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Abstract: In the vehicle pose estimation task based on roadside Lidar in cooperative perception,
the measurement distance, angle, and laser resolution directly affect the quality of the target point
cloud. For incomplete and sparse point clouds, current methods are either less accurate in cor-
respondences solved by local descriptors or not robust enough due to the reduction of effective
boundary points. In response to the above weakness, this paper proposed a registration algorithm
Environment Constraint Principal Component-Iterative Closest Point (ECPC-ICP), which integrated
road information constraints. The road normal feature was extracted, and the principal component
of the vehicle point cloud matrix under the road normal constraint was calculated as the initial pose
result. Then, an accurate 6D pose was obtained through point-to-point ICP registration. According to
the measurement characteristics of the roadside Lidars, this paper defined the point cloud sparseness
description. The existing algorithms were tested on point cloud data with different sparseness. The
simulated experimental results showed that the positioning MAE of ECPC-ICP was about 0.5% of
the vehicle scale, the orientation MAE was about 0.26◦, and the average registration success rate was
95.5%, which demonstrated an improvement in accuracy and robustness compared with current
methods. In the real test environment, the positioning MAE was about 2.6% of the vehicle scale,
and the average time cost was 53.19 ms, proving the accuracy and effectiveness of ECPC-ICP in
practical applications.

Keywords: cooperative perception; intelligent vehicles; precise 6D pose estimation; sparse point
cloud; roadside Lidars; point cloud registration; point cloud sparseness description

1. Introduction

Vehicle 6DoF (Degrees of Freedom) pose estimation is an essential task in autonomous
driving [1–6]. It is closely related to many critical self-driving subsystems, such as percep-
tion [7], decision [8,9], planning [10], control [1,11,12], and so on. Vehicle-mounted sensor
positioning may have problems in scenes with sparse environmental features and dynamic
changes in surrounding objects [13,14], such as campuses and ports.

So with the development of intelligent transportation systems and cooperative per-
ception technology [15,16], the research direction of unmanned vehicle pose estimation
has gradually evolved to cooperative sensor positioning [3,17,18]. As shown in Figure 1,
the precise vehicle positioning of roadside equipment can assist the automatic driving
system to more accurately complete tasks such as planning and tracking [19], which plays
a vital role in cooperative perception for intelligent vehicles. There are mainly two types
of roadside sensor equipment: Lidar and camera [20]. Lidar is more widely used due to
its advantages of accurate three-dimensional perception and resistance to environmental
changes [21,22].
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Figure 1. Vehicle pose estimation based on the roadside perception unit (RSPU) in a cooperative 

perception scene. 
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cloud. The current algorithms can be roughly divided into two categories [23]: model-

based approaches and model-free methods. The former has higher accuracy, and most of 

them need a dense point cloud to extract features for matching calculations. Researchers 

made breakthroughs in feature extraction [24–27], corresponding points matching [28–

33], iterative calculations [34–37], and so on. On the contrary, model-free methods had 

fewer requirements for point cloud data, good generalization, but worse positioning ac-

curacy. Researchers proposed different statistical calculation methods [38,39] and optimi-

zation functions for vehicle shape fitting [40–46]. Most of them operated fitting calcula-

tions in the two-dimensional space and performed better on vehicle point clouds with 

specific shapes (L shape or I shape [41]). The point cloud sparseness also caused the point 
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Challenges remain in vehicle pose estimation tasks using roadside Lidars. The road-
side Lidar has an excellent deployment position, but the point cloud still has obscuration
and points missing problems due to the fixed measurement view. More importantly, the
resolution of a specific roadside Lidar is usually a fixed value. The vehicle point cloud is
very sparse at long measurement distances (usually dozens of points). Sparse point cloud
input information causes a challenge to the accurate 6D pose estimation task.

Many algorithms have been proposed for vehicle pose estimation based on the point
cloud. The current algorithms can be roughly divided into two categories [23]: model-
based approaches and model-free methods. The former has higher accuracy, and most of
them need a dense point cloud to extract features for matching calculations. Researchers
made breakthroughs in feature extraction [24–27], corresponding points matching [28–33],
iterative calculations [34–37], and so on. On the contrary, model-free methods had fewer
requirements for point cloud data, good generalization, but worse positioning accuracy.
Researchers proposed different statistical calculation methods [38,39] and optimization
functions for vehicle shape fitting [40–46]. Most of them operated fitting calculations
in the two-dimensional space and performed better on vehicle point clouds with spe-
cific shapes (L shape or I shape [41]). The point cloud sparseness also caused the point
cloud hard-to-describe vehicle shapes, resulting in a greater probability of solving a local
minimum solution.

In this paper, a precise target vehicle 6D pose estimation algorithm was proposed
for a sparse point cloud from roadside Lidars, named Environment Constraint Principal
Component-Iterative Closest Point (ECPC-ICP). Aiming at the sparse point clouds, ECPC
was a method for vehicle initial pose estimation that took advantage of road geometry
information to achieve a stable pose solution. The ICP was then fused to achieve an
accurate output. The ECPC-ICP combined model-based and model-free ideas to achieve a
stable and accurate pose estimation.

Specifically, the proposed method first obtained the road normal information through
ground fitting in the preprocessing stage. It calculated the maximum eigenvector of
the normalized autocorrelation matrix of the clustered vehicle point cloud matrix. The
vehicle’s local coordinate system was obtained as the initial pose result by fusing the above
two spatial information through the vector outer product calculation. The target vehicle
dense point cloud template was used to obtain accurate 6D pose through point-to-point
ICP [47,48] registration.
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In addition, according to the roadside Lidar measurement characteristics, the point
cloud sparseness description was defined for quantitative verification in this paper. The
proposed method was tested in a simulated environment and a real environment, prov-
ing that ECPC-ICP had better accuracy and robustness of 6D pose estimation than the
current algorithms.

To summarize, the major contributions of this paper were two-fold:

• We proposed a novel method ECPC for initial pose estimation under sparse point
clouds. ECPC integrated road normal information into global features of the sparse
point cloud and achieved a robust solution to the initial pose.

• We proposed a point cloud sparseness description according to the measurement
characteristics of roadside Lidar for quantitative experimental verification. The experi-
ment was developed under point clouds with different sparseness, which proved the
effectiveness of the proposed ECPC-ICP algorithm.

The rest of this paper was organized as follows: A related research overview was
described in Section 2. The proposed ECPC-ICP pose estimation method was introduced
in Section 3. Experimental design and results were described in Section 4. The conclusion
was finally shown in Section 5.

