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According to the World Health Organization1,2 the percentage of healthcare
dependent population, such as elderly and people with disabilities, among
others, will increase over the next years. This trend will put a strain on the health
and social systems of most countries. The adoption of robots could assist these
health systems in responding to this increased demand, particularly in high intensity
and repetitive tasks. In a previous work, we compared a Socially Assistive Robot
(SAR) with a Virtual Agent (VA) during the execution of a rehabilitation task. The SAR
consisted of a humanoid R1 robot, while the Virtual Agent represented its simulated
counter-part. In both cases, the agents evaluated the participants’ motions and
provided verbal feedback. Participants reported higher levels of engagement when
training with the SAR. Given that the architecture has been proven to be successful
for a rehabilitation task, other sets of repetitive tasks could also take advantage of
the platform, such as clinical tests. A commonly performed clinical trial is the Timed
Up and Go (TUG), where the patient has to stand up, walk 3 m to a goal line and
back, and sit down. To handle this test, we extended the architecture to evaluate
lower limbs’ motions, follow the participants while continuously interacting with
them, and verify that the test is completed successfully. We implemented the
scenario in Gazebo, by simulating both participants and the interaction with the
robot3. A full interactive report is created when the test is over, providing the
extracted information to the specialist. We validate the architecture in three different
experiments, each with 1,000 trials, using the Gazebo simulation. These
experiments evaluate the ability of this architecture to analyse the patient, verify
if they are able to complete the TUG test, and the accuracy of the measurements
obtained during the test. This work provides the foundations towards more
thorough clinical experiments with a large number of participants with a physical
platform in the future. The software is publicly available in the assistive-rehab
repository4 and fully documented.
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1 INTRODUCTION

According to the World Health Organization (WHO)5,6 (WHO,
2015), the percentage of healthcare dependent population, such
as elderly and people with disabilities, among others, will increase
over the next years. This trend will overwhelm the health and
social systems of most countries. The adoption of robots could
assist these health systems in responding to this increased
demand, particularly in high intensity and repetitive tasks.

Most countries, particularly first world countries, are faced
with an increasingly higher percentage of people in need of
healthcare assistance, either due to old age or some disabilities
or impairments, requiring prolonged care, constant examination,
and following up the patients very closely. This pressure, both in
number of and time dedicated to the patients, will put a strain on
the current healthcare and social systems all over the world.
Solving this problem, however, is not a simple matter, not just due
to the lack of professionals but also due to the increasing costs of
maintaining these services. In this paper we propose a solution by
using robots to assist medical professionals when realizing
repetitive and monotonous exams, in particular for the Timed
Up and Go (TUG) test. The implementation of such a system
would not only remove some of the workload from the medical
professional, but also be more reliable in the long run, not
suffering from attention, exhaustion or other issues that often
affect us. With this system we intend to show the possibility of
using robot platforms in this context, paving the way for further
development and implementation of such platforms in hospitals
and other healthcare facilities.

The task described in this paper, TUG, is a common screening
test performed on patients recovering or suffering from impaired
locomotion (Podsiadlo and Richardson, 1991). In this test the
patient starts from a sitting position and is asked to stand up, walk
to a marker and back, and sit down again. The time the patient
takes to complete the tests, along with other metrics like cadence,
are used as indicators to evaluate the patient’s static and dynamic
balance as well as the mobility. The goal of the robot platform is,
in this case, to guide and monitor the patient in the execution of
the task, meanwhile retrieving and recording these metrics. The
data can then be checked by the medical professional for
evaluation, and a more accurate log can be kept to evaluate
the recovery of the patient over time. The long-term vision is the
development of a robotic solution that takes care autonomously
of all the activities involved in the administration of the TUG test
in an hospital setting: engaging the patients in their rooms,
leading them to the testing room, explaining the test and
interacting with the patient to answer questions, monitoring
the execution of the test and correcting the patient if needed,
and finally sending the results of the test to clinicians.

The platform used in the experiments presented in this paper
is a R1 humanoid robot (Parmiggiani et al., 2017), developed by
Istituto Italiano di Tecnologia (IIT). This platform, which we will
call Socially Assistive Robot (SAR), is equipped with both
standard color cameras and with depth cameras to better track
the patient. It relies on wheels for navigating in the rooms, using a
infrared laser (LIDAR) for obstacle avoidance. Finally, it is
equipped with face expressions and speakers to afford
interaction with the patients.

