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Abstract: In esophageal cancer, few prediction tools can be confidently used in current clinical
practice. We developed a deep convolutional neural network (CNN) with 798 positron emission
tomography (PET) scans of esophageal squamous cell carcinoma and 309 PET scans of stage I lung
cancer. In the first stage, we pretrained a 3D-CNN with all PET scans for a task to classify the scans
into esophageal cancer or lung cancer. Overall, 548 of 798 PET scans of esophageal cancer patients
were included in the second stage with an aim to classify patients who expired within or survived
more than one year after diagnosis. The area under the receiver operating characteristic curve (AUC)
was used to evaluate model performance. In the pretrain model, the deep CNN attained an AUC of
0.738 in identifying patients who expired within one year after diagnosis. In the survival analysis,
patients who were predicted to be expired but were alive at one year after diagnosis had a 5-year
survival rate of 32.6%, which was significantly worse than the 5-year survival rate of the patients
who were predicted to survive and were alive at one year after diagnosis (50.5%, p < 0.001). These
results suggest that the prediction model could identify tumors with more aggressive behavior. In the
multivariable analysis, the prediction result remained an independent prognostic factor (hazard ratio:
2.830; 95% confidence interval: 2.252–3.555, p < 0.001). We conclude that a 3D-CNN can be trained
with PET image datasets to predict esophageal cancer outcome with acceptable accuracy.
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1. Introduction

Accurate estimates of survival are of paramount importance for patients and oncologists making
personalized and patient-centered decisions in the era of precision medicine. Many clinical prediction
tools combining key prognostic factors have been proposed to improve risk stratification and
prognostication in esophageal cancer. However, few existing tools can be confidently used in current
clinical practice [1]. Besides clinical parameters, medical image analysis is also gaining exponential
interest in prognostic research. It has been proposed that radiomics analysis, which is defined as the
high-throughput extraction of quantitative image metrics, potentially facilitates characterization of
tumor phenotypes and even predicts patient survival [2–4]. Several studies have developed radiomics
prognostic models incorporating positron emission tomography (PET) image features, which contain
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both anatomic and metabolic information, in lung cancer, colorectal cancer, and esophageal cancer [3–6].
Recently, the mainstream of computational image analysis has been gradually replaced by deep learning
techniques [7–9]. The most impactful feature of the deep learning algorithm is self-learning; once a
data set has been provided, the program can automatically discover features and adaptively learn
without human indication by a backpropagation algorithm and by changing the internal parameters
of each layer [7,8]. Deep learning algorithms, in particular convolutional neural networks (CNNs),
have been applied in medical image classification, segmentation, and detection [8,9], e.g., skin lesions
classification [10], diabetic retinopathy detection [11], and diagnosis of lymph node metastasis in breast
cancer [12]. Pilot studies even demonstrated the potential of CNNs to recognize biological features that
are overlooked by human experts and predict someone’s risk for certain diseases [13,14]. However,
the application of deep learning in cancer survival prediction is limited in the literature. We hypothesize
that a deep learning algorithm facilitates PET image analysis in predicting esophageal cancer outcome.
In the present study, we trained a CNN to identify esophageal cancer patients with extremely poor
prognosis, i.e., expired within one year after diagnosis, using only pretreatment PET images.

2. Methods

2.1. Data Source

The PET scans of patients with the diagnosis of esophageal squamous cell carcinoma between
September 2009 and August 2017 at Taipei Veterans General Hospital were collected. The PET scans
of patients with stage I lung cancer diagnosed between January 2012 and November 2017 at Taipei
Veterans General Hospital were also collected for use in pretraining the CNN. To focus on critical
information, only PET images from the hypopharynx to the stomach, which included all of the
esophagus and the peri-esophageal regions were used.

