)

Portal vein 22.9± 9.3 30.1± 12.2 31.9± 13.0 0.006 0.038 0.007 0.804

Liver 13.1± 5.7 17.3± 7.6 19.1± 7.9 0.003 0.054 0.003 0.554

� OI; original image, VI; virtual image.

https://doi.org/10.1371/journal.pone.0260369.t003

Fig 6. Images of original LDCT, SAFIRE, and VIGAN for test dataset. The second row shows zoomed regions-of-

interests marked with the red rectangle in the images of the first row. The image noise (i.e., standard deviation(SD)) of

VIGAN was lower than that of original LDCT and similar to that of SAFIRE. WL/WW = 125/230 for original LDCT

and SAFIRE. WL/WW = 75/230 for VIGAN.

https://doi.org/10.1371/journal.pone.0260369.g006
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in the 80 kVp image can be explained as follows. The mean energy level of X-rays at 80 kVp is

closer to the K-edge of iodine (33 keV) than it is at 120 kVp [34]. Hence, the mean attenuation

of the vessels and organs is higher in the 80 kVp portal phase image.

However, the CNR and SNR of the portal vein and liver were higher in the VIs without a

significant statistical difference. Furthermore, in the qualitative analysis, the image contrast

and image noise scores of OIs were higher than those of VIs, but the overall image quality

Fig 7. Comparison of intensity normalized NPS curves among original LDCT, SAFIRE, and VIGAN.

https://doi.org/10.1371/journal.pone.0260369.g007

Table 4. Qualitative image analysis for validation dataset.

OI of validataion dataset VI of validation dataset p-value k-value

Enhancement of liver and portal vein

Reader 1 3.9±0.4 3.8±0.4 0.28 0.93

Reader 2 3.8±0.4 3.7±0.4 0.42

Image noise

Reader 1 3.0±0.4 3.9±0.3 <0.001 0.84

Reader 2 3.0±0.5 3.9±0.5 <0.001

Overall image quality

Reader 1 3.7±0.4 3.9±0.3 0.09 0.68

Reader 2 3.7±0.5 3.8±0.3 0.11

� OI; original image, VI; virtual image, SDCT; standard dose CT.

https://doi.org/10.1371/journal.pone.0260369.t004
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score was higher in VI. According to our quantitative and qualitative analysis, the image noise

reduction is more efficient than reduced CT attenuation in VIs. Consequently, we can con-

clude that the proposed network is efficient in learning the differences between 80 kVp and

120 kVp images, not only for the image noise, but also for CT attenuation. In addition, the

poor image distinction possibility of two readers shows that it is difficult to differentiate

between SDCT and VIs only through visual assessment.

In the results of the test dataset, the mean CT numbers of VIs were lower than OIs and

SAFIRE, which is similar to the results of the validation dataset. VIs of the test dataset show

the lowest mean image noise and highest mean SNR among the three images (OI vs. SAFIRE

vs. VI) without significant statistical difference between SAFIRE and VIs. The NPS analysis

also showed that VIGAN can reduce noise while maintaining an image quality similar to that

achieved with the IR method. VIGAN performs well when the test domain (80 kVp with 262

mAs) is close to the training domain (80 kVp with 100 mAs). However, further study is

required to determine the robustness of the proposed deep learning based denoising method

in real clinical environment. Domain adaptation techniques [35] may further improve the per-

formance of VIGAN when the test domain is considerably different from the training domain.

Fig 4 shows that the generator loss (J(G)) of VIGAN converges (but not stably) to its local

minima as the number of epochs increases. This may be related to several factors such as 1) the

inherent nature of GAN (i.e., finding a solution of the min-max problem), 2) the network size

and algorithms used to update the weights, and 3) the size and quality of training datasets.

More rigorous analysis is needed to elucidate this phenomenon. The deep learning method

was performed in a patch-by-patch manner, rather than being applied to all images. Thus, the

number of training datasets was significantly increased, allowing for the efficient learning of

localized noise artifacts [36]. Previously, similar approaches involving the application of GAN

objective functions with additional constraints have been proposed for image-to-image trans-

lation [12, 13, 37]. The results demonstrate that the constraints used help to preserve the global

structure of the input data.

The strength of our study is that we used "unpaired data sets" obtained from the CT images

of real patients. Because performing a CT scan twice at the same time to prepare paired data

sets is ethically unacceptable in real medical environments, it is difficult to obtain paired data

sets from patients in real clinical practice. If a CT is taken to simply obtain a pair of data sets,

one patient must undergo two consecutive CT scans under two protocols (80 kVp and 120

kVp). Chen et al. [8] also proposed a method for noise reduction in LDCT using a deep convo-

lution neural network. They trained their network using the normal-dose images and the cor-

responding generated low-dose images. To validate the effect of the trained network, a test set

was prepared by taking the chest CT of a sheep under anesthesia with two protocols: normal-

dose scan (100 kVp, 150 mAs) and low-dose scan (80 kVp, 17 mAs). Suzuki et al.(9) used pairs

of low-dose chest CT (0.1 mSv, 120 kVp, 4 mAs) images and corresponding high-dose CT (5.7

mSv, 120 kVp, 230 mAs) images of an anthropomorphic chest phantom reconstructed by the

FBP to train their network. The trained network was applied to new LDCT (0.1 mSv) of

patients from three different vendors to generate the virtual high-dose CT images. The way in

which the reduction of CT radiation dose was achieved in this study was very similar to ours,

except that we used unpaired data sets of real patients to train our network. We adopted a

GAN framework that can be trained by using “unpaired data sets” [11–13]. There have been a

few reports on the application of GANs to LDCT [14, 15]. These studies used paired data sets

obtained from a phantom [14] or animal [15] to train their proposed algorithms. Yang et al.

[14] compared various networks to evaluate the LDCT image denoising effect, and they pro-

posed a network based on GAN. They used a data set authorized for “the 2016 NIH-AAPM-

Mayo Clinic Low Dose CT Grand Challenge” that contained normal-dose abdominal CT
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images and simulated quarter-dose CT images to train and test the proposed network. Yi et al.

[15] proposed a sharpness-aware GAN for LDCT denoising. They compared the GAN using

two traditional image denoising methods (BM3D, K-SVD), and the images reconstructed

using IR methods (ASIR and VEO) were also compared. They prepared various dose-level CT

images using piglets to generate the test set. Only two patient scans without accurate dose

information were used to evaluate the proposed program.

Our study has some limitations. First, the feasibility of using virtual CT images was evalu-

ated, but the diagnostic performance was not assessed. We excluded the cases with liver abnor-

malities, and hence no objects were used to evaluate the diagnostic ability of the CT images.

Subsequent studies on the evaluation of the diagnostic ability of virtual CT images are expected

to be conducted. Second, we only compared VIGAN with SAFIRE, only one of the various

types of IR software. Further comparison of different IR methods obtained from multiple cen-

ters could be required to prove the validity of VIGAN, which is a part of our future work.

In conclusion, this study shows that the deep learning method trained by unpaired datasets

can improve the quality of LDCT images obtained from old CT scanner without the IR

method, and can also achieve comparable image quality to the IR method. The results of our

study provide a new direction for LDCT research through deep learning.
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