The SAR was previously compared to a Virtual Agent (VA)
during rehabilitation tasks, with the SAR reporting a higher level
of engagement from the patients (Vasco et al., 2019). To develop
the automated version of the TUG with the SAR, we extended the
architecture to evaluate lower limbs’ motions, follow the
participants while continuously interacting with them, and
verify that the test is completed successfully. In order to
validate the framework and assess its robustness, we
implemented the scenario in the simulation environment
Gazebo, by simulating both participants and the interaction
with the robot.

With this paper we aim to introduce a robotic solution for the
increasing strain on healthcare systems, allowing repetitive tests
and exams to be handled by a robot platform, removing some of
the pressure from the medical professionals, preventing errors
due to exhaustion and stress, and maintaining consistency over
time and across patients. The aim is to prove the ability of the
architecture to assist a therapist in evaluating patients, extracting
consistent and reliable data in terms of time, number of steps and
the success or failure of the test by the patient. This work is the
first step towards more thorough clinical experiments with a large
number of subjects with the physical platform.

This paper is structured as follows: in Section 2 we present
some previous works on the use of robotics and other devices in
healthcare and rehabilitation robotics. In Section 3we describe in
detail the TUG test, and the SAR and the software architecture
responsible for the test, along with the description of the test and
the data collected. In Section 4, we describe the design of the
experiments and the extraction of the ground truth. In Section 5
we present the results of the quantitative analysis of the
architecture in simulation. Section 6 discusses the quantitative
results, proposing possible improvements to architecture. We
conclude the paper with Section 7 where we present our
conclusions and discuss further improvements and other tests
that could be handled by such a SAR.

2 RELATED WORK

The field of robotics in healthcare has been rapidly evolving in the
last years, leading to a substantial paradigm shift. An example of
this is the Da Vinci system, a surgical robot tele-operated
remotely, acting as guidance tool to simultaneously provide
information and keep the surgeon on the target (Moran,

5https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
5https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
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2006). This type of robots has been installed and used worldwide.
The use of robots for surgery has given rise to a large number of
applications for use in the medical domain.

In the particular sub-field of Assistive Robotics, robots are
endowed with the human capabilities to aid patients and
caregivers. The robot RIBA (Robot for Interactive Body
Assistance) is designed with the appearance of a giant teddy
bear to lift and transfer patients from a bed to a wheelchair and
back (Mukai et al., 2011). The caregiver can instruct the robot
through vocal commands and tactile guidance: the desired
motion is set by directly touching the robot on the part
related to the motion. A similar system, RoNA (Robotic
Nursing Assistant), executes the same task, but is instead
controlled by the operator through an external GUI (Ding
et al., 2014). Chaudhary et al. (2021) plan to design a new
medical robot, called BAYMAX, which will serve also as
personal companion for general healthcare. The robot will be
equipped with a head, comprising a camera, microphone and
speakers. It will also contain a series of sensors to detect the
temperature, the heartbeat and the oxygen level, and will be
capable of performing regular basic check-ups, such as
temperature, oxygen level check, mask verification, external
injuries etc.

Assistive robots can also aid patients through social
interaction, rather than offering physical support (Feil-
Seifer and Mataric, 2005): these are known as Socially
Assistive Robots (SAR). The robot’s embodiment positively
affects the users’ motivation and performance, through non-
contact feedback, encouragement and constant monitoring
(Brooks et al., 2012; Li, 2015; Vasco et al., 2019). The Kaspar
robot is a child-sized humanoid designed to assist autistic
children in learning new social communication skills, while
improving their engagement abilities and attention (Wood
et al., 2021). The Bandit robot consists of a humanoid torso,
developed by BlueSky Robotics, mounted on a Pioneer 2DX
mobile base. It has been used for engaging elderly patients in
physical exercises (Fasola and Matarić, 2013) and providing
therapies to stroke patients (Wade et al., 2011). Szücs et al.
(2019) propose a framework which allows the therapist to
define a personalized training program for each patient,
choosing from a set of pre-defined movements. The
software has been developed on the humanoid NAO robot
controlled through vocal commands via Android smartphone
interface. The same robot has been used in combination with
a virtual environment for a rehabilitation task: the patient
replicates the movements shown by the robot while
visualizing himself inside a gamified virtual world (Ibarra
Zannatha et al., 2013). The robot coaches the rehabilitation
exercising, while encouraging or correcting the patient
verbally. Lunardini et al. (2019), as part of the MoveCare
European project, also propose to combine a robot and virtual
games, with the aid of smart devices (e.g. smart ball, balance
board, insoles) to monitor and assist elderly people at home.
A similar combination can be seen in the work of Pham et al.
(2020) within the CARESSES project, where the authors
integrate a Pepper robot with a smart home environment
in order to support elderly people.