2.2. Convolution Neural Network Model Setup and Training

Input images were classified as positive if the patient expired within a year after diagnosis, while
those corresponding to patients that survived more than one year after diagnosis were classified as
negative. We built a three-dimensional (3D) CNN based on a residual network, ResNet [15], as illustrated
in Figure S1. To achieve better performance and arrive at convergence (that is, optimum performance)
faster, we used PET scans from patients with stage I lung cancer, whose esophagi were presumed to be
normal, and trained the network as our first stage of training. We used the PET scans to pretrain our
model with an aim to classify the scans into esophageal cancer (abnormal esophagus) or lung cancer
(normal esophagus). For the second stage, which aimed to classify esophageal cancer outcome, model
weights were transferred from the aforementioned pretrained model. We used an 18-layer ResNet with
the stochastic gradient descent (SGD) optimizer and anisotropic max-pooling as the baseline model
and compared different model structures/hyper-parameters. For each experimental setting, one of
the components was modified and compared with the baseline model. The experimental conditions
included: (1) with or without pretraining; (2) choice of optimizer (adaptive momentum estimation
(Adam) vs. SGD); and (3) number of layers (18- vs. 34-layer residual network). The final model contained
34 layers with a bottleneck design containing about 33 million learnable parameters. The detailed data
preprocessing, model setup, and hyper-parameter settings are shown in supplementary files.

2.3. Statistics

We randomly shuffled the data index before splitting the entire dataset into five subgroups of
equal size. We repeated the process of model training using one subgroup as a validation set and the
rest as a training set until all subgroups were used. With each subgroup as a validation set, we trained
the deep neural network in five independent runs and used the average area under receiver-operating
characteristic (ROC) curve (AUC) to evaluate its performance, as shown in Figure S2. Based on the
probability threshold of 0.5, patients were predicted to expire within one year after diagnosis (positive)
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or not (negative). The prediction results were compared to clinical data and patients were classified into
correct or incorrect prediction groups. The correct prediction group included patients whose survival
status was the same as predicted status; whereas those who were predicted to be expired (or alive) but
were alive (or expired) at one year were classified in the incorrect prediction group. Overall survival
(OS) was defined as the time from the date of diagnosis until death or last known follow-up. Survival
curves were plotted using the Kaplan–Meier method and compared by the log-rank test. Multivariable
survival analysis, which included all available clinical factors, was conducted with a Cox regression
model. Survival analysis was performed using Statistical Package for the Social Sciences (version 17,
SPSS Inc., Chicago, IL, USA) and a two-sided p-value < 0.05 was considered significant.

3. Results

3.1. Patients

A total of 798 PET scans of esophageal squamous cell carcinoma and 309 PET scans of stage I
lung cancer were included in the pretraining stage of this study. In the esophageal cancer outcome
classification stage, only the pretreatment PET scans were used and patients without complete clinical
follow-up data were excluded. The characteristics of final 548 patients are shown in Table 1.

Table 1. Patient demographics.

Total Correct Prediction Incorrect Prediction p

n = 548 n = 401 n = 147

Age, (years, mean ± SD) 61.4 ± 12.4 61.7 ± 12.7 60.5 ± 11.7 0.290

Gender (%)
0.320Male 504 (92.0) 366 (91.3) 138 (93.9)

Female 44 (8.0) 35 (8.7) 9 (6.1)

Clinical T stage (%)

0.109
T1 65 (11.9) 55 (13.7) 10 (6.8)
T2 118 (21.5) 89 (22.2) 29 (19.7)
T3 325 (59.3) 229 (57.1) 96 (65.3)
T4 40 (7.3) 28 (7.0) 12 (8.2)

Clinical N stage (%)

0.016
N0 178 (32.5) 141 (35.2) 37 (25.2)
N1 196 (35.8) 128 (31.9) 68 (46.3)
N2 102 (18.6) 76 (19.0) 26 (17.7)
N3 72 (13.1) 56 (14.0) 16 (10.9)

Clinical M stage (%)
0.970M0 458 (83.6) 335 (83.5) 123 (83.7)

M1 90 (16.4) 66 (16.5) 24 (16.3)

Tumor location (%)

