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Background: Meningiomas are the most common primary intracranial tumors in adults.
According to the 2021 World Health Organization (WHO) classification of central nervous
system tumors, approximately 80% of meningiomas are WHO grade 1, that is,
histopathologically benign, whereas about 20% are WHO grade 2 or grade 3, showing
signs of atypia or malignancy. The dysregulation of N6-methylation (m6A) regulators is
associated with disorders of diverse critical biological processes in human cancer. This
study aimed to explore whether m6A regulator expression was associated with
meningioma molecular subtypes and immune infiltration.

Methods: We evaluated the m6A modification patterns of 160 meningioma samples
based on 19 m6A regulators and correlated them with immune infiltration characteristics.
Novel molecular subtypes were defined based on prognostic hub gene expression.

Results: Two meningioma clusters were identified based on the expression of 19 m6A
regulators. In cluster 1, 607 differentially expressed genes (DEGs) were upregulated and
519 were downregulated. A total of 1,126 DEGs comprised three gene expression
modules characterized by turquoise, blue, and gray. Functional annotation suggested that
the turquoise module was involved in Wnt-related and other important cancer-related
pathways. We identified 32 hub genes in this module by constructing a protein–protein
interaction network. The meningioma samples were divided into two molecular subtypes.
EPN1, EXOSC4, H2AX, and MZT2B not only showed significant differences between
meningioma molecular subtypes but also had the potential to be the marker genes of
specific meningioma subtypes.

Conclusion: m6A regulator gene expression may be a novel prognostic marker
in meningioma.

Keywords: meningioma, immune infiltration, m6A, WGCNA, molecular subtype
December 2021 | Volume 11 | Article 7608921

https://www.frontiersin.org/articles/10.3389/fonc.2021.760892/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.760892/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.760892/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.760892/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:gong_ye@fudan.edu.cn
mailto:djjewel@163.com
mailto:Michael.Weller@usz.ch
https://doi.org/10.3389/fonc.2021.760892
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.760892
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.760892&domain=pdf&date_stamp=2021-12-22


Chen et al. m6A Regulator Meningioma Subtype
INTRODUCTION

Meningiomas arise from arachnoid cap cells attached to the
inner layer of the dura, which covers the spinal cord and brain.
They represent about 37.6% of primary central nervous system
tumors, making them the most common histological types of
intracranial tumor, with an incidence of 8.83 per 100,000 (1).
They primarily occur in elderly individuals, with increased
incidence in individuals older than 65 years (1). The incidence
of meningiomas has also increased among adolescents and
young adults; these tumors now represent about 16% of all
intracranial tumors in people aged 15–39 years (2).
Meningiomas preferentially affect women, with a female-to-
male ratio between 2:1 and 3.5:1 (3–5). According to the 2021
World Health Organization (WHO) classification of central
nervous system tumors, approximately 80% of cases are WHO
grade 1 meningiomas with benign histology, whereas about 20%
of cases are WHO grade 2 and 3 meningiomas showing signs of
increased malignancy at histology (6).

RNA methylation, including 5-methylcytosine (m5C), N6-
methyladenosine (m6A), and N1-methyladenosine (m1A), has
become a common phenomenon and a critical regulating factor
for transcript expression in different types of cancer (7, 8). N6-
methylation (m6A), methylated at the N6 position of adenosine,
has been regarded as the most pervasive, abundant, and
conserved internal transcriptional modification within
eukaryotic messenger RNAs (mRNAs), microRNAs (miRNAs),
and long non-coding RNAs (lncRNAs) (9, 10). The deposition of
m6A is encoded by a methyltransferase complex involving three
homologous factors: methyltransferases (termed as “writers”),
demethylases (termed as “erasers”), and recognition from m6A-
binding proteins (termed as “readers”) (11). The m6A
dysregulation, caused by dysregulated expression and genetic
changes in m6A regulators, is related to the disorders of multiple
critical biological processes in human cancer (12, 13). Qi et al.
reported that the self-renewal and tumorigenesis of glioma stem
cells (GSCs) were regulated by m6A RNA methylation, and an
m6A mRNA demethylase FTO inhibitor could suppress the
progression of GSC-initiated tumor (14). Yang et al.
demonstrated that FTO played an important role in promoting
melanoma tumorigenesis and anti-PD-1 resistance, and the
combination of FTO inhibitors with anti-PD-1 blockers could
reduce the resistance to immunotherapy in melanoma (15). Miao
et al. revealed that m6A methyltransferase METTL3 promoted
osteosarcoma cell progression by regulating the m6A level of
LEF1 and activating the Wnt/b-catenin signaling pathway (16).
Besides, Vengoechea J. et al. observed that IGF2BP1, one of the
m6A regulators, could increase the malignant potential of
meningiomas by enhancing cell adhesion (17). Hwang M. et al.
identified significantly higher expression of HNRNPA2B1 in
benign meningioma compared to normal brain tissue (18).