Another example of coaching is the work by Céspedes
Gómez et al. (2021) and Irfan et al. (2020), where a study
lasting 2 years and 6 months using a NAO robot to coach
patients in cardiac rehabilitation proved that patients were
more engaged, and generally finished the program earlier,
than the ones not followed by a robot. In this work the robot
was the means of interaction, while data was collected through
multiple sensors, both wearable and external. In particular, in
the case study presented in Irfan et al. (2020), the system was
instrumental in detecting a critical situation where a patient was
not feeling well, alerting the therapists and leading to medical
intervention.

Previous research has focused on automating the Timed Up
and Go using sensors of various modalities or motion tracking
systems. Three-dimensional motion capture systems have
been used to measure the walking parameters with high
reliability (Beerse et al., 2019). They currently represent the
gold standard (Kleiner et al., 2018), but because of their cost,
scale and lack of convenience, it is difficult to install these
devices in community health centers. Wearable sensors based
on Inertial Measurement Units (IMUs) have been extensively
used in instrumenting the TUG test for their low cost and fast
assessment. They have proved to be reliable and accurate in
measuring the completion times (Kleiner et al., 2018).
However, they require time-consuming wearing and
calibration procedures that cannot usually be performed by
the patients themselves, especially by those with motor
limitations. Moreover, the possibility to accurately evaluate
the movement kinematics, in terms of articular joints angles,
through the data extracted from IMU is still under debate
(Poitras et al., 2019). Ambient sensors, including temperature,
infrared motion, light, door, object, and pressure sensors, have
also shown promise as they remove the need to instrument the
patient. Frenken et al. (2011) equipped a chair with several
force sensors to monitor weight distribution and a laser range
scanner to estimate the distance the subject covers. However,
this system is relatively expensive, requires specialized
installation and has limited range of use. Video data have
also been heavily explored, as they are minimally invasive,
require little setup and no direct contact with the patient.
Several works have adopted Kinect sensors and their skeleton
tracking modes (Lohmann et al., 2012; Kitsunezaki et al., 2013)
and webcams (Berrada et al., 2007). A more thorough analysis
of the application of these technologies to the TUG test can be
seen on the review by Sprint et al. (2015).

3 THE FRAMEWORK

To develop the proposed framework, we used the humanoid
robot R1 (Parmiggiani et al., 2017) and devised a set of modules
interconnected on a YARP network (Metta et al., 2006), as shown
in Figure 14.

3.1 The Timed up and Go
The Timed Up and Go is a well-known clinical test widely
adopted by clinicians to identify mobility and balance
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impairments in older adults (Podsiadlo and Richardson,
1991). The test requires the subject to 1) stand up from a
chair, 2) walk for 3 m at a comfortable pace, 3) cross a line
placed on the floor, 4) go back to the chair and 5) finally sit
down, as shown in Figure 1. In typical scenarios, the
therapist measures, by means of a stopwatch, the time
taken by the patient to perform the task and assess the
progress achieved throughout the rehabilitation. Gait
parameters such as step length and walking speed are
subjectively observed, but not quantitatively measured.
Moreover, evaluating if the line was crossed is not always
straightforward, especially when the patient approaches it
and then turns back.

We extend the architecture previously presented for a
rehabilitation task (Vasco et al., 2019) in order to also
cover clinical tests and identified the TUG as use case. The
automated version of the TUG foresees the execution of the
test, while the robot engages the patient in a verbal
interaction to illustrate the instructions and answer
potential questions, evaluates the movement and verifies if
the test is performed correctly.

3.2 The Humanoid R1
R1 is a 1.2 m humanoid robot designed with the sensory and
actuation capabilities to interact with a dynamic
environment. The robot is equipped with two 8DOF arms,
capable of elongating when needed, and two 4DOF hands.
The torso includes a mechanism that allows it to vary its
height from a minimum of 1.15 m to a maximum of 1.35 m.
The robot navigates the environment by means of two driving
wheels and is equipped with two front and rear LIDAR laser
sensors integrated into its base. A curved RGB LED display is
mounted into the head, allowing facial expressions. It is
equipped with an Intel RealSense depth camera, which
provides RGB images along with depth data. Finally, the

robot has a speaker and a microphone to acquire sound
signals.