0.349
Upper third 161 (29.4) 111 (27.7) 50 (34.0)
Middle third 242 (44.2) 182 (45.4) 60 (40.8)
Lower third 145 (26.5) 108 (26.9) 37 (25.2)

Tumor size, (cm, mean ± SD) 4.4 ± 3.4 4.3 ± 3.3 4.5 ± 3.5 0.730

SUVMAX, (mean ± SD) 12.5 ± 6.0 12.3 ± 6.2 12.9 ± 5.4 0.308

Tumor markers, (mean ± SD)
SCC, ng/mL 2.6 ± 5.3 2.6 ± 6.0 2.6 ± 2.8 0.987

Cyfra 21-1, ng/mL 4.2 ± 5.9 4.4 ± 7.2 4.1 ± 5.9 0.879

Treatments (%)

0.758
Primary resection 141 (25.7) 101 (25.2) 40 (27.2)

Trimodal treatments 160 (29.2) 115 (28.7) 45 (30.6)
Medical treatment 208 (38.0) 154 (38.4) 54 (36.7)

Supportive care 39 (7.1) 31 (7.7) 8 (5.4)

SD: standard deviation; SUVMAX: maximal standard uptake value; SCC: squamous cell carcinoma antigen. Data
were available in 470 (size), 489 (SUV), 387 (SCC), and 139 (Cyfra 21-1) patients owning to respective nature of
this study.
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3.2. CNN Performance

The performance of each model is shown in Table 2, and distribution of AUC for each experiment
is shown in Figure S3. The ROC curve comparison between different hyper-parameters and structure
combinations is illustrated in Figure 1. In general, there was no difference between models with
pretraining and models without pretraining. The model performances were comparable between the
SGD optimizer and the Adam optimizer. Finally, we compared the 18-layer residual network and the
34-layer residual network. In the pretrained models, the 34-layer network achieved better results than
the 18-layer network without over-fitting (0.738 AUC vs. 0.717 AUC with the Adam optimizer and
0.720 AUC vs. 0.709 AUC with the SGD optimizer). In the non-pretrained models, the 34-layer network
had better results than the 18-layer network with the Adam optimizer (0.740 AUC vs. 0.710 AUC) and
had similar results with the SGD optimizer (0.722 AUC vs. 0.724 AUC).

Table 2. Performance of CNN models.

Models AUC 95% CI

Pretrain Optimizer Layers

No Adam 18 0.710 0.688–0.733
No SGD 18 0.724 0.714–0.734
No Adam 34 0.740 0.704–0.776
No SGD 34 0.722 0.697–0.747
Yes Adam 18 0.717 0.693–0.741
Yes SGD 18 0.709 0.678–0.741
Yes Adam 34 0.738 0.714–0.761
Yes SGD 34 0.720 0.694–0.746

CNN: convolutional neural network, AUC: area under curve; CI: confidence interval.
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3.3. Clinical Relevance

The comparison between patients with correct and incorrect prediction (according to the pretrained
model of 34-layer network with the Adam optimizer) is shown in Table 1. These two groups were
similar with regard to age, gender, clinical T stage, clinical M stage, tumor location, tumor size,
maximal standard uptake value (SUVmax), value of tumor on PET scan, serum level of tumor markers,



J. Clin. Med. 2019, 8, 844 5 of 9

and treatment modalities. The only difference is the clinical N stage. The incorrect prediction group
had more clinical N1 patients than the correct prediction group (46.3% vs. 31.9%, p = 0.016).

