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Osteoporotic fracture (OF) is associated with high disability and morbidity rates. The burden of OF may be reduced by early identifi-
cation of subjects who are vulnerable to fracture. Although the current fracture risk assessment model includes clinical risk factors 
(CRFs) and bone mineral density (BMD), its overall ability to identify individuals at high risk for fracture remains suboptimal. Ef-
forts have therefore been made to identify potential biomarkers that can predict the risk of OF, independent of or combined with 
CRFs and BMD. This review highlights the emerging biomarkers of bone metabolism, including sphongosine-1-phosphate, leucine-
rich repeat-containing 17, macrophage migration inhibitory factor, sclerostin, receptor activator of nuclear factor-κB ligand, and 
periostin, and the importance of biomarker risk score, generated by combining these markers, in enhancing the accuracy of fracture 
prediction.
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INTRODUCTION

Osteoporosis is a skeletal disorder characterized by compro-
mised bone strength [1]. Fractures resulting from osteoporosis 
are a worldwide public health problem, causing substantial dis-
ability, morbidity, and mortality in the elderly [2,3]. Because of 
the global increase in the size of aging populations, osteoporotic 
fracture (OF) is expected to further impose considerable eco-
nomic burden on health care systems [4]. Although bone 
strength is a concept that integrates bone mass and bone quality 
[5], the current operational definition of osteoporosis only relies 
on bone mineral density (BMD) due to the lack of clinically 
feasible methods of measuring bone quality [6]. Low BMD as-
sessed by dual-energy X-ray absorptiometry is an important risk 
factor for OF development [7], but there is increasing concern 
about the ability of BMD to predict OF. Epidemiological cohort 

studies demonstrated that up to half of incident fractures oc-
curred in individuals with BMD T score above –2.5, the diag-
nostic cut-off defining osteoporosis. To overcome the low sensi-
tivity of BMD measurements, a World Health Organization 
working group developed a fracture risk assessment tool 
(FRAX) based on relevant clinical risk factors (CRFs) with or 
without BMD [8]. The CRFs, selected from the results of large 
prospective studies, include sex, age, weight, height, previous 
and parental fracture history, lifestyle factors, glucocorticoids, 
and the presence of secondary osteoporosis [8]. Although 
FRAX has markedly contributed to the improved prediction of 
fracture risk, the overall ability of FRAX to identify individuals 
at high risk for OF remains suboptimal [9]. Efforts have there-
fore been made to identify potential biomarkers that can predict 
the risk of OF, independent of or combined with BMD and 
CRFs. 
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FRACTION PREDICTION USING 
CONVENTIONAL BONE TURNOVER 
MARKERS 

Bone is a metabolically active tissue that undergoes continuous 
turnover through sequential phases of osteoclastic bone resorp-
tion and osteoblastic bone formation [10]. The ultimate aims of 
this finely controlled process are the preservation of mineral ho-
meostasis and mechanical characteristics. Bone turnover mark-
ers (BTMs) reflecting the rate of bone formation or the rate of 
bone resorption may be clinically useful for osteoporosis man-
agement [11,12]. Based on a comprehensive analysis of blood 
and urinary markers related to bone remodeling, the Internation-
al Osteoporosis Foundation and the International Federation of 
Clinical Chemistry have designated serum procollagen type I N-
propeptide and serum C-terminal telopeptide of type I collagen 
(CTX) as reference standards for bone formation and bone re-
sorption, respectively [13-15]. Although BTMs are utilized clin-
ically to monitor the short-term efficacy of anti-osteoporotic 
treatment [16], several prospective studies have suggested that 
BTMs may be predictors of future fracture risk [17]. For exam-
ple, the Epidémiologie de l’Ostéoporose (EDIPOS) [18] and Os 
des FEmmes de LYon (OFELY) [19] studies of postmenopausal 
women reported that high levels of bone formation markers 
(BFMs) and/or bone resorption markers (BRMs) were signifi-
cantly associated with high OF risk, independent of BMD. A re-
cent systematic review and meta-analysis also highlighted the 
potential role of BTMs in predicting future fractures [20]. In 
most clinical studies, however, the relative risk of fracture of 
these BTMs increased approximately 2-fold per standard devia-
tion (SD) or is in the highest quartile [18,19,21,22], making the 
ability of BTMs to predict future fracture risk insufficient. In ad-
dition, other longitudinal studies do not support the clinical utili-
ty of BTMs in assessing fracture risk in older women and men 
[23,24]. Collectively, these studies showed that the contribution 
of BTMs to the prediction of OF risk remains inconclusive. 