3.3 Line Detection
The finish line used in the TUG to indicate the end of the path is
identified by means of an ArUco marker board. We additionally
introduced an ArUco start line, to provide a robust static
reference frame for the test session. We use the start line pose
as reference frame to express the skeletons, the robot and the
finish line in such reference frame. In the simulated world, the
line positions are pre-determined in the Gazebo scenario,
maintaining the same conditions as the real world. The line
reference frame is defined with x along the line length, y pointing
backward and z pointing upwards.

3.4 3D Skeleton Acquisition
The skeleton acquisition is performed by combining the detection
of 2D key-points with the related depth. More specifically,
yarpOpenPose is responsible for estimating human poses
based on OpenPose(Cao et al., 2019), an open-source library
for real-time multi-person 2D pose estimation: the module
processes an RGB image and outputs a list of 2D key-points
for each person found in the image, achieving high accuracy and
speed regardless of the number of people inside the scene.
skeletonRetriever combines the 2D locations with the
depth provided by the camera sensor, to reconstruct key-points in
the 3D world, adopting the classical pinhole camera model. The
3D reconstruction of the skeleton is guaranteed to be robust
against keypoints self-occlusions and mismatches occurring
between detected keypoints and noisy depth contours (Gago
et al., 2019).

3.5 Motion Analysis
The motion analysis component extracts in real-time metrics
relevant for the TUG. More specifically, motionAnalyzer is

FIGURE 1 | The classical TUG, where the therapist measures the time taken by the patient to perform the task.

Frontiers in Robotics and AI | www.frontiersin.org February 2022 | Volume 9 | Article 8138434

Vasco et al. HR1 Robot Healthcare Assistant

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


responsible for estimating the Range of Motion (RoM) of the
articular angles and the gait parameters, i.e. number of steps, step
length and width and walking speed. More in detail, we compute
the distance between left and right foot and detect a step each time
such distance reaches the maximum value. The step length and
width are then measured by projecting the maximum feet
distance along the skeleton sagittal and coronal planes
respectively. Finally we estimate the walking speed as the
product of the step length and the number of steps over the
time taken to complete the test.

The module is also in charge of computing measurements
relevant to establish if the patient has passed the test:

• the distance between the skeleton hip center and the finish
line along the y coordinate, in order to identify if the line was
crossed. A “crossed line” event occurs if a change of sign is
detected in the estimated distance;

• the neck speed along the z coordinate to identify if the
patient has stood up (and thus started the test) and sat down
(and thus completed the test). A “standing/sitting” event
occurs if the neck speed is higher/lower than zero (i.e. the
neck height increases/decreases).

The module additionally exports relevant data for enabling
offline reporting of the experiments at the end of the session. The
aim is to provide the clinician with a tool for evaluating offline the
quality of the movement and use it as documentation that can be
added to the patient clinical report.

3.6 Speech Interaction
The robot explains the task to the patient, providing pre-
defined verbal instructions through its speaker. The platform is
also able to reply to a set of potential questions, using two
interconnected layers relying on the Google services API,
which have proved to be very robust especially with the
Italian language (Calefato et al., 2014): googleSpeech, in
charge of converting the sound provided by the microphone
into transcript, and googleSpeechProcess, in charge of
analyzing the speech transcripts in order to retrieve the
sentence structure and meaning. Such system is constrained
to a set of pre-defined topics related to the TUG, each
associated to a pre-defined answer provided by the robot.
Two are the potential sources of error: 1) the sound is not
understood (at googleSpeech level) and 2) the question
does not belong to any of the handled topics (at
googleSpeechProcess level). In the first case, the

robot asks the patient to repeat the question, whereas in the
second case, it informs the patient that the question does not
belong to its known repertoire and cannot reply to it. The
association between topic and related answer is listed in
Table 1. The system is capable of interpreting the question,
rather than recognizing it, providing a flexible and natural
interaction. Therefore, a question related to the same topic can
be posed in several different ways, in a natural language, rather
than using vocal commands.

