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Abstract

Multiple factors can help predict knee osteoarthritis (OA) patients from healthy individuals,

including age, sex, and BMI, and possibly metabolite levels. Using plasma from individuals

with primary OA undergoing total knee replacement and healthy volunteers, we measured

lysophosphatidylcholine (lysoPC) and phosphatidylcholine (PC) analogues by metabolo-

mics. Populations were stratified on demographic factors and lysoPC and PC analogue

signatures were determined by univariate receiver-operator curve (AUC) analysis. Using

signatures, multivariate classification modeling was performed using various algorithms to

select the most consistent method as measured by AUC differences between resampled

training and test sets. Lists of metabolites indicative of OA [AUC > 0.5] were identified for

each stratum. The signature from males age > 50 years old encompassed the majority of

identified metabolites, suggesting lysoPCs and PCs are dominant indicators of OA in older

males. Principal component regression with logistic regression was the most consistent mul-

tivariate classification algorithm tested. Using this algorithm, classification of older males

had fair power to classify OA patients from healthy individuals. Thus, individual levels of

lysoPC and PC analogues may be indicative of individuals with OA in older populations, par-

ticularly males. Our metabolite signature modeling method is likely to increase classification

power in validation cohorts.
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Introduction

Commencing at age 50, there is a steep increase in the incidence of symptomatic osteoarthritis

(OA) and the number of individuals undergoing total knee replacement (TKR) [1–3]. Individ-

uals of high body mass index (BMI) and female sex also have increased risk of TKR due to pri-

mary OA [4, 5]. The World Health Organization defines individuals with BMI� 30 as obese.

There are currently no effective biomarkers to identify individuals with advanced OA.

The metabolome represents the cumulative output of metabolic processes occurring within

an individual and includes compounds such as lipids and amino acids, among others. In addi-

tion to the amino acid arginine [6], select lysophosphatidylcholine (lysoPC) to phosphatidyl-

choline (PC) analogue ratios are altered in plasma from patients with OA compared to healthy

adult volunteers (HV) and the ratio of total lysoPCs to PCs are predictive of TKR in 10 years

follow-up [7]. It is unclear, however if a signature of individual metabolite levels, specifically of

lysoPC or PC analogues, in a combined signature, is capable of classifying OA from healthy

individuals. In addition, optimal methods to help improve predictive metabolite selection and

prediction modeling in cross-sectional cohorts to aid in successful prediction in external vali-

dation cohorts have not been investigated.

In this study, we sought to determine if a signature of metabolite levels could be predictive

of OA vs healthy volunteers using a selection and modeling method to improve selection and

predictive consistency. Using plasma from a cohort of patients undergoing TKR surgery due

to primary OA and HV, we measured lysoPC and PC analogues. Stratifying along age, sex

and BMI, we determined unique signatures based on each stratum using systematic univariate

modeling followed by prediction analysis using various multivariate modeling algorithms for

comparison. Thus, we present a method to investigate demographically-stratified populations

from a single cross-sectional cohort to determine the best possible predictive metabolite signa-

ture of individual metabolite levels that can be used in future validation studies.

Materials and methods

Study participants

Patients receiving TKR due to primary OA were obtained from the Newfoundland Osteoar-

thritis Study (NFOAS) [8]. HV were from the The Complex Diseases in the Newfoundland

population: Environment and Genetics (CODING) study [9]. Both OA patients and HV were

from Newfoundland & Labrador, Canada. Knee OA diagnosis was made based on American

College of Rheumatology clinical criteria for classification of idiopathic OA of the knee [10]

and judgment of attending orthopedic surgeons. Controls were those without an OA diagnosis

in any joints based on medical information collected by a self-administered questionnaire. The

distribution of clinical and demographic variables in strata and a comparison between OA and

HV individuals is shown in Table 1.

Metabolite profiling, signature determination, and predictive modeling

Blood samples were collected after minimum 8 hours of fasting. Blood was collected into

K2EDTA-plasma tubes. EDTA-plasma was separated from whole blood by centrifugation at

1500 rcf for 10 mins at 4˚C. Plasma was aliquoted at stored at -80˚C until use. Plasma was

thawed on ice and metabolite profiling was performed using Liquid Chromatography(LC)/

Mass Spectrometry (MS)/MS using the Waters XEVO TQ MS Ultra Performance LC/MS/MS

system (Waters Limited, Mississauga, Ontario, Canada) coupled with Biocrates AbsoluteIDQ

p180 kit. All analytical metabolite quantification was performed using the Absolute IDQ-
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coupled MetIDQ software package (Biocrates Life Sciences AG, Austria), as described [8].

Only lysoPC and PC analogue concentrations were used for analysis in this study.