To investigate the prognostic impact of prediction results, survival analysis was performed based
on prediction results and clinical status, as shown in Figure 2. Patients who were predicted to survive
and survived one year after diagnosis had the highest 5-year survival rate of 50.5%. Interestingly,
patients who were predicted to be expired but survived at one year after diagnosis had a 5-year survival
rate of 32.6%, with a median survival of 23.2 (95% CI: 19.3–27.1) months, which was significantly worse
than the outcome of the patients who were predicted to survive and really survived one year after
diagnosis (p < 0.001). In the multivariable survival analysis, the independent prognostic factors for
overall survival included age, gender, tumor location at upper third, clinical N stage, clinical M stage,
and the prediction results by our CNN model, as shown in Table 3 (hazard ratio (HR): 2.830; 95%
confidence interval (CI): 2.252–3.555, p < 0.001).J. Clin. Med. 2019, 8, x FOR PEER REVIEW 6 of 9 
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Figure 2. Prognostic significance of 3D-CNN prediction results. A: yellow: patients predicted alive at
one year; purple: patients predicted expired at one year. B: green: patients predicted alive at one year
and survived more than one year after diagnosis; blue: patients predicted expired within one year but
survived more than one year; tan: patients predicted alive at one year but expired within one year; red:
patients predicted expired and died within one year, p < 0.001.

Table 3. Multivariable overall survival analysis.

HR 95% CI p

Age 1.018 1.010–1.027 <0.001
Gender

Male 1 - -
Female 0.426 0.252–0.720 0.001

Tumor location
Lower third 1 - -
Middle third 1.297 0.960–1.752 0.090
Upper third 1.333 1.007–1.763 0.044

Clinical T stage
T1/2 1 - -
T3/4 1.209 0.946–1.545 0.130

Clinical N stage
N(−) 1 - -
N(+) 1.417 1.082–1.856 0.011

Clinical M stage
M0 1 - -
M1 2.041 1.571–2.651 <0.001

Prediction results
Alive at one year 1 - -

Expired within one year 2.830 2.252–3.555 <0.001

HR: hazard ratio; CI: confidence interval.
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4. Discussion

Outcome prediction in cancer care is the foundation for individualized treatment planning.
Prediction tools integrating cancer stage, age, sex, comorbidities, treatment received, treatment
response, and specific surgical pathology have been developed for esophageal cancer prognostication.
However, few existing survival prediction tools are ideal for use in current clinical practice. In a review
by Gupta et al., the discrimination ability, which might vary from 0.5 (model predictions are similar to
chance) to 1.0 (model predictions are perfect), of sixteen clinical tool-based models in the literature
was around 0.63 to 0.77, which was far from confident application in clinical use [1]. In addition to
patient specific clinicopathological information, medical image analysis is gaining substantial interest
in prognostic research. In oncology, the SUV of 18-fluorodeoxyglucose (FDG), which measures FDG
activity in the tumor and correlates with viable tumor cell number and metabolism, obtained from
FDG-PET scans is widely used for diagnosing, staging, monitoring response to therapy, as well
as outcome prediction [16–18]. Correlation between higher SUVmax and worse survival has been
reported in several studies [19–21]. Owing to non-uniformly standardized PET imaging protocols,
variable SUVmax thresholds have been reported and thus limit its use [22]. Besides conventional
uptake parameters, texture analysis, which provides numerous quantitative and semiquantitative
indices, termed “features” [2–4], seems to perform better in characterizing tumor phenotypes [23].
This approach as a whole is named “radiomics” [24]. Several studies have successfully developed
radiomic prognostic classifiers that can be associated with metastatic recurrence and survival in several
types of cancers [3,4,16]. For example, Lambin et al. demonstrated that the prognostic model based
on pretreatment CT radiomic features yielded an AUC of 0.69 in predicting 3-year overall survival of
esophageal cancer patients after chemoradiotherapy [25]. Although many different PET segmentation
techniques have been proposed and numerous PET-based radiomic features have been described,
the results are highly dependent on the method used [4,16,26]. For example, in an external validation
study of a prognostic model incorporating quantitative PET image features in esophageal cancer,
Foley et al. has shown that results of a developed prognostic model combining clinical factors and PET
radiomic features was not replicated in another cohort of patients treated with different regimens [26].
Another limitation in radiomics research is the algorithm that extracts imaging features through manual
detection and characterization of tumor regions, which is labor intensive and subjective. In contrast,
deep learning algorithms, in particular convolutional neural networks, provide workflows that allow
automated selection and quantification of the most robust features. Since tumor segmentation or
feature calculation is not required, it simplifies the analysis procedure and is more objective than the
classical methods [7–9,27].