A WiFi button has been integrated in the robot infrastructure:
when pressed, it triggers the speech pipeline. Such trigger is useful
to avoid the system to be always responsive, and thus sensitive to
background noise.

3.7 Reactive Navigation
The reactive navigation system allows the robot to navigate
the environment based on the received perceptual stimuli.
More specifically, navController commands the robot
wheels to navigate along an imaginary straight path while
keeping a fixed distance from a specified skeleton. Such
distance is designed in order to maximize the observability
of the body key-points and guarantee the whole skeleton to be
within the cameras field of view. Given the desired distance
from the target skeleton, we designed a simple bang-bang
controller which commands the robot speed using as feedback
the distance between the robot location provided by the
odometry and the skeleton location provided by the vision
pipeline. A further command modality is available to allow the
robot to reach fixed points in the environment (e.g. start and
finish lines adopted in the TUG).

Obstacle avoidance was additionally implemented, which
clusters data provided by the lasers and stops the navigation if
the robot reaches the closest obstacle. In such case, the robot asks
for removing the obstacle and the interaction is suspended until
the obstacle is removed.

3.8 The Gazebo Actor
We simulated the patient executing the TUG resorting to the
Gazebo animated model, called Actor. Actors extend common
models with animation capabilities, by combining the relative
motion between links and the motion of all the links as a single
group along a trajectory. For developing the virtual TUG, we
relied on the animations provided by Gazebo to stand up, sit
down and walk defined within COLLADA files. We customized
the walking trajectory by specifying the poses to be reached at
specific times, in order to allow the Actor to walk 3 m and then
go back. We also developed a Gazebo plugin to play/stop the
animation, update the walking speed and reach specific targets in
the environment.

The software is publicly available in the assistive-rehab
repository7 and fully documented. The dedicated website8 also
provides an overview of the work, including tutorials for running
the software.

TABLE 1 | The list of topics and related answer provided through verbal
interaction.

Topic Answer

Speed “You can move at your normal speed.”
Feedback “You are moving very well/well/not very well.”
Aid “You can use the walking aid that you need.”
Repetitions “You have to repeat the test once.”
Unclear “I didn’t understand the question. Can you please repeat it?”
Unknown “I’m sorry. I don’t know how to answer to this question.”

7https://github.com/robotology/assistive-rehab
8https://robotology.github.io/assistive-rehab/doc/mkdocs/site/
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4 EXPERIMENTAL DESIGN

In order to test the architecture, we developed a simulation
environment in Gazebo containing an Actor representing the
human patient, the robot platform, the two ArUco markers and a
chair. The scenario can be visualized in Figure 2. This
environment allows the intensive testing required to perform a
first quantitative validation of the software. The main objective of
these experiments is to verify the accuracy of the robot when
compared to a ground truth that we obtain from the environment
itself. In this section we will discuss how to obtain the ground
truth from the environment, along with the three experiments we
perform in these conditions.

For each trial, we first set the conditions of the trial (e.g.: speed,
target distance) for the Actor. We then compute the number of
steps the Actor should take to complete the trial, while updating
the odometry of the SAR platform to ensure accurate repetition of

the experiment. We then start the trial, measuring the true time
the Actor takes to complete the trial. Finally, we store all the
data for this trial. We performed 1,000 trials for each of the
experiments, in order to provide enough data for a significant
quantitative validation.

4.1 Ground Truth
To verify the system, we need to compare its measurements with
the actual situation in the scenario. The data acquired by the
robot consists of the time to complete the test, the number of
steps the patient takes, and whether they passed the test or not.
Retrieving this information from Gazebo simulation is not trivial,
since there is no particular structure we can collect this data from.
We must, therefore, compute these values for each trial.

The time to complete the experiment consists of the time
between the user first standing up and then finally sitting down.
The Gazebo Actor performs actions based on a set of

FIGURE 2 | The TUG developed in Gazebo.

FIGURE 3 | The Actorwith the bounding box around the torso and the lower spine keypoint (A) and the Actorwalking compared to the finish line frame (B). Red
green and blue axes represent x, y and z respectively.
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animations, and it is possible to query the current animation
being played. The time is calculated between the state transitions
“sitting - stand up” and “standing - sit down”. Unfortunately, the
time of the standing up and sitting down animations is not
constant between trials, so we had to measure the time for each
trial individually, even when the conditions were otherwise
unchanged.