Metabolite concentrations were adjusted for batch effects and log (x+1) transformed to nor-

malize variable distributions for modeling using linear effects. The cohort was stratified based

on age (� 50 or > 50 years), BMI (� 30 or< 30 kg/m2), and/or sex. The information for each

stratum is presented in Table 1.

Subpopulations (OA vs. HV, stratified by age) were assessed for metabolite variance homo-

geneity to check for structural differences. Homogeneity was tested using PERMDISP2 [11]

and significance was measured using Tukey’s HSD test. For model building, we pre-selected

individual metabolites within each of the stratified populations using predictive area under

the curve (AUC) in a logistic regression using a non-parametric bootstrap [12]. We randomly

sampled N individuals with replacement to generate 1000 training sets to which we fit a logistic

regression with single metabolites, and then estimated predictive AUCs on individuals not

included in the corresponding training set. Under the bootstrap, this is about 1/3 of the sam-

ples, constituting the test set. Using the replicates, we generated an empirical distribution of

AUCs for each metabolite and selected those with consistent predictive power (AUC > 0.5 at

the 2.5% quantile).

Metabolites above the cutoff for each stratified population were used as inputs into three

predictive algorithms for classification: principal component regression with logistic regres-

sion (PCR), partial least squares regression (PLS) with logistic regression, and simple logistic

regression. PLS and PCR approaches were used for dimensionality reduction as metabolites

tended to be correlated. The use of multiple metabolites projected onto components of correla-

tion for PLS and variation for PCR is to achieve a more robust signal, compared to reducing

metabolite lists to achieve a higher AUC, which may be specific to the dataset and thus overfit

the model. For each modeling algorithm, the bootstrap process was repeated 1000 times to

generate an empirical distribution of AUCs. For PCR and PLS, the number of components

was selected by minimizing overfit, as measured by the differences between average training

and test set AUCs from the bootstrap. The results indicated that the first principal component

was optimal in both models. Aggregate concentrations of metabolite groups [(lysoPC, diacyl

PC (PCaa), acyl-alkyl PC (PCae)] from all measured metabolites were also used in separate

logistic models. The process was repeated for all strata. The modeling process is presented in

Fig 1. We have also provided the statistical code used for analysis using R package (https://

www.r-project.org; S1 Document).

Study Approval

The study was approved by the Health Research Ethics Authority (HREA) of Newfoundland &

Labrador (reference number 11.311) and written informed consent was obtained from all par-

ticipants prior to inclusion in the study.

Results

The cohort utilized for the study is presented in Table 1. A total of 346 individuals (152 OA,

194 HV; 159 males, 187 females) were studied. The OA population was older and had higher

BMI (all P< 0.05), but the groups had similar sex distributions. Since age was significantly dif-

ferent, our study focused on individuals over 50 years old. This reduced the mean difference in

age between OA and HV to 4.5 years compared to 13.6 years in the entire cohort (Table 1).

Furthermore, variance of metabolite levels between age-stratified cohorts was significantly dif-

ferent (P< 0.05) whereas the variance of metabolite levels between OA and HV individuals

over age 50 was not significantly different (P> 0.05), further suggesting a need for age
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Fig 1. A stepwise approach to metabolite signature identification and predictive model optimization using stratified populations

from a single cohort. The following stepwise approach includes data from the age> 50 years stratified population and is representative of

results generated for each subpopulation. AUC, area under the curve; lysophosphatidylcholine (lysoPC); diacyl-phosphatidylcholine

(PCaa); acyl-alkylphosphatidylcholine (PCae); partial least squares with logistic regression (PLS); principal component analysis with

logistic regression (PCR).

https://doi.org/10.1371/journal.pone.0199618.g001
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stratification. The variance of metabolite levels between OA and HV individuals in BMI-strati-

fied groups, either in the entire cohort or in individuals over the age of 50, was not significantly

different (P> 0.05). This suggested that age, rather than BMI was the major confounder, even

though BMI between HV and OA individuals was significantly different in stratification of

age> 50 years with BMI� 30 or BMI< 30 (Table 1).

Qualitatively, we were unable to identify overt trends between males, females, HV and OA

patients over 50 years old using heat-map analysis (Fig 2A), suggesting that smaller changes in

individual metabolite levels are important for detecting OA. We therefore analyzed each stra-

tum population to identify individual metabolites predictive of OA using univariate receiver

operator AUC analysis (Table 2). A list of predictive metabolites for OA was identified using

bootstrapped logistic regression analysis (Fig 1). Most of the strata generated unique signatures

of OA-indicative metabolites, except for females and individuals with BMI < 30 kg/m2, which

did not have any metabolites that met our selection criteria (Table 2).