EMERGING BIOMARKERS OF BONE 
METABOLISM

Increased understanding of the regulatory mechanisms underly-
ing skeleton homeostasis has led to the identification of novel 
biological markers of bone metabolism. This review highlights 
potential biomarkers predictive of human bone health and their 
clinical applicability. 

Sphongosine-1-phosphate
Sphongosine-1-phosphate (S1P), a highly bioactive lysophos-
pholipid, which can function as both an extracellular mediator 
and an intracellular second messenger, has been shown to be in-
volved in diverse biologic processes, including the migration, 
localization, apoptosis, proliferation, and differentiation of vari-
ous cell types [25]. This pleiotropic molecule has also been 
found to play multiple roles in bone remodeling. Both osteo-
blasts and osteoclasts express S1P receptors (S1PRs), which be-
long to the G protein-coupled receptor family [26,27]. S1P se-
creted by osteoclasts stimulates the motility, proliferation, and 
survival of osteoblasts [26,28,29]. In addition, mice lacking os-
teoclast-specific cathepsin K exhibited higher bone formation in 
vivo through the enhancement of S1P production by osteoclasts 
[30]. Collectively, these findings indicate that S1P can act as an 
osteoclast-derived coupling factor, resulting in bone formation 
[10]. 

In contrast to its role in bone protection, S1P has different ef-
fects on osteoclastic biology. S1P in cocultures of osteoblasts 
and bone marrow (BM)-derived macrophages markedly poten-
tiated osteoclastogenesis by stimulating receptor activator of 
nuclear factor-κB ligand (RANKL) secretion from osteoblasts 
[31]. Elevated circulating S1P levels in vivo induced the migra-
tion of osteoclast precursors from blood to bone with low S1P 
levels by a mechanism involving S1PR2-mediated chemorepul-
sion (i.e., negative chemotaxis away from S1P), and conse-
quently facilitated bone resorption [27,32]. Consistently, inhibi-
tion of S1PR2 in mice attenuated bone loss by reducing the 
number of osteoclasts attached to the bone surface [32]. The 
complex roles of S1P on skeleton, with both anabolic and cata-
bolic activities, indicate a need to clarify the primary effects of 
S1P during bone remodeling.

To investigate whether the dominant effect of S1P in human 
bone metabolism consists of bone formation, resorption, or cou-
pling, we firstly performed clinical study in 357 postmenopaus-
al women with measurement of S1P and BTM [33]. After ad-
justment for potential confounders, plasma S1P concentrations 
were found to be positively associated with the levels of BRMs, 
such as urinary N-terminal telopeptide of type I collagen and 
serum CTX, but not with the levels of BFMs, such as serum 
bone-specific alkaline phosphatase and osteocalcin [33]. These 
results suggested that S1P primarily stimulates bone resorption 
rather than influences bone formation or coupling in humans. 
Furthermore, in a unique study using simultaneously obtained 
blood and BM samples, a higher blood/BM S1P ratio was found 
to be associated significantly with a greater risk of osteoporotic 
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hip fracture [34]. Together, all these findings provide clinical 
evidence that the adverse effects of S1P on human bone homeo-
stasis were attributable to the considerable S1P gradient be-
tween peripheral blood and BM, and to the resultant bone re-
sorption via the chemorepulsion-induced increase of pre-osteo-
clasts in bone.

The interesting point regarding S1P is that this molecule is 
abundant in the circulation but low in other tissues due to its ir-
reversible degradation by S1P phosphatase and/or S1P lyase 
[35,36]. This easily measurable property in blood made us to 
hypothesize that S1P could be a candidate biomarker predictive 
of osteoporosis-related phenotypes. To investigate this possibil-
ity, we performed an age- and BMI-matched case-control study 
[37]. Plasma S1P concentrations were inversely correlated with 
BMD at various sites, as well as being 36.3% higher in patients 
with than in those without vertebral fractures (VFs) [37]. Higher 
circulating S1P levels were associated with higher risk and 
number of osteoporotic VFs, with statistical significance per-
sisting even after adjustment for BMD [37]. A subsequent 3.5- 
year follow-up study demonstrated that high baseline blood S1P 
levels could be a potential predictor of high incident fractures 
[38]. Importantly, the association between blood S1P and frac-
ture was perfectly replicated in another cohort. A recent pro-
spective study with a 5.2-year follow-up period found that the 
hazard ratio for OF was 9.89-fold higher in women in the high-
est than in those in the lowest S1P quartile [39]. Taken together, 
these clinical studies consistently indicated that S1P may be a 
promising blood biomarker predictive of poor bone health out-
comes. 