To obtain the true number of steps we computed how many
steps the Actor would have to take to reach the desired target
and return, adding one extra step for the turn. This is possible
since the step length of the Actor is fixed.

Finally, to verify if the Actor passed the test, we had to verify
when it crossed the target line. The Actor’s animated motion is
defined with respect to a keypoint placed in the lower spine. Since
the tracking is performed at the waist level instead, and the
position is obtained by measuring the position with depth
cameras, we had to verify when the front of the waist crossed
the line instead of relying on the center of the Actor. To
compute this, we fitted a bounding box around the Actor’s
torso and calculated the offset of the front surface of the waist of
the Actor in relation to its center, as shown in Figure 3. We
could then calculate if the Actor passed or not a test simply by
checking actorTarget + offset > = testTarget. For example,
Figure 3B compares the use of the Actor lower spine with
the bounding box when the Actor crosses the finish line: if the
front surface of the waist is not considered, the ground truth for
this trial would erroneously be classified as not passed.

4.2 Experiment Conditions
Each experiment tested a different aspect of the system, in order
to validate its accuracy under different conditions.

In experiment 1 we changed the speed of the Actor in
order to test how good the tracking of the system performed
under different speeds. Each trial we sampled the speed from a
uniform distribution between 0.5 and 1.3, corresponding to
roughly the same value in meters per second. We chose these
values considering the average walking speed of the elderly
patients, which is typically around 0.8–0.9 m/s (Busch et al.,
2015). No other conditions were changed in the trial, with the

Actor having to move 4 m forward (4.5 m from origin of the
simulation), turn around, and return to the original position.
The finish line is set at 3 m from the start (3.5 m from origin of
the simulation) as defined in the TUG test, and we set the
target distance to 4 m in order to guarantee that the Actor
crosses the line. The number of steps of the Actor were thus
unchanged for every trial, while the time changed based on
the speed.

In experiment 2 we changed instead the target distance for the
Actor. With this experiment we studied how the system reacted
to a different number of steps. For each trial the target position for
the Actor was sampled between 2.0 and 5.0 m (2.5–5.5 m from
the origin of the simulation). The speed was set constant at 0.9. In
this trial both the time and number of steps varied.

Finally, in experiment 3 we studied the accuracy of the system
when detecting if the patient passed the test or not. To verify this,
we again sampled the target distance of the Actor but around a
much narrower window, between 3.0 and 4.0 (3.5 and 4.5 m from
origin of the simulation), in order to test the limit condition. As in
experiment 2, the speed here is set constant at 0.9 for all the trials.
The main target of this experiment is to verify the pass/not-pass
result.

FIGURE 4 | Experiment 1: the measured (red) and the ground truth time
(blue) with respect to the Actor’s speed.

FIGURE 5 | The error in time for all the experiments (1, 2 and 3).

FIGURE 6 | Experiment 1: the measured (red) and the ground truth
number of steps (blue) with respect to the Actor’s speed.
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5 RESULTS

5.1 Experiment 1: Changing the Actor’s
Speed
Figure 4 shows the time measured by the robot compared to the
ground truth time, with respect to Actor’s speed. The result
indicates that the measured time consistently follows the ground
truth, decreasing for increasing speeds, with an average error of
[0.47 ± 0.06]s. Such error occurs due to an inherent limitation in
the definition of the ground truth time: we start measuring this
time when the stand up animation starts, which includes also an
initial part where the Actor sits. Similarly, we stop measuring
the ground truth time when the sit down animation stops, which

includes a final part where the Actor sits. The robot instead
detects if the Actor is about to stand or sit based on the neck
position. Therefore, it does not take into account the additional
contribution provided by the ground truth, resulting in lower
values.

In order to evaluate the consistency of the error for different
scenarios, we estimated it over all the experiments, 1, 2 and 3. As
shown in Figure 5, the error is coherent with an average value of
[0.77 ± 0.86]s.

For the speeds evaluated in this experiment, we compared the
number of steps measured by the robot with the ground truth,
which was estimated to be 13 steps. As shown in Figure 6, the
measured number of steps (red dots) follows the ground truth
(blue line), with an average error of [0.64 ± 0.71] steps. For
higher speeds, the probability of underestimating the number of
steps is higher. Figures 7, 8 show the y component of the left and
right ankles for two different speeds, 0.9 and 1.3 m/s respectively.
The walking pattern is clear for both speeds, with the left and
right ankles alternating and then switching when the Actor
turns back. However, at higher speeds, some steps are missed
when the Actor approaches the robot (between 11.4 and 11.9 s)
or when he moves away from it (between 15.2 and 15.6 s). This
occurs because the robot maintains a fixed distance from the

FIGURE 7 | The y component of the left (red) and right (blue) ankle for a
speed of 0.9 m/s.