Comparing signatures obtained from stratum age> 50 years old to the same aged popula-

tions also stratified based on sex, we determined that the signature identified in males

age> 50 years old encompassed all of the metabolites identified within the age> 50 years pop-

ulation, along with the single metabolite identified for the age> 50 years female population

(Fig 2B, Table 2). The signature from males age> 50 years old stratum also encompassed all

but 2 metabolites derived from the age> 50 years with BMI� 30 or< 30 kg/m2 stratified pop-

ulations (Fig 2C). This suggests that lysoPC and PC analogues have most power to detect OA

in older males.

Next, we investigated multivariate algorithms to identify ones with the most consistent clas-

sification power (Fig 1, Table 3). Analyzing differences in AUC we found that multivariate

logistic modeling was poor at maintaining predictive consistency. For principal component

with logistic regression (PCR) and partial least squares with logistic regression (PLS)

approaches on the top component, PCR was slightly more consistent than PLS modeling

based on absolute mean differences, being more consistent at the 2.5% and 50% quantiles, but

slightly worse at the 97.5% quantile. PCR modeling also tended to be more conservative, as

training set AUCs were marginally smaller compared to PLS (Table 3). Based on PCR model-

ing, we found that the males > 50 years old signature was most accurate in differentiating OA

and HV, with a median AUC of 0.751 and 0.752, for the training and test sets respectively (Fig

2D, Table 3).

Finally, we evaluated whether all measured phospholipids aggregated by type, namely

lysoPCs, PCaas, and PCaes, could be used as predictors of OA (Fig 2E, Table 3). Consistent

classification accuracy above random was not achieved for all strata using the same modeling

algorithms at a 2.5% quantile cutoff. For PCR and PLS modeling, equivalent quantiles of

AUC were between 5.2–20.8% and 4.9–18.4% lower, respectively, compared to using signature

metabolites. Thus, performance was inferior to using signature metabolites modeled using

PLS or PCR (Table 3).

Discussion

We have outlined an approach to identify individual metabolites strongly indicative of OA and

a method of using them in classification modeling. Our results showed OA vs HV classification

using metabolite levels was strongest in older males, resulting in a signature of 32 metabolites

that individually had power to classify OA vs HV. Furthermore, we determined that modeling

the signature using PCR with a single component resulted in the most consistent classification

accuracy, as measured by mean AUC differences between bootstrap training and test sets.

Finally, we concluded that using a signature-based list of metabolites and PCR/PLS modeling
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Fig 2. A discrete lysoPC and PC signature of metabolites from males over the age of 50 was dominant in individuals over the age of

50 years and was indicative of males with OA versus HV. (A) Heat-map of the stratified cohort of individuals overs the age of 50 years

separated by sex and total knee replacement due to osteoarthritis (OA) vs healthy adult volunteers (HV). (B & C) Venn diagrams

generated by metabolite signatures (Table 2) from males, females and all individuals over the age of 50 years (B) or males, individuals

with body mass index (BMI)� 30 or BMI< 30 kg/m2 (C). (D & E) AUC curves generated by principal component with logistic

regression (PCR) modeling using the metabolite signature (D) or aggregate sum of lysophosphatidylcholine (lysoPC), diacyl-
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phosphatidylcholine (PCaa) and acyl-alkylphosphatidylcholine (PCae) analogues (E) from the male age> 50 years stratified population.

Blue lines represent training set area under the curve (AUC). Red lines represent test set AUC. Dotted lines are 95% confidence

intervals.

https://doi.org/10.1371/journal.pone.0199618.g002

Table 2. Metabolites with a 2.5% quantile area under the receiver-operator curve� 0.5 determined by bootstrapped logistic regression of the stratified study popu-

lation described in Table 1.

Metabolite All Age > 50 Males Age > 50 Males Females Age > 50 Females BMI� 30 Age > 50 BMI � 30 BMI < 30 Age > 50 BMI < 30