2. Related Works

This section reviewed the model-based methods and model-free methods for intelli-
gent vehicle 6D pose estimation.

2.1. Model-Based Methods

Most model-based methods rely on corresponding points to calculate the target pose.
Corresponding points are usually selected by comparing local descriptors. The ECV
feature [28] was proposed to establish the corresponding point relationship between the
measured point cloud and the target point cloud. The boundary information was well
extracted and processed in the ECV descriptor. Further, point cloud feature descriptors
such as NARF [24], SHOT [25], PFH [26], FPFH [27] were also developed and used for
model-based target pose detection, which realized feature matching and posed solving for
dense point clouds.

A self-supervised learning model was proposed in [29] to learn local descriptors
for registration and achieved better precision performance. Although the methods of
establishing point correspondences by descriptors achieved higher accuracy, a common
limitation was that they only worked normally for dense point clouds. Locally missing and
large noise in the sparse point cloud would cause incorrect matching of the point pairs.

Researchers also made explorations in corresponding points matching. The coherent
point drift method [31] and quick voting scheme on oriented point pair features [33] were
also raised and improved the performance of convergence in the presence of noise, outliers,
and missing points. The occlusion situations were handled well, but the performance was
not stable for the sparse point cloud. Wang, R.D. [34] reformed the RANSAC algorithm
with a novel framework multi-layer RANSAC, which improved the robustness of the point
cloud registration in urban complex dynamic environments. However, it was difficult to
achieve the same accuracy as the registration algorithms.

Based on FPFH, the SAC-IA [35] algorithm obtained the initial pose through statistical
calculation of the spatial transformation relationship between randomly selected corre-
sponding point pairs. ICP [47,48] or NDT [49] could also be added to improve the accuracy
of pose estimation. Although the robustness of SAC-IA was improved by the two-stage
registration, the initial pose solution based on the descriptor still required dense point cloud
input. Mo, Y.D. [36] segmented the target point cloud by a regional growing algorithm.
The point cloud boundary feature was extracted to calculate the target pose through ICP
registration, which was the main improvement but also the main limitation.

These explorations used point cloud descriptors to establish corresponding point
pairs and then used the correspondences to perform a pose calculation. Although the
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model-based method could obtain higher accuracy, dense point cloud data was required to
ensure that the descriptors were available. Under the condition of the sparse point cloud
obtained by the roadside Lidars, the local descriptor information was insufficient, making
it difficult for the above methods to converge stably.

2.2. Model-Free Methods

Model-free methods are usually based on the vehicle geometric feature fitting or
point cloud statistical feature. Based on PCA [38], four PCA algorithms [39] for vehicle
attitude regularization were proposed, and the superiority of Center-of-Gravity PCA and
Continuous-PCA was verified through experiments. The fast calculation and superior
stability were achieved, but large errors existed in the pose estimation tasks.

Since most point clouds in-vehicle pose estimation scenes contained the information
of two-vehicle sides [41], in [40,42,43], the L-shape fitting algorithms based on vehicle
morphology analysis were proposed for vehicle pose estimation. Zhang et al. [40] for-
mulated the L-shape fitting as an optimization problem. Three optimization models for
L-shape fitting were proposed. Among them, the Closeness Criterion had better accuracy
and robustness than Area Criterion and Variance Criterion. The experiment proved that
the Closeness Criterion obtained stable and accurate pose results for L-shaped vehicle
point cloud data. However, the solution was the three-degree-of-freedom pose and was
susceptible to interference from vehicle morphological noise.

Moreover, vertex and corner points were detected in [43] to get a more accurate pose
estimation. The DATMO system was established and applied to autonomous driving tasks
in [44]. It obtained the vehicle pose and achieved target tracking by calculating the line
and corner features of the 2D target point cloud. Geometric features were well extracted to
solve stable poses. So those methods were difficult to work properly in scenes with weaker
features. In [41,45,46], the vehicle point cloud was fitted with a rectangular shape. The
best-fitting rectangle was obtained by minimizing the distance between the point cloud
and the rectangle boundary, and the line shape point cloud could also be well fitted. They
were also susceptible to interference from vehicle morphological noise.

Although the model-free methods required low point cloud data density and had bet-
ter robustness, their fitting results were relatively inaccurate. Additionally, it was difficult
to maintain a stable solution when the vehicle point cloud shape changed. For example,
the shape of the vehicle point cloud would be affected by the side mirror points [40]. More
importantly, model-free methods mainly calculated the target vehicle pose in a 2D space,
making the 6D pose unavailable.

3. Pose Estimation Considering Road Constraint

In this section, the proposed precise 6D pose estimation method ECPC-ICP with road
information constraint was introduced. The 6D pose description described in Section 3.1
was the problem modeling of ECPC-ICP registration. The adopted point cloud prepro-
cessing and segmentation method was presented in Section 3.2, where the road feature
constraint was calculated. The proposed ECPC-ICP registration pipeline for sparse point
clouds obtained by roadside Lidar was demonstrated in Section 3.3.

3.1. 6D Pose Estimation Modeling

In pose estimation tasks, the objective is usually described as finding the rotation
transformation matrix R ∈ R3×3 and translation matrix t ∈ R3 that minimizes the squared
distance between corresponding point clouds:

R̂, t̂ = argmin
R,t
‖(R·Ps + t)− Pt‖2 (1)

where Ps represents the source point cloud, and Pt represents the target point cloud.
In the global coordinate system, the 6D pose of the target vehicle can be expressed as

a 6-dimensional vector:
[
Px, Py, Pz, Rx, Ry, Rz

]
, where Px, Py, Pz represent the coordinates of
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the vehicle center position. Rx, Ry, Rz represent the orientation of the longitudinal vehicle
axis in the form of a unit vector (the initial orientation value was [1, 0, 0]). The 6D pose
could also be equivalently expressed by R and t. The corresponding relationship was:

[Px, Py, Pz]
T = t (2)

[Rx, Ry, Rz]
T = R·[1, 0, 0]T (3)

3.2. Point Cloud Preprocessing and Segmentation

In the cooperative vehicle 6D pose estimation task, the roadside Lidar had a stable
viewing angle. Several methods were developed for background point filtering based on
roadside Lidars. Wu et al. [50] fused 2500 frames of roadside data to generate background
information. Then the point cloud was divided into spatial voxels, and the background
points were filtered by density contrast. However, it was difficult to balance the accuracy
and efficiency of filtering [51]. Background filtering methods based on laser channel
information were proposed in [52,53], yet were only available for structured point clouds.