FIGURE 8 | The y component of the left (red) and right (blue) ankle for a
speed of 1.3 m/s. The grey areas show time intervals where steps are missed,
i.e between 11.4 and 11.9 s (skeleton falling out of the field of view) and
between 15.2 and 15.6 s (skeleton is too far from the robot).

FIGURE 9 | The y component of the Actor’s hip center (red) and robot base (blue) for a speed of 1.3 m/s (A) and 0.5 m/s (B).

FIGURE 10 | Experiment 2: the measured (red) and the ground truth
number of steps (blue) with respect to the target to reach.
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Actor’s hip center, but is unable to keep it when their speeds are
considerably different. Figure 9 compares the Actor (red) and
the robot locations (blue) when the Actor walks at 0.6 m/s (A)
and 1.3 m/s (B) respectively and the robot moves at 0.4 m/s: when
the speeds (i.e. the slopes) are comparable, the distance between
the curves is fixed, indicating that the robot can properly follow
the Actor. However, when the speeds start deviating
significantly, the distance between the curves varies with two
potential detrimental effects: 1) the skeleton partially falls out of
the field of view and thus some steps are missed and 2) when the
Actor turns back, the robot moves away from it to reach the pre-
defined distance. This can lead to the mis-detection of steps in the
2D image.

5.2 Experiment 2: Changing the Target to
Reach
Figure 10 shows the number of steps measured by the robot
compared to the ground truth steps, with respect to the target to
reach. The measured number of steps consistently follows the
ground truth, increasing for increasing distances, with an average
error of 1.11 ± 0.80 steps. However, around the transition areas
corresponding to steep changes in the ground truth steps, the
measured number of steps is over- and under-estimated
respectively before and after the change. This occurs as the
step’s length the Actor does when turning back changes with
the target distance. Figures 11, 12 show the Actor turning back
when reaching a target distance of 2.0 and 2.3 m respectively. In
the first case, the step is wide and measured twice, both when the
Actormoves forward and then back. In the second case, the step

instead is narrower and not detected by the robot. The same effect
applies when the Actor reaches the chair and turns around to sit
down. However, this is an artifact of the Actor animation, as it
rigidly turns around its center of mass.

5.3 Experiment 3: Evaluating the Accuracy
Around the Finish Line
We computed the percentage of true positives/negatives, false
positives/negatives and evaluated accuracy, precision and recall.
We achieved an accuracy of 92.30%, with a precision of 90.09%
and a recall of 100.0%. These results were obtained very close to
the finish line, where false positives/negatives are more likely to

FIGURE 11 | The Actor turning back when reaching a target distance at 2.0 m.

FIGURE 12 | The Actor turning back when reaching a target distance at 2.3 m.

FIGURE 13 | The amount of true positives/negatives and false positives/
negatives grouped with respect to the y-distance from the finish line.
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happen, a worst case scenario for this type of measurement; on
regular tests, this type of error is even less likely to happen.

We can visualize this effect on Figure 13, where the false
positives are all concentrated just before the finish line, and in
very low number. We can also see that the area where false
positives are detected, within 0.08 m from the finish line, we have
only false positives. The absence of true negatives in the same area
suggests that the false positives are not due to noise in the
measurement of the skeleton, but rather a minor offset
between the skeleton detected by the robot and the ground
truth estimated for the Actor waist. In any case, this offset is
in the order of centimeters, and should not affect the overall trial.
No false positives nor false negatives were detected beyond the
range shown in Figure 13.

6 DISCUSSION

With the results of the experiments discussed in section 5 we
tested the effectiveness of a robot architecture to evaluate a
TUG test with different patient speeds and distances. The
system performed well, keeping track of the patient and
accurately measuring the relevant data, namely time and
number of steps, with which we can estimate cadence, step
length, speed.