lysoPCaC16:0 0.66

lysoPCaC28:1 0.6 0.64 0.64 0.67 0.66

PCaaC28:1 0.62 0.65

PCaaC32:3 0.61 0.67 0.69 0.70 0.66 0.62 0.69 0.64

PCaaC34:3 0.62 0.65 0.68

PCaaC36:0 0.6 0.62 0.63 0.66

PCaaC36:2 0.65

PCaaC36:5 0.61 0.69

PCaaC36:6 0.59 0.64 0.64 0.70

PCaaC38:0 0.59 0.64 0.67 0.72

PCaaC38:5 0.61 0.64 0.68

PCaaC38:6 0.61 0.65

PCaaC40:1 0.61 0.63 0.67

PCaaC40:2 0.65

PCaaC40:6 0.65

PCaaC42:0 0.62

PCaaC42:2 0.59 0.63 0.66 0.65

PCaaC42:5 0.66

PCaeC30:1 0.64 0.68

PCaeC30:2 0.59 0.63 0.65 0.68

PCaeC32:2 0.6 0.65 0.65 0.69 0.68

PCaeC34:0 0.6

PCaeC34:1 0.61

PCaeC34:2 0.62 0.65

PCaeC34:3 0.62 0.64

PCaeC36:2 0.59 0.64 0.62 0.67 0.66

PCaeC36:3 0.59 0.64 0.63 0.66 0.67

PCaeC38:0 0.61 0.66 0.68 0.74 0.67

PCaeC38:1 0.61 0.64

PCaeC38:2 0.6 0.66 0.65 0.69 0.67

PCaeC38:3 0.61 0.65

PCaeC38:5 0.6

PCaeC38:6 0.6 0.65 0.66 0.72 0.64

PCaeC40:1 0.63 0.65 0.67

PCaeC40:2 0.61 0.67

PCaeC40:5 0.61 0.63 0.63 0.67 0.67

PCaeC40:6 0.62 0.67 0.64 0.7 0.67 0.63

PCaeC42:2 0.61

PCaeC42:3 0.61 0.64

Age (in years), body mass index (BMI; in kg/m2), lysophosphatidylcholine (lysoPC), diacyl PC (PCaa), acyl-alkyl PC (PCae).

https://doi.org/10.1371/journal.pone.0199618.t002
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was more effective than aggregate modeling of all metabolites with the same methods, suggest-

ing metabolite subsets are superior for detecting OA.

The statistical approach for this study (Fig 1) was chosen to reduce overfitting, allowing for

greater confidence in the signatures we have identified and their potential classification power

in independent datasets. With limited metabolomics research conducted on circulating serum

or plasma from healthy and OA cohorts to date, validation has yet to be conducted on external

cohorts. This is the first method in OA metabolomics research, to our knowledge, to focus on

identifying cohort-specific signatures via demographic stratification. Independent cohort data

will be necessary to conclusively determine if the modeling algorithm and identified signatures

are universally predictive of OA.

Since metabolite signatures were strongest in the strata of males age> 50 years, metabolic

processes may be more consistently modulated between OA and non-OA individuals in this

stratum. Thus, in males, lysoPCs and PCs may be indicative of a response to OA pathophysiol-

ogy or a direct contribution to symptoms/pathogenesis. The lack of this signal in females,

given their higher general population incidence, may suggest varying etiology, a more bio-

chemically heterogeneous disease population where metabolite signatures are less pronounced.

However, in all of our metabolite signatures, confounding clinically-relevant variables were

not controlled for in this study due to the lack of information from HV, a limitation of this

study which may affect both signature elements and predictive outcomes. Controlling these

confounding clinical variables using the method described herein could also increase both

accuracy and precision of OA prediction.

We identified that compared to aggregates of metabolite types [7], select metabolite signa-

tures are capable of classifying OA vs. HV in select strata. We also determined that this was as

good as or better than aggregate levels alone, suggesting that select metabolites likely drive clas-

sification of individuals with OA. This is consistent with studies in other diseases where metab-

olite signatures were capable of classifying individuals with various pathologies including

high-altitude pulmonary edema [13], multiple sclerosis [14] and pediatric tuberculosis [15].

Our study does however, have some limitations based on the clinical data that was available

for use. For instance, we could not stratify based on metabolic disorders, including hyperlipid-

emia due to the lack of available clinical data, which could alter metabolite levels in the blood

and be associated with hyperlipidemia as opposed to OA directly. Hyperlipidemia is a risk fac-

tor for OA [16] whereas metabolic syndromes are correlated with knee OA prevalence in select

populations [17, 18]. Furthermore, although the incidence of diabetes mellitus is known in our

cohort, we did not stratify or exclude individuals based on this factor, as we were unaware if

this was well controlled by medication or lifestyle. Removing these individuals would also

reduce the power for some of our strata. However, we found 4 metabolites that were signifi-

cantly different in their levels between individuals with or without diabetes mellitus (DM)

within the age> 50 years (3 metabolites) and males age > 50 years (1 metabolite) strata that

overlapped with metabolites identified in our signatures from Table 2 (S1 Table). Removing

these metabolites from our signatures and running PCR modeling of the remaining metabo-

lites in the two affected strata resulted in minimal changes to the resulting AUCs (S2 Table).

Curiously, there were more metabolites significantly different in the HV compared to the OA

populations when comparing individuals with or without DM, suggesting that individuals

with OA are more similar, even if they have DM (S1 Table). Overall, this suggests that the pres-

ence of DM is not a major confounding variable in our study.

Thus, we determined that individual lysoPC and PC analogues in plasma were collec-

tively able to detect OA with some accuracy. Inclusion of other circulating biomarkers,

like amino acids [6], cytokines [19] and microRNAs [20], into modeling algorithms may

improve prediction.
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