Leucine-rich repeat-containing 17 
Leucine-rich repeat-containing 17 (LRRc17) is a 37 kDa pro-
tein with secretary feature containing five putative LRR do-
mains [40]. Previous experimental study well characterized the 
role of LRRc17 in bone metabolism as an inhibitor of RANKL-
induced osteoclast differentiation [41]. Briefly, LRRc17, highly 
expressed in osteoblasts, decreased RANKL-mediated nuclear 
factor of activated T-cells, cytoplasmic 1 (NFATc1) signaling, 
followed by attenuating osteoclastogenesis from BM precursors 
[41]. These findings suggest that low circulating LRRc17 level 
may be a risk factor for OF. In fact, Hong et al. [42] demonstrat-
ed that postmenopausal women in the lowest plasma LRRc17 
tertile had a 3.32-fold higher odds ratio (OR) for OF than those 
in the highest tertile and that each log-unit decrease in plasma 
LRRc17 concentration was associated with a 46% higher risk of 
OF after adjustment for bone mass and CRFs. Interestingly, the 

area under the receiver operating characteristics curve, integrat-
ed discrimination improvement, and category-free net reclassi-
fication improvement analyses consistently revealed that the ad-
dition of blood LRRc17 to a FRAX model markedly improved 
its ability to predict OF [42]. These findings suggest that 
LRRc17 is an independent and additive biomarker for OF in 
postmenopausal women.

Macrophage migration inhibitory factor
Macrophage migration inhibitory factor (MIF) is a 37.5 kDa cy-
tokine exerting various biologic effects through its receptor 
CD74. In addition to its involvement in the regulation of inflam-
matory and immune processes [43], MIF has emerged as a key 
player in bone metabolism. For example, histomorphometric 
analyses showed that mice overexpressing MIF had osteoporot-
ic phenotypes resulting from high bone turnover [44], whereas 
MIF-deficient mice were resistant to the increases in bone re-
sorption and bone loss after ovariectomy [45]. These detrimen-
tal effects of MIF on bone homeostasis in humans were validat-
ed by investigating the association of blood MIF level with os-
teoporosis-related phenotypes in postmenopausal women [46]. 
After controlling for potential confounders, plasma MIF con-
centrations were found to correlate inversely with BMD at the 
lumbar spine and proximal femur, and to correlate positively 
with levels of BFM and BRM [46]. Each SD increase of blood 
MIF level was significantly associated with a multivariable-ad-
justed OR of 1.32 for the risk of osteoporosis [46]. These results 
suggest that circulating MIF may be a potential biomarker asso-
ciated with human bone metabolism.

Sclerostin
The Wingless (Wnt) ligands are pivotally involved in bone me-
tabolism through their interaction with a receptor complex con-
sisting of seven-transmembrane frizzled-related proteins and 
low-density lipoprotein receptor-related protein 5/6 (LRP5/6) 
[47]. Activation of the Wnt signaling pathway induces the trans-
location of stabilized cytoplasmic β-catenin into the nucleus, 
subsequently stimulating the transcription of key genes involved 
in osteoblast differentiation [48]. Sclerostin competitively binds 
to LRP5/6 and thus acts as an inhibitor of the Wnt pathway, re-
sulting in reduced osteoblastogenesis [49]. Sclerostin also stim-
ulates the production of osteocyte-derived RANKL [50], indi-
cating that sclerostin is a dual action molecule, having deleteri-
ous effects on skeletal homeostasis by increasing bone resorp-
tion as well as by reducing bone formation. 

Sclerostin is a secreted protein, primarily by osteocytes, with 



Kim BJ, et al.

58 www.e-enm.org Copyright © 2020 Korean Endocrine Society

its concentration increasing with age [51]. Importantly, circulat-
ing and BM plasma levels of sclerostin were strongly correlated, 
suggesting that blood sclerostin concentration may represent its 
local production in the bone microenvironment [52]. In view of 
these features, sclerostin has been expected as an ideal biomark-
er of human bone metabolism, and several epidemiologic stud-
ies have been performed to clarify this point. Consistent with its 
role as a negative regulator of bone remodeling, higher scleros-
tin concentrations in blood were a strong and independent risk 
factor for higher fracture occurrence in older Caucasian and 
Arab women [53,54]. By contrast, the OFELY study of 572 
postmenopausal women found no association between baseline 
serum sclerostin levels and incident fracture [55]. Moreover, 
other clinical studies showed that older men and women with 
high sclerostin levels were at reduced risk of fracture [56,57]. 
Because of these discrepancies, sclerostin is not regarded as a 
predictor of fracture, and its measurement is not yet recom-
mended in clinical practice. 