Considering the uniqueness of roadside point cloud data, this paper proposed a
preprocess and segmentation procedure based on [54], which is shown in Figure 2.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 22 
 

 

the vehicle center position. 𝑅 , 𝑅 , 𝑅  represent the orientation of the longitudinal vehicle 
axis in the form of a unit vector (the initial orientation value was [1,0,0]). The 6D pose 
could also be equivalently expressed by 𝑹 and 𝒕. The corresponding relationship was: [𝑃 , 𝑃 , 𝑃 ] =  𝒕 (2) [𝑅 , 𝑅 , 𝑅 ] = 𝑹 ∙ [1,0,0]  (3) 

3.2. Point Cloud Preprocessing and Segmentation 
In the cooperative vehicle 6D pose estimation task, the roadside Lidar had a stable 

viewing angle. Several methods were developed for background point filtering based on 
roadside Lidars. Wu et al. [50] fused 2500 frames of roadside data to generate background 
information. Then the point cloud was divided into spatial voxels, and the background 
points were filtered by density contrast. However, it was difficult to balance the accuracy 
and efficiency of filtering [51]. Background filtering methods based on laser channel in-
formation were proposed in [52,53], yet were only available for structured point clouds. 

Considering the uniqueness of roadside point cloud data, this paper proposed a pre-
process and segmentation procedure based on [54], which is shown in Figure 2.  

Point Cloud Input

ROI Filter

RadiusOutlierRemoval Filter

Ground Segmentation

Euclidean Cluster

Environment Constraint 
Vector（3D）Clustered Point Cloud

 
Figure 2. Adopted preprocess and segmentation method. 

This paper preprocessed the point cloud through ROI (Region of Interest) filtering to 
remove long-distance background points. In this paper, the selected horizontal ROI was 
the sum of the vehicle driving area, i.e., the road area. Considering the vehicle size, the 
vertical ROI was set from −1 m to 6 m (ground level was considered as 0 m) to completely 
retain the ground points and vehicle points. The discriminants were designed for point 
cloud filtering based on ROI. 

Then the RANSAC algorithm [55] was used for road fitting according to [56]. In this 
paper, RANSAC was run for one road plane with a 0.1 m threshold due to the detecting 
noise. The obtained road point cloud data could be expressed as a 4-dimensional vector 𝑮: 𝑮 = 𝐺𝑁 , 𝐺𝑁 , 𝐺𝑁 , 𝑑  (4) 

which means the space plane represented by equation 𝐺𝑁 ∙ 𝑋 + 𝐺𝑁 ∙ 𝑌 + 𝐺𝑁 ∙ 𝑍 +𝑑 = 0, where X, Y, Z represents the coordinates of the point. Road normal features are re-
tained as the environmental constraint information EC, which was one of the inputs in 
the following subsection. The specific form was: 

EC = 𝐺𝑁 , 𝐺𝑁 , 𝐺𝑁  (5) 

Figure 2. Adopted preprocess and segmentation method.

This paper preprocessed the point cloud through ROI (Region of Interest) filtering to
remove long-distance background points. In this paper, the selected horizontal ROI was
the sum of the vehicle driving area, i.e., the road area. Considering the vehicle size, the
vertical ROI was set from −1 m to 6 m (ground level was considered as 0 m) to completely
retain the ground points and vehicle points. The discriminants were designed for point
cloud filtering based on ROI.

Then the RANSAC algorithm [55] was used for road fitting according to [56]. In this
paper, RANSAC was run for one road plane with a 0.1 m threshold due to the detecting
noise. The obtained road point cloud data could be expressed as a 4-dimensional vector G:

G =
[
GNx, GNy, GNz, d

]
(4)

which means the space plane represented by equation GNx·X + GNy·Y + GNz·Z + d = 0,
where X, Y, Z represents the coordinates of the point. Road normal features are retained as
the environmental constraint information EC, which was one of the inputs in the following
subsection. The specific form was:

EC =
[
GNx, GNy, GNz

]T (5)
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It is worth noting that the road scene involved in this paper was flat, and the road
information could be well extracted by the RANSAC algorithm. The proposed ECPC-
ICP method focused on the road normal features of the vehicle driving area and was
not limited by the road fitting algorithm. Other road fitting algorithms, such as cloth
simulation [57] and slope-based filtering [53] could also well support our ECPC-ICP pose
estimation method.

In this paper, the RadiusOutlierRemoval filter [58] and the Euclidean cluster [59] were
adopted for environmental noise removing and target point cloud clustering, respectively.
In the RadiusOutlierRemoval filtering, points whose neighbors were less than the threshold
were removed. This reduced the interference of isolated points after ground segmentation
on the subsequent clustering. The search radius and neighbor threshold were set to 0.5 m
and 3, respectively.

In the Euclidean cluster, the radius threshold rth was set to an appropriate value
according to the actual situation and vehicle size. All the points within the range rth of each
point in a cluster were classified into the same cluster. The process of iteration was repeated
to complete the spatial division. Then the clustered vehicle point clouds were calculated.

Figure 3 shows the typical effect of the proposed preprocess and segmentation pro-
cedure. The blue points completely represent the vehicle shape and contain only a few
background points, indicating an accurate clustering result.
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3.3. ECPC-ICP Pose Estimation Method

This paper proposed a two-stage registration method ECPC-ICP, combining the ECPC
initial pose estimation and ICP registration to solve the accurate target vehicle 6D pose. The
ECPC-ICP pipeline is shown in Figure 4. The input to ECPC-ICP was three parts: completed
vehicle point cloud template matrix PCT (3× NT), environment constraint vector EC (road
normal features in Section 3.2), and clustered point cloud matrix PCC (3× NC) from
Section 3.2.
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The template preparing method was introduced in Section 3.3.1. The proposed ECPC
initial pose estimation with road feature constraint was explained in Section 3.3.2. The final
pose calculation based on point-to-point ICP registration was elaborated in Section 3.3.3.