The measurement of the time of the trial is accurate in all the
range of Actor speed, keeping a consistent error throughout the
trials which, as explained in Section 5.1, is due to a discrepancy
between the Actor state of sit/standing and the measurement of
the robot, which relies on a particular height threshold. Future
improvements could fine-tune the system to account for this

error by calibrating the threshold based on the height of the
patient.

The number of steps measured is also quite accurate,
particularly considering the speed range of the target patients,
consisting of elderly and motion-impaired patients. The average
error of 1.1 ± 0.80 steps is not negligible compared to a standard
TUG execution. However, this is widely due to artifacts of the
Actor’s animated motion when turning back, as described in
Section 5.2, and will potentially improve when testing the
architecture on the real platform. The accuracy is also reduced
for patients that perform the test with higher speeds, in a big part
due to the inability of the robot to follow the patients through the
test. Some possible improvements to obtain better results and
mitigate the misdetections could be to improve the navigation, by
adapting the distance between robot and patient to the measured
patient’s walking speed. Finally, improvements in skeleton
detection models, particularly when integrating prior
information of the human kinematic structure, could also lead
to more accurate measured keypoints, which in turn would lead
to better estimation of the steps. Also, different skeleton detection
methods could be explored (Lugaresi et al., 2019), which directly
include depth perception in the skeleton model (Wang et al.,
2021).

The accuracy of the success/fail condition of the TUG test was
also evaluated, particularly around the finish line, in order to
evaluate the ability of the SAR to successfully measure the result
of the test. The accuracy of this measurement was quite high and
consistent across trials, which could prove to be an advantage
when compared to evaluation by a physiotherapist, particularly in
cases where it is not entirely clear if the patient passed the test or
not. The trials also detected only false positives and no false

FIGURE 14 | The devised framework.
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negatives, and the results suggest an offset is present between the
measured skeleton and the ground truth. The overlap between
false positives and both true negatives and true positives is also
quite small, meaning with some calibration of this measurement
to eliminate this offset we could minimize the number of false
positives obtained during the trials.

With these results we validate, in simulation, the capability of
the system to assist physiotherapists in performing the TUG test,
collecting valuable data for analysing the improvement of
patients. Further validation, to be performed in future work,
comprises execution on the physical platform, running trials with
naive participants and collecting performance data. This should
provide a more accurate picture of the behavior of the system in
the real world.

7 CONCLUSION

In this paper we presented a software architecture implemented in
an R1 robot that guides and monitors patients while performing a
TUG trial. The architecture consists on multiple modules as shown
in Figure 14, from navigation and control, to skeleton detection
and tracking, to verbal interaction, all integrated by means of
YARP. An analysis of its execution was provided using a Gazebo
simulation with a simulated Actor. The data extracted during
these trials showcase the ability of such an architecture to assist a
therapist in evaluating patients, extracting consistent and reliable
data in terms of time, number of steps and the success or failure of
the test by the patient.

The architecture will be further evaluated and validated on the
physical platform, first with non-naive healthy subjects and then
with patients in hospital settings. In the long term, we aim at
developing a robotic solution that takes care of all the activities
involved in the administration of the TUG test in the hospital.
Such a system would release the strain on the current healthcare
and social systems and yield a positive impact on the cost-
effectiveness of rehabilitation pathways.

Possible improvements to the current model were also
discussed in Section 6, from improvements in the robot
platform to more accurate skeleton depth perception.
Additional improvements could be appended to the
architecture, in order to make use of the rich amount of
data collected during the trials. One such example that could

be extremely useful, particularly considering the target
patients for this test, who are often motion-impaired and
prone to falls, is to detect patterns that lead to falls and raise
an alert when such a pattern is detected. This would further
help the physiotherapist in preventing serious harm to
patients that start displaying falling patterns. Similarly, the
system could learn to detect common walking impairments
that could go unnoticed without consistent data analysis, thus
allowing the physiotherapist to monitor the situation and act
accordingly.

Furthermore, the current navigation system is purely reactive,
allowing the robot to navigate based on the received perceptual
stimuli, coming from front and back LIDARs. Some objects are
not detected by these sensors, given their limited field of view and
range (e.g., tables). Visual perception could overcome these
limitations and complement the use of the LIDARs.

Finally, the speech system used in this architecture is currently
quite simple, relying on a simple, if sophisticated, query system
responsible for answering patient questions. Further
development in this aspect could see the use of a
conversational agent, which would enhance the interaction
with the patients and leave them more at ease when
interacting with the robot and physiotherapist.
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