RANKL
RANKL plays essential roles at every stage of osteoclastogene-
sis and bone resorption [58]. Although RANKL is expressed in 
various cell types, including osteoblasts, conditional genetic de-
letion indicates that osteocytes are the major source of RANKL 
needed for osteoclast formation [59,60]. The development of 
sensitive assays to effectively measure RANKL in body fluids 
[61] led to clinical studies evaluating the association between 
circulating RANKL levels and metabolic bone diseases. These 
studies, however, yielded conflicting results [62-64], and critical 
concerns were raised regarding the origin and nature of circulat-
ing RANKL. For example, serum RANKL concentrations were 
inversely correlated with RANKL mRNA expression in bone 
tissue [65]. Furthermore, Drake et al. [52] reported that RANKL 
could not be detected in most peripheral blood samples. There-
fore, the ability of blood RANKL concentration to predict frac-
ture remains unclear.

Periostin
Periostin, a glutamate-containing extracellular matrix protein, 
was originally isolated from murine pre-osteoblast MC3T3-E1 
cells and initially designated osteoblast-specific factor 2 [66]. 
Subsequent research demonstrated that this protein was mainly 
expressed in the periosteum and was therefore renamed perios-
tin. Results from genetically altered mice showed that periostin 
plays a beneficial role in bone metabolism [67]. For example, 
bone mass was lower and microarchitecture was weaker in peri-

ostin-deficient mice than in control mice, resulting in reduced 
bone strength in periostin-deficient mice [68]. The notable find-
ings, demonstrated by Bonnet et al. [68,69], were that mechani-
cal loading markedly increased the expression of periostin in 
stimulated bone, and that these changes correlated with the im-
proved biomechanical properties of long bones through the in-
crease of bone-forming activity, especially at the periosteal site. 
These results suggest that periostin may be a distinctive bio-
marker of periosteal metabolism, a process that cannot be deter-
mined by conventional BTMs, most of which are biomarkers of 
endosteal bone remodeling [70]. 

Despite the clear biological importance of periostin in rodent 
skeleton, the relationship between blood periostin level and os-
teoporosis-related phenotypes in humans was determined only 
recently. In a 7-year prospective cohort of 607 postmenopausal 
women, the risk of incident fracture was 1.88-fold higher in the 
quartile with the highest than in that with the lowest circulating 
periostin concentration, independent of BMD and CRFs [71]. 
These results were replicated in another study, which showed 
that the OR per each increase in SD of blood periostin for any 
type of OF was 1.58 in the multivariable adjustment model [72]. 
Because periostin showed bone anabolic effects in experimental 
studies, these clinical data seemed counterintuitive. Although 
the reasons for these unexpected findings remain uncertain, 
Rousseau et al. [71] hypothesized that periostin expression may 
be increased to compensate for increased bone fragility. Al-
though periostin expression after bone growth is maintained at a 
low level under normal conditions, this protein is re-expressed 
in response to pathologic mechanical strains in adults [67]. For 
example, periostin expression was markedly increased during 
the early stages of fracture healing, possibly contributing to 
periosteal callus formation [73]. Therefore, circulating periostin 
concentrations may be increased in subjects with poor bone 
strength and resultant fractures through a process involving in-
creased mechanical stress on the remaining bones to maintain 
skeleton integrity. 

Because periosteum is an outer membrane of cortical bone, 
the role of circulating periostin in terms of OF risk might be 
more prominent in long bones than in spine, which is mainly 
composed of trabecular bone. To answer this question, we ana-
lyzed non-VFs and VFs separately in a recent case-control study 
[72]. Interestingly, higher plasma periostin levels were signifi-
cantly associated with a higher risk of non-VFs and lower femur 
BMD, but not with a higher risk of VFs and lower spinal BMD 
[72]. These results suggest that the effects of periostin on human 
skeleton may depend on bone types, and that this protein could 
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serve as an effective biomarker, especially for non-VFs. 