3.3.1. Target Template Preparing

As for the point cloud template PCT, this paper used the vehicle’s overall point cloud
template instead of the multi-view-point cloud template library, which avoided feature
misidentification and reduced the difficulty of template generation. Simultaneously, com-
pared to feature-based pose estimation methods, the use of overall point cloud registration
reduced the feature analysis errors and improved the accuracy of pose solutions. PCT could
be obtained by sampling the visible part of the CAD model or splicing from the scanned tar-
get multi-view-point clouds, which was elaborated on in detail in Sections 4.1.1 and 4.2.1.
The part that could be scanned by Lidars was regarded as the visible part. The template
point cloud should be dense to ensure the accuracy of point-to-point ICP fine registration.

It is worth noting that the template point cloud needed to be aligned with the origin of
the global coordinate system. The X-axis corresponded to the vehicle’s longitudinal direc-
tion. The Z-axis corresponded to the vehicle’s lateral direction, and the Y-axis corresponded
to the vehicle’s vertical direction, as shown in Figure 5. This simplified the calculation of
coordinate conversion between the template coordinate system and the global coordinate
system. At this time, without translation and rotation transformation, the pose of the
vehicle in the global coordinate system could be expressed as:[

Pxt, Pyt, Pzt, Rxt, Ryt, Rzt
]
= [0, 0, 0, 1, 0, 0] (6)

Sensors 2021, 21, x FOR PEER REVIEW 7 of 22 
 

 

ECPC Initial 
Pose Estimation

Environment Constraint 
Vector（3D）

Initial 6D Pose 
Result

ICP Fine 
Registration 
Algorithm

Final Precise 6D 
Pose  Result

Target Template Point 
Cloud

Clustered Point Cloud

Rigid Transform 
Matrix Rigid Transform 

Matrix

Input Process Result

𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧, 𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧  

 
Figure 4. Proposed ECPC-ICP registration method. 

The template preparing method was introduced in Section 3.3.1. The proposed ECPC 
initial pose estimation with road feature constraint was explained in Section 3.3.2. The final 
pose calculation based on point-to-point ICP registration was elaborated in Section 3.3.3. 

3.3.1. Target Template Preparing 
As for the point cloud template 𝑷𝑪𝑻, this paper used the vehicle’s overall point cloud 

template instead of the multi-view-point cloud template library, which avoided feature 
misidentification and reduced the difficulty of template generation. Simultaneously, com-
pared to feature-based pose estimation methods, the use of overall point cloud registra-
tion reduced the feature analysis errors and improved the accuracy of pose solutions. 𝑷𝑪𝑻 
could be obtained by sampling the visible part of the CAD model or splicing from the 
scanned target multi-view-point clouds, which was elaborated on in detail in Sections 
4.1.1. and 4.2.1. The part that could be scanned by Lidars was regarded as the visible part. 
The template point cloud should be dense to ensure the accuracy of point-to-point ICP 
fine registration. 

It is worth noting that the template point cloud needed to be aligned with the origin 
of the global coordinate system. The X-axis corresponded to the vehicle’s longitudinal di-
rection. The Z-axis corresponded to the vehicle’s lateral direction, and the Y-axis corre-
sponded to the vehicle’s vertical direction, as shown in Figure 5. This simplified the cal-
culation of coordinate conversion between the template coordinate system and the global 
coordinate system. At this time, without translation and rotation transformation, the pose 
of the vehicle in the global coordinate system could be expressed as: 𝑃 , 𝑃 , 𝑃 , 𝑅 , 𝑅 , 𝑅 = [0,0,0,1,0,0] (6) 

X Axis

Y Axis

Z Axis

 
Figure 5. Target vehicle point cloud template aligned with the origin of the global coordinate sys-
tem, which was elaborated on in detail in Section 4.1.1. 
Figure 5. Target vehicle point cloud template aligned with the origin of the global coordinate system,
which was elaborated on in detail in Section 4.1.1.



Sensors 2021, 21, 3489 8 of 23

3.3.2. ECPC Initial Pose Estimation

In the processing stage of ECPC-ICP, the initial pose estimation algorithm was needed
to obtain a rough pose to provide a good initial value for the subsequent ICP fine registra-
tion. The experimental verification showed that the ICP algorithm had a higher tolerance
for position errors and a lower tolerance for orientation errors. So the overall characteristics
of the point cloud under road constraints were calculated to achieve a stable initial pose
estimation. The ECPC initial pose estimation method in Figure 4 is described in detail as
Algorithm 1.

Algorithm 1 ECPC Initial Pose Estimation.

Input: environment constraint vector EC =
[
GNx, GNy, GNz

]T , clustered point cloud
PCC ∈ R3×N

Output: coarse rigid transform matrix TMECPC ∈ R4×4

1: pmax ← max
pi∈PCC

{pi}

2: pmin ← min
pi∈PCC

{pi}

3: pcenter ← (pmax + pmin)/2
4: PCC ← PCC − pcenter

5: cov← 1
N PCC·PCC

T

6: u′1 ← CalMaxEigenVectors(cov)
7: u2 ← Normalized

(
EC× u′1

)
8: u1 ← (u2 × EC)

9: R←

 GNx GNy GNz
u2

T

u1
T


10: return

[
R R·pcenter

0 0 0 1

]

In Algorithm 1, since the shape of the target vehicle could be approximated as a rect-
angular parallelepiped, the calculated eigenvector and center under road constraints could
meet the requirements of the initial pose. The result was less disturbed by target characteris-
tics and noise points, which meant better robustness. The point cloud center was calculated
in steps 1–3, and the eigenvector under environmental constraints was solved in steps 4–8.
The rigid transformation matrix was integrated as output. Function CalMaxEigenVectors
in step 6 was to calculate the eigenvector corresponding to the largest eigenvalue of the
matrix. There were many mature solution methods, such as SVD decomposition [60]. The
eigenvector was obtained by the eigendecomposition since cov was a real symmetric matrix
in this paper. Function Normalized in step 7 was a vector normalization function, which
converted the vector into a unit vector to ensure the rotation and translation invariance of
the transformation. The R in step 9 represented the rotation transformation matrix of the
ECPC initial pose, which was a component of the rigid transform matrix TMECPC.

Based on the rigid transformation matrix TMECPC returned by Algorithm 1, this paper
took the homogeneous form

.
PCT =

[
PCT 1

]
of the target template point cloud PCT,

and performed the rigid transformation to obtain an initial pose result matrix IRM:

IRM = TMECPC·
.