The application of CNNs in clinical medical imaging is on the horizon. The performance of
CNNs can be outstanding with an abundance of well-annotated data; for example, classification
of skin cancer [10], classification of dermoscopic melanoma recognition [28], detection of diabetic
retinopathy with retinal fundus photographs [11], detection of lymph node metastases with whole
slide images in breast cancer [12], and anatomical classification of esophagogastroduodenoscopy
images [29]. Intriguingly, it has been proposed that CNNs may be able to astutely reveal subtle
biological characteristics that are not visible to physicians. As examples, researchers have used CNNs
to predict cardiovascular risk factors with retinal fundus photographs [14]. In thoracic oncology,
a CNN has been trained to classify mediastinal lymph nodes of non-small cell lung cancers with
FDG-PET images [30]. In another study, Ypsilantis et al. used PET imaging data from 107 patients with
esophageal cancer to demonstrate that a CNN has the potential to predict chemotherapy response [31].
Applying deep learning networks in predicting overall survival, Hosny et al. trained a CNN from CT
data of lung cancer patients treated with radiotherapy or surgery. The prognostic power attained an
AUC of 0.70 and they concluded that the CNN is capable to significantly stratify patients into low and
high mortality risk groups [27].

In this study, we trained a CNN to predict the survival status at one year after diagnosis in
esophageal cancer patients. Our model attained an AUC of 0.738, which was better than that of
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clinical factor-based prediction models, as shown in Figure S4. The AUC of our model was also
better than that of a CT radiomic feature-based model in predicting survival status in esophageal
cancer (AUC: 0.69 [25]), and that of a deep learning-based model in predicting mortality risk in lung
cancer (AUC: 0.70 [27]). In the multivariable analysis, the prediction result was an independent
prognostic factor, indicating that our model could identify esophageal cancer with aggressive behavior.
Interestingly, when we compared correct and incorrect prediction groups, the only difference was the
percentage of clinical N1 stage. Indeed, the outcome of patients with minimal nodal involvement was
highly dependent on either the extent of surgical resection or response to systemic treatments, which
could not be revealed by pretreatment PET scan images.

To overcome the limitation of a relatively small dataset, we adopted a stepwise workflow, in which
the first stage was to classify normal and abnormal esophagi only. Another limitation is the nature of
opaqueness of deep learning networks. Feature definition, extraction, and selection are all automated
and occur implicitly. Consequently, the imaging characteristics they measure are highly obscure. This
ambiguity is in sharp contrast to the expert-based well-defined radiomic features. For example, it has
been proposed that morphometric measures, such as core muscle size, obtained from cross-sectional
imaging, was correlated with sarcopenia, which is an independent predictor of clinical outcomes in
multiple gastrointestinal cancers [32,33]. The CNN classification may be based on tumor or non-tumor
features. Moreover, we did not include PET images from different PET scanners. Further studies
are required to test the reliability and robustness of our results. Lastly, our proposed model was not
compared against other machine learning-based methods. In the future, it is mandatory to apply other
methods on our dataset and compare the AUC performance.

In conclusion, a 3D-CNN can be trained with PET image datasets to predict outcome in esophageal
cancer with acceptable accuracy. The prediction result remained an independent prognostic factor
in multivariable survival analysis. Although our current results cannot be readily applied to clinical
decision making, we demonstrated the potential of deep learning. With a larger dataset, the CNN can
be trained to achieve a better prediction performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/6/844/s1,
Figure S1: 3D residual network overview, Figure S2: Process of data training and validation, Figure S3: Scatter
plot demonstrating the distribution of AUC for each experiment, Figure S4: ROC curves of clinical factor-based
models in predicting the survival status at one year after diagnosis.
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