Other bone regulatory factors
In addition to the factors described above, dipeptidyl-peptidase 
4 [74], slit guidance ligand 3 [10,75], cathepsin K [76], dick-
kopf-related protein 1 (DKK1) [11], and fibroblast growth fac-
tor 23 [77] may act as circulating candidate markers of bone 
metabolism. Since most researchers in bone field have a con-
sensus on the limitations of BMD in fracture risk assessment, 
novel biomarkers would continue to be identified, according to 
the increase of knowledge about bone regulation, and be vali-
dated for the clinical utility. 

BIOMARKER RISK SCORE ENHANCING 
THE ACCURACY OF FRACTURE 
PREDICTION

Because osteoporosis is a multifactorial disease involving vari-
ous kinds of players, the contribution of any single biomarker to 
fracture prediction improvement may not be strong enough. 
This led to a formulation of a “biomarker risk score” by com-
bining the available candidates using the optimal linear combi-
nation method [78] in a case-control control including 160 post-
menopausal women as follow: –0.061×[(DKK1–mean)/SD]×
β (coefficient)+0.212×[(MIF–mean)/SD]×β+0.378×

[(LRRc17–mean)/SD]×β–0.635×[(periostin–mean)/SD]×
β+0.636×[(sclerostin–mean)/SD]×β. The addition of a bio-
marker risk score to a model including CRFs and hip BMD was 
found to improve the ability to detect OF by 31.8% (area under 
the curve 0.62 vs. 0.82, P<0.001) (Fig. 1). This scoring system 
was cross-sectionally performed in relatively small samples, 
and thus could be applied to other populations. However, this 
preliminary analysis might provide important implications in 
that it suggests the necessity of integrating the established bio-
markers for effective fracture risk assessment.

POSSIBLE ROLE IN PREDICTING 
RESPONSES TO NEW ANTI-
OSTEOPOROTIC MEDICATIONS?

Two new therapeutic agents have been introduced for the treat-
ment of osteoporosis [79,80]. One of these agents, romosozum-
ab, is a dual acting drug that simultaneously stimulates bone 
formation and decreases bone resorption by inhibiting sclerostin 
[81]. The second agent, denosumab, is a fully human recombi-
nant monoclonal antibody to RANKL, blocking the binding of 

RANKL to the RANK receptor on cells of the osteoclast lin-
eage, thereby suppressing bone resorption [82]. Pivotal phase 3 
clinical trials of both drugs demonstrated their efficacy in reduc-
ing the incidence of fracture [83,84]. In particular, sequential 
treatment with romosozumab followed by denosumab resulted 
in a greater increase in bone mass than any other treatment strat-
egies [85]. With the increasing importance of romosozumab and 
denosumab in the osteoporosis management, physicians may be 
interested in biomarkers that can predict their therapeutic re-
sponse in advance. For example, it can be speculated that bone 
anabolic and/or anti-resorptive activities might be much stron-
ger when romosozumab and denosumab are injected into pa-
tients with higher circulating pretreatment levels of sclerostin 
and RANKL, respectively. Unfortunately, as discussed earlier in 
this paper, clinical studies to date have not shown consistent re-
sults regarding the association between circulating sclerostin 
and bone parameters [53-57], and the measurement of RANKL 
in blood was challenging due to its low concentration [52]. At 
present, therefore, existing evidence does not support the role of 
circulating sclerostin and RANKL as predictors of treatment re-
sponses to new anti-osteoporotic medications. 

CONCLUSIONS

Main objective of bone research is to reduce the burden of fra-
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gility fracture causing high disability and morbidity. To achieve 
this goal, the subjects vulnerable to fracture should be early de-
tected. Assessment of fracture risk has been moving toward an 
absolute-risk approach that can be estimated from individual 
risk profiles, largely based on CRFs and BMD. Although the 
current model is used worldwide, there is a need improve the 
accuracy of fracture prediction. The present review described 
emerging biomarkers of bone metabolism and the importance of 
biomarker risk score, generated by combining individual bio-
markers. Although many challenges, such as bone specificity, 
intra-individual and biologic variability, and cost-effectiveness, 
remain prior to applying these biomarkers to actual clinical 
practice, researchers in bone field are recognizing the limitations 
and endeavoring to minimize them. Therefore, future efforts, in-
cluding the validation and replication in the longitudinal cohorts 
of various populations, are expected to increase clinical applica-
bility of potential biomarkers for the fracture risk assessment.
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