PCT (7)

3.3.3. Precise Pose Calculation

At the stage of final pose calculation, the initial pose result IRM and the homogeneous
form of the clustered point cloud

.
PCC =

[
PCC 1

]
were put into the classic point-to-

point ICP algorithm to get the precise rigid transformation matrix TMICP:

TMICP =

[
RICP[3×3] tICP[3×1]

0[1×3] 1

]
(8)
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where RICP and tICP are respectively the rotation matrix and translation matrix solved by
the ICP algorithm. Then the final 6D pose result matrix FRM was obtained:

FRM = TMICP·IRM (9)

So far, the rigid transformation matrix containing the 6D pose representation had
been calculated: [

RF tF
0 0 0 1

]
= TMICP·TMECPC (10)

where RF ∈ R3×3 and tF ∈ R3, respectively, represent the final rotation matrix and
translation matrix of the estimated vehicle pose. According to Equations (2), (3) and (6), the
pose vector

[
Px, Py, Pz, Rx, Ry, Rz

]
could be derived. The specific calculation process was:

[Px, Py, Pz]
T = RF·

[
Pxt, Pyt, Pzt

]T
+ tF = tF (11)[

Rx, Ry, Rz
]T

= RF·
[
Rxt, Ryt, Rzt

]T
= RF·[1, 0, 0]T (12)

4. Experiment

The validation of the proposed approach was addressed from two different perspec-
tives. On the one hand, tests on a realistic simulated environment were performed to
retrieve plentiful quantitative data with respect to the perfect ground truth. The perfor-
mance of the proposed algorithm was verified by comparing it with existing methods
under different test conditions. On the other hand, the method was also applied in a real
environment to prove the validity of the approach in real use cases.

4.1. Simulated Test Environment
4.1.1. Template Point Cloud Acquisition

The actual project’s centralized heavy-duty unmanned transport vehicle, depicted
in Figure 1, was selected as the experimental target vehicle, whose size was 10.5 m ×
2.9 m× 3.3 m. The template point cloud acquisition procedure is shown in Figure 6.
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Based on the precise vehicle CAD model, a mesh model was obtained through trian-
gulation. The complete point cloud was sampled from the mesh model and trimmed to 
exclude the invisible part. Then the vehicle template point cloud shown in Figure 5 was 
accomplished by density adjustment and alignment. 
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Figure 6. Template point cloud acquisition procedure in the simulated test environment.

Based on the precise vehicle CAD model, a mesh model was obtained through trian-
gulation. The complete point cloud was sampled from the mesh model and trimmed to
exclude the invisible part. Then the vehicle template point cloud shown in Figure 5 was
accomplished by density adjustment and alignment.

4.1.2. Experimental Design

In the experimental verification stage, this paper compared the proposed algorithm to
the model-free methods and model-based methods, including the PCA pose estimation
method, the L-fitting [40] algorithm (with Closeness Criterion), the SHOT-ICP method
(SAC-IA [35] with SHOT [25] descriptor and ICP) and FPFH-ICP algorithm (SAC-IA with
FPFH [27] descriptor and ICP). An ablation study was also conducted to illustrate the contri-
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bution of the ECPC initial pose estimation component. The errors in the 6D pose estimation
results provided by those under different measurement parameters were compared.

The simulated environment model was built in SOLIDWORKS [61] according to
our real test environment. Lidar point cloud data was obtained through simulation in
BlenSor [62], which is shown in Figure 7. TOF Lidar was selected as the sensor to simulate
most roadside measurement scenarios.
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Since the proposed algorithm aimed at an accurate pose under sparse point clouds,
this paper verified the performance of current algorithms for point clouds with different
sparseness. Regarding the description of point cloud sparseness, the number of points
was used in [63,64] to indicate the sparseness of the point cloud. Voxel size was adopted
in [65,66] to distinguish point clouds with different sparseness. A multidimensional point
cloud simplification function [67] was proposed to sparse the point cloud while retaining
valid information.

However, in the vehicle pose detection task using roadside Lidars, the point cloud
volume and density of the vehicle varied with the vehicle pose, measurement distance,
Lidar resolution, and measurement angle. Those point cloud sparseness descriptions could
not accurately reflect the different sparseness effects due to distinct roadside measure-
ment parameters.

In this paper, to quantify the sparseness of the point cloud under different Lidar
equipment and measurement conditions, the point cloud sparseness S was defined as the
number of laser beams received on the unit area section from the center of the vehicle
toward the position of the Lidar. The unit of S was 1/m2. Ignoring the effect of minimal
angles, S could be calculated as:

S = 4

(
tan−1 1

2d

)2

resH ·resV
(13)

where d is the perception distance, that is, the distance between the center of the vehicle
and the center of the Lidar. resH and resV are the vertical and horizontal laser resolution
of the Lidar, respectively. For example, the S of Velodyne VLP-16 (10 Hz) at 30 m was 9.1,
and the S of Velodyne HDL-64E (10 Hz) at 30 m was 57. Under the same conditions, the
data volume of HDL-64E was about six times that of VLP-16. The vehicle point clouds
under the same measurement angle with different sparseness are displayed in Figure 8,
which proved that S could well describe the sparseness caused by various measurement
conditions. The point clouds were simulated in BlenSor.
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In this paper, considering general roadside measurement scenarios, the range of S for
the simulation was [0, 22]. Under the same S, the statistical results of poses in all situations
were used as experimental values. At the same time, a Gaussian measurement error
E ∼ N

(
0, 0.005 m2) was applied to the point cloud to simulate the measurement error

of the Lidar itself, which better tested the algorithms under all working conditions. The
ground truth poses of the vehicle were obtained directly from the simulation parameters.

4.1.3. Results and Discussion

The vehicle coordinate system MAE (Mean Absolute Error) of the proposed algorithm
was compared with PCA and L-fitting algorithms under point clouds of different sparseness.
Their MAE of different dimensions (

[
Px, Py, Pz, Rx, Ry, Rz

]
) were calculated in the ground

truth pose coordinate system. The ECPC initial pose error was also calculated for the
ablation study. The results are shown in Figure 9. The MAE in all cases was calculated, as
shown in Table 1. Since the L-fitting algorithm operated on a two-dimensional plane and
could only solve the three-degree-of-freedom vehicle pose, its results only appeared in (a),
(b), and (d) of Figure 9.

Figure 9 and Table 1 show that ECPC initial pose result was relatively accurate and
stable, providing a good foundation for the subsequent ICP registration. By fusing road
constraints, ECPC achieved a robust initial pose estimation under sparse point cloud
conditions. Because the vehicle drove perfectly on the road surface in the simulation, the
pitch error and roll error of the ECPC pose was close to 0.

As shown in Figure 9 and Table 1, the 6D pose estimation accuracy of ECPC-ICP was
better than the competing algorithms. Even in the case of extremely sparse point clouds,
ECPC-ICP could achieve relatively accurate measurements. For the error distribution, when
the point cloud sparseness was normal, PCA could obtain a relatively stable result faster.
L-fitting could obtain a stable and accurate two-dimensional yaw angle, and ECPC-ICP
could solve a stable and precise 6D pose.

Table 1. MAE of different methods in all cases.

Method

Error MAE (m) Error MAE (deg)

Local
X-Axis

Local
Y-Axis

Local
Z-Axis Yaw Pitch Roll

PCA 1.23932 0.13477 0.79728 4.07111 3.89515 30.49411
L-fitting 0.31533 0.17401 / 1.58945 / /

ECPC (Ours) 0.46180 0.09200 0.39429 1.96267 0.00042 0.00044
ECPC-ICP (Ours) 0.06334 0.02157 0.01066 0.16794 0.27018 0.34759
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Figure 9. MAE of different algorithms under point clouds with different sparseness. (a) MAE of different algorithms on
local X-axis; (b) MAE of different algorithms on local Y-axis; (c) MAE of different algorithms on local Z-axis; (d) MAE of
different algorithms on local yaw angle; (e) MAE of different algorithms on local pitch angle; (f) MAE of different algorithms
on local roll angle.

As the sparseness S of the input point cloud decreased, the MAE of the three algo-
rithms had increased in different ranges. The internal reasons were various. For PCA, the
sparse point cloud reduced the percentage of effective points in the point cloud, and the
description of the vehicle shape by the point cloud decreased. Random error points caused
significant interference to the statistical results, increasing the overall pose MAE. L-fitting
relied on the vehicle boundary points. The sparse points reduced the proportion of bound-
ary points, thereby reducing the description of the vehicle boundary shape. Some vehicle
central point clouds and random noise could also produce morphological interference,
which increased the probability of misjudgment of vehicle attitude and caused an increase
in MAE.

For ECPC-ICP, due to global point-to-point registration, the sparse vehicle point cloud
had to have excellent global distribution. As the point cloud gradually became sparse,
the local description was destroyed, while the proportion of local points increased and
the global distribution decreased. As a result, ECPC-ICP was easier to converge to the
local optimum in the registration stage, leading to increased MAE. Therefore, although
the accuracy of the proposed algorithm went down as S decreased, it still achieved better
results than the competing methods.

For a more intuitive explanation, the typical situation of the experiment is shown
in Figure 10. The closer the blue points were to the vehicle surface represented by the
red points, the higher was the accuracy of the pose estimation result. It indicated that
ECPC-ICP achieved accurate pose results with S = 20 and S = 2. L-fitting estimated an
accurate pose with S = 20, but had a small orientation error with S = 2. The results of PCA
were relatively inaccurate.
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Furthermore, to verify the robustness of the proposed algorithm, this paper compared
the pose estimation success ratio of ECPC-ICP, PCA, L-fitting, SHOT-ICP, and FPFH-ICP in
all test data. The pose estimation success ratio F was expressed explicitly as:

F =
NAC
Nall

(14)

where NAC is the number of test samples whose error is less than the threshold, and Nall
is the total number of test samples. The results under different sparseness are shown in
Figure 11, and the statistical results are shown in Table 2.
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Table 2. Pose estimation success ratio F of different methods in all cases.

Method Success Ratio F

PCA 2.7777%
L-fitting 84.7222%

FPFH-ICP 14.7487%
SHOT-ICP 40.4762%

ECPC-ICP (Ours) 95.5026%

As shown in Figure 11 and Table 2, the proposed ECPC-ICP showed better robustness
under different sparse point clouds. L-fitting could also solve reasonable three-dimensional
vehicle pose results in most cases. Feature-based FPFH and SHOT descriptors could obtain
stable poses in dense point clouds, but the estimation of poses in the case of sparse point
clouds was unstable. The SHOT descriptor was slightly better than FPFH because of its
better description of local features. Although PCA could hardly solve the accurate vehicle
pose, meaningful statistical characteristics of the target point cloud were obtained, which
could play a significant role in rough calculation and estimation.

As the sparseness of the point cloud decreased, the robustness of each algorithm
had a downward trend. In the sparsest test data with an S of 0.5, the SHOT and FPFH
calculations failed. The success ratio F of L-fitting was about 46%, and the success ratio F of
ECPC-ICP was about 55%, which still guaranteed availability. In all the test data, the total
success ratio F of the proposed algorithm was 95.5026%, which showed better robustness
for sparse point clouds than the competing methods.

The calculation time distribution of all methods is shown in Figure 12, and the average
time cost is shown in Table 3. As the amount of input data increased, the time consumption
of all algorithms increased to varying degrees. The calculation time of L-fitting, FPFH-ICP,
and SHOT-ICP had larger increases due to their high computational complexity. The calcu-
lation time of ECPC, ECPC-ICP, and PCA was relatively stable, verifying higher robustness.
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Table 3. The mean calculation time of all methods.

Method Mean Calculation Time (ms)

PCA 0.8135
L-fitting 308.24

FPFH-ICP 283.11
SHOT-ICP 335.77

ECPC (Ours) 0.4633
ECPC-ICP (Ours) 96.13
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In general, the calculation time of ECPC and PCA was extremely short, while effective
point cloud information could be quickly obtained. The calculation time of FPFH-ICP and
SHOT-ICP was relatively long due to their complexity in local feature computation. The
calculation time of L-fitting varied greatly with point cloud sparseness, showing weak
stability. The mean calculation time of ECPC-ICP was 96.13 ms, basically meeting the needs
of real-time pose estimation.

4.2. Real Test Environment
4.2.1. Template Point Cloud Acquisition

Limited to unfinished heavy-duty transport vehicle manufacturing, a functional vehi-
cle with similar geometric shapes was selected in the real environment test, which is shown
in Figure 13. The vehicle size was 3 m× 1.4 m× 1.3 m.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 22 
 

 

SHOT-ICP 335.77 
ECPC (Ours) 0.4633 

ECPC-ICP (Ours) 96.13 

4.2. Real Test Environment 
4.2.1. Template Point Cloud Acquisition 

Limited to unfinished heavy-duty transport vehicle manufacturing, a functional ve-
hicle with similar geometric shapes was selected in the real environment test, which is 
shown in Figure 13. The vehicle size was 3 m × 1.4 m × 1.3 m. 

 
Figure 13. The functional experimental vehicle used in experimental verification. 

The template Point Cloud was obtained by splicing from the scanned multi-view ve-
hicle point clouds. The number of multi-view vehicle point clouds should be appropriate 
to balance the accuracy of splicing and the simplicity of the process. Ground features were 
also used to achieve the multi-view pose initialization. Our splicing procedure is shown 
in Figure 14. 

Ground Fitting and 
Segmentation

 Vehicle Multi-View Point Clouds

Ground 
Points

Vehicle 
Points

Multi-View Point Clouds 
Alignment Based on ICP

Barycenter 
Feature

Ground 
Feature

Initial Pose 
Constraint

 
Figure 14. The splicing procedure for template point cloud acquisition. 

In this paper, the number of multi-view vehicle point clouds was set to 9, ensuring a 
50% overlap between the adjacent point clouds. The ground normal features and vehicle 
barycenter features were extracted for pose initialization. The template point cloud after 
ICP alignment is shown in Figure 14, where different colors represent point clouds from 
different perspectives. After density adjustment and aligning with the origin of the global 
coordinate system, the completed template point cloud of the experimental vehicle is 
shown in Figure 15. 

Figure 13. The functional experimental vehicle used in experimental verification.

The template Point Cloud was obtained by splicing from the scanned multi-view
vehicle point clouds. The number of multi-view vehicle point clouds should be appropriate
to balance the accuracy of splicing and the simplicity of the process. Ground features were
also used to achieve the multi-view pose initialization. Our splicing procedure is shown in
Figure 14.
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Figure 14. The splicing procedure for template point cloud acquisition.

In this paper, the number of multi-view vehicle point clouds was set to 9, ensuring a
50% overlap between the adjacent point clouds. The ground normal features and vehicle
barycenter features were extracted for pose initialization. The template point cloud after
ICP alignment is shown in Figure 14, where different colors represent point clouds from
different perspectives. After density adjustment and aligning with the origin of the global
coordinate system, the completed template point cloud of the experimental vehicle is
shown in Figure 15.
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Figure 15. The functional vehicle point cloud template aligned with the origin of the global coordi-
nate system.

4.2.2. Experimental Design

Based on the proposed algorithm’s accuracy and robustness verified by the simulation
experiment, the method was also applied in the real environment to prove the validity in
real use cases. The roadside Lidar measurement system, depicted in Figure 1, was built
based on two LEISHEN C32-700A [68] Lidars, as shown in Figure 16.
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Figure 16. The roadside Lidar measurement system.

Under different measurement distances and vehicle attitudes, about 700 frames of
roadside point cloud data were collected to verify the feasibility of ECPC-ICP. Furthermore,
to verify the accuracy of the algorithm in the real test environment, the GNSS/RTK pose
of the vehicle-mounted positioning system was used as a reference to calculate the 6-
dimensional error of the ECPC-ICP pose.

Specifically, ten measurement positions were set at different measurement distances
and vehicle poses. For each measurement position, the average value of GNSS/RTK data
within 30 s was calculated as the GNSS/RTK reference pose. The six-dimensional pose
error was calculated in the GNSS/RTK pose coordinate system. Referring to the concept of
the ICP loss function, the average closest point error was also calculated to compare the
accuracy of GNSS/RTK pose and ECPC-ICP pose. The expression was as follows:

LGNSS =
1
N

N

∑
i=1

∥∥∥pi
source − pi

GNSS

∥∥∥ (15)

LF =
1
N

N

∑
i=1

∥∥∥pi
source − pi

F

∥∥∥ (16)
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where LGNSS and LF represent the average closest point error of GNSS/RTK pose and
ECPC-ICP pose, respectively. pi

source represents the points in the clustered point cloud PCC.
N represents the points’ number of PCC. pi

GNSS and pi
F represent the nearest point of pi

source
in the template point cloud under GNSS/RTK pose and ECPC-ICP pose, respectively.

It is worth mentioning that the point cloud sparseness S had different meanings for
vehicles of different scales. For larger-scale vehicles, the vehicle point cloud had more
points under the same sparseness, which made it easier to estimate the vehicle pose. In this
subsection, due to the smaller size of the functional vehicle, in order to be consistent with
Section 4.1, equivalent sparseness S

′
was used instead of absolute sparseness S:

S
′
=

heavy− duty vehicle size
functional vehicle size

S = 0.15·S (17)

4.2.3. Results and Discussion

The typical pose estimation results of the proposed algorithm in the real test environ-
ment are shown in Figure 17, which illustrated the accuracy and reliability under different
vehicle pose and point cloud sparseness.
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Figure 17. Typical pose estimation results in the real test environment. Blue points represent the clustered point cloud.
Black points represent the background points, and red ones represent estimated pose results. (a) S

′
= 22.65; (b) S

′
= 15.62;

(c) S
′
= 12.58; (d) S

′
= 8.5; (e) S

′
= 4.4; (f) S

′
= 4.67; (g) S

′
= 4.2; (h) S

′
= 2.8.

The closer the blue points were to the vehicle surface represented by the red points,
the higher was the accuracy of the pose estimation result. In a sparse point cloud scene,
the proposed ECPC-ICP still showed high stability. Based on reasonable point cloud
distribution, a stable 6D pose could be achieved under the condition of more noise points
and fewer input points, verifying the effectiveness of the proposed algorithm.

Furthermore, the comparison results of ECPC-ICP pose and GNSS/RTK pose are
shown in Table 4, where the 6D error represents the x-axis error, y-axis error, z-axis error,
yaw error, pitch error, and roll error.
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Table 4. The comparison results of ECPC-ICP pose and GNSS/RTK reference pose.

Index ECPC-ICP Pose GNSS/RTK Pose 6D Error (m&◦) S
′

(1/m2) LGNSS (m) LF (m)

1 (4.718, −6.426, 5.609,
0.922, −0.003, 0.386)

(4.659, −6.456, 5.739,
0.917, −0.008, 0.397)

(0.002, 0.026, −0.143,
−0.65, 0.27, 1.78) 17.1 0.0198 0.0112

2 (9.310, −6.418, 5.141,
0.999, −0.009, −0.018)

(9.322, −6.457, 5.161,
0.999, −0.002, −0.032)

(−0.011, 0.038, −0.021,
0.78, −0.36, 1.84) 10.4 0.0176 0.0137

3 (10.967, −6.401, 5.727,
0.839, 0.013, 0.543)

(10.990, −6.413, 5.650,
0.855, −0.013, 0.518)

(0.020, 0.014, 0.077, 1.67,
1.55, −1.41) 8.4 0.0171 0.0120

4 (14.572, −6.421, 4.086,
−0.041, −0.015, −0.999)

(14.548, −6.377, 4.086,
−0.046, 0.0003, −0.998)

(−0.0005, −0.043, 0.024,
0.34, −0.88, 0.78) 6.05 0.0226 0.0170

5 (9.248, −6.407, 5.567,
0.828, 0.001, 0.559)

(9.210, −6.387, 5.564,
0.831, −0.013, 0.556)

(0.033, −0.019, −0.018,
0.26, 0.87, −0.069) 10.35 0.0134 0.0097

6 (17.988, −6.357, 5.991,
0.996, 0.077, 0.005)

(18.117, −6.406, 5.80,
0.997, −0.0003, −0.077)

(−0.143, 0.056, 0.178,
4.59, 4.67, −10.81) 4.09 0.0698 0.0703

7 (8.371, −6.411, 4.195,
0.998, 0.004, −0.058)

(8.336, −6.404, 4.240,
0.997, −0.002, −0.077)

(0.037, −0.007, −0.042,
1.05, 0.39, 0.50) 12.6 0.0119 0.0089

8 (10.418, −6.401, 5.180,
0.588, −0.0008, 0.808)

(10.401, −6.375, 5.213,
0.587, −0.019, 0.808)

(−0.016, −0.027, −0.032,
−0.07, 1.06, −1.62) 9.3 0.0154 0.0097

9 (8.484, −6.407, 4.404,
0.098, −0.0037, −0.995)

(8.465, −6.409, 4.481,
0.084, −0.0019, −0.996)

(0.078, 0.0016, 0.012,
0.81, −0.08, 4.62) 12.3 0.0163 0.0113

10 (18.851, −6.375, 4.479,
0.999, 0.036, −0.0025)

(18.880, −6.398, 4.503,
0.999, −0.003, −0.028)

(−0.028, 0.023, −0.026,
1.38, 2.26, 0.75) 3.9 0.0119 0.0104

The experimental result showed that the average positioning error of ECPC-ICP pose
results was 0.08 m, which was 2.6% of the vehicle scale, and the average orientation error
was 1.64◦. The average closest point error of GNSS/RTK pose was 0.0230 m. The average
closest point error of ECPC-ICP pose was 0.0188, which was about 0.8 times that of the
GNSS/RTK pose. Although the average closest point error L could not directly describe
the accuracy of the pose, the smaller L in the same scene reflected higher accuracy.

The result proved that the ECPC-ICP pose had the same or even higher accuracy than
the GNSS/RTK pose. Unlike GNSS/RTK poses that might be interfered by obstruction or
weather, the proposed ECPC-ICP pose estimation method could work stably in almost all
situations, including GNSS denied indoor or tunnel scenes.

The calculation time cost distribution of ECPC-ICP in about 700 frames point cloud
data is shown in Figure 18. The calculation time cost distribution of the preprocessing and
segmentation module is also shown in Figure 18. The time cost distribution of ECPC-ICP
with S

′
from 0 to 25 is shown in Figure 19, which represents the time cost distribution in

the general roadside measurement scene. The statistical results of time cost are shown in
Table 5.

The calculation time cost of the preprocessing and segmentation module varied
with the number of foreground points. The mean time cost was 27.82 ms, verifying
its effectiveness.

The calculation time cost of ECPC-ICP varied with the vehicle attitude and point
cloud sparseness. Experimental results showed that the ECPC-ICP pose estimation was
relatively fast in most scenarios. The average FPS was 18.8 Hz in the real test environment,
and was 24.8 Hz with S

′
< 25 verifying the effectiveness of the proposed method in

practical applications.
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0.084, −0.0019, −0.996) 
(0.078, 0.0016, 0.012, 0.81, −0.08, 4.62) 12.3 0.0163 0.0113 

10 
(18.851, −6.375, 4.479,  
0.999, 0.036, −0.0025) 

(18.880, −6.398, 4.503,  
0.999, −0.003, −0.028) 

(−0.028, 0.023, −0.026, 1.38, 2.26, 0.75) 3.9 0.0119 0.0104 
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Table 5. The statistical results of ECPC-ICP time cost and the preprocessing and segmentation
module time cost.

Method Mean Time Cost (ms) Mean Time Cost (S
′

< 25)
(ms)

ECPC-ICP 53.1928 40.3334
Preprocessing and

Segmentation 27.8227 /

5. Conclusions

Target vehicle pose estimation based on roadside Lidar is a crucial issue in the cooper-
ative perception of intelligent vehicles. This paper combined the idea of model-free and
model-based pose estimation methods. Aiming at the sparse point cloud characteristics, an
ECPC-ICP algorithm for accurate 6D pose estimation was proposed. After the point cloud
was preprocessed, filtered, and clustered, the initial pose was obtained by fusing the road
feature constraint and the eigenvector information in the ECPC algorithm. The accurate
6D pose estimation was obtained through a point-to-point ICP algorithm with a vehicle
point cloud template.
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In addition, the sparseness S of the observation point cloud was defined according to
the roadside Lidar measurement characteristics. Through simulated experiment testing
under different sparseness point cloud conditions, comparing the calculation results of
ECPC-ICP, PCA, L-fitting, SHOT-ICP, and FPFH-ICP, the proposed algorithm had the same
accuracy as the current algorithms under good point cloud sparseness conditions. Under
relatively sparse point cloud conditions, the proposed algorithm had greater accuracy and
robustness than competing methods. Under extremely sparse point cloud conditions, the
ECPC-ICP could still maintain a certain degree of usability.

The results in the real test environment showed that the average positioning error of
ECPC-ICP pose results was 0.08 m, which was 2.6% of the vehicle scale, and the average
orientation error was 1.64◦. The mean time cost was 53.19 ms. The experiments proved the
accuracy and effectiveness of ECPC-ICP in real test environments. This paper provided a
more accurate and robust pose solution for cooperative perception, which could work stably
in almost all situations, including GNSS-denied indoor or tunnel scenes. This paper also
provided some exploration for roadside equipment layout in cooperative perception cases.

As future work, we will expand the recognition model to achieve multi-target pose
recognition and tracking and explore the information interchange between vehicles and
roadside facilities to achieve a higher level of cooperative perception.
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