Numerous studies revealed that the tumor microenvironment
(TME) was fundamental for tumor survival, growth, and
progression. The immune part of TME contained tumor-
associated macrophages, tumor-associated neutrophils, dendritic
cells, myeloid-derived suppressor cells (MDSCs), and Tie2-
expressing monocytes comprising tumor-associated myeloid
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cells (19). Patients with meningiomas exhibit signs of peripheral
immunosuppression, including increased PD-L1 on myeloid cells
and elevated MDSC abundance proportional to tumor grade (20).
The accumulation of mast cells in meningiomas could contribute
to the aggressiveness of tumors (21). Chen et al. revealed that the
proportions of tumor-infiltrating immune cells were associated
with the prognosis for patients with meningioma (22). Overall,
tumor cells elicited multiple biological behavioral changes through
direct and indirect interactions with immune cells, such as
inducing proliferation and angiogenesis, inhibiting apoptosis,
avoiding hypoxia, and inducing immune tolerance (23–26).
Therefore, a deeper understanding of the immune infiltration of
meningiomas could help parse the TME landscape and finding
promising biomarkers for immunotherapy. However, whether
immune infiltration in meningiomas is regulated through the
modification of m6A patterns is still unknown. To address this
question, we established a meningioma classification based on
m6A regulator gene expression and evaluated the associations of
m6A-deduced subtypes with immune infiltration in meningioma.
MATERIALS AND METHODS

Meningioma Dataset Resource
and Processing
The Gene Expression Omnibus (GEO) database, restoring high-
throughput gene expression data and hybridization arrays, chips,
and microarrays, allows an easy access to gene expression data of
human cancer. Public gene expression data and related clinical
annotation data were obtained from the GEO database.
GSE136661 and GSE43290 were gathered in the present study
for further analysis (Table 1) (27, 28). The expression dataset
GSE136661 with 160 meningioma samples from the Illumina
HiSeq 4000 platform and GSE43290 with 47 meningioma
samples and 4 normal meningeal samples from the Affymetrix
Human Genome U133A Array platform were downloaded from
the GEO database. Multiple probes corresponding to a gene were
retained and shown as the median of the gene expression level,
while probes corresponding to multiple genes were eliminated.
The clinical information was also extracted from GEO raw data.

m6A Regulator Data Retrieval From
GEO Datasets
According to Zhang et al., 21 m6A regulators were extracted
from 5 integrated GEO datasets, including 8 writers (METTL3,
METTL14, RBM15, RBM15B, WTAP, KIAA1429, CBLL1, and
ZC3H13), 2 erasers (ALKBH5 and FTO), and 11 readers
(YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3,
IGF2BP1, HNRNPA2B1, HNRNPC, FMR1, LRPPRC, and
ELAVL1) (29). After intersecting with the GSE136661 dataset,
TABLE 1 | Meningioma gene expression data from GEO database.

Dataset ID Platform Samples

GSE136661 GPL20301 160
GSE43290 GPL96 51
D
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19 m6A regulators were included for further analysis, except for
RBM15B and KIAA1429.

Differentially Expressed Genes Screening
Data analysis was performed using the limma package and t test.
Fold change > 2.0 or <0.5 and P <0.05 were defined as cutoffs to
screen for differentially expressed genes (DEGs) between
different m6A clusters.

Immune Cell Infiltration Analysis
CIBERSORT (https://cibersort.stanford.edu/index.php) was
employed to characterize cell composition based on the gene
expression profiles of complex tissues (30). A white blood cell
gene matrix (LM22) consisting of 547 genes was used to identify
22 immune cell types, including myeloid subsets, natural killer
cells, plasma cells, naive and memory B cells, and T cells.
CIBERSORT was combined with the LM22 eigenmatrix to
estimate the proportions of 22 immune cell phenotypes in
different m6A cluster 1 and m6A cluster 2.

Weighted Gene Co-Expression Network
Construction and Hub Gene Screening
The expressionprofile of the aforementionedDEGswasobtained to
establish a gene co-expression network by the weighted gene co-
expression network analysis (WGCNA) package in R (Version
4.1.0). The threshold power of b was used for constructing co-
expression modules based on size independence and average
connectivity of modules. We built a scale-free topology by
underlining the strong correlations and attenuating the weak
correlations with the soft threshold power of b = 3 (scale-free
R2 = 0.85). Then, the topological overlap matrix was calculated
based on adjacency matrices. We applied the dynamic tree cut
algorithm to classify genes according to their expression patterns
and merged gene modules (at least 30 genes were included). The
module eigengene (ME) was calculated as a summary profile for all
genes in a module. These modules were merged into three major
modules (blue, gray, and turquoise) by clustering analysis. We
calculated thePearson correlation coefficient of these threemodules
and m6A cluster characteristics and selected the most correlated
module for further analysis. Gene significance (GS) was employed
as the correlation coefficient between transcriptome expression and
module traits. Module significance was defined as the correlation
coefficient between themodule and the traits. Modulemembership
(MM) was defined by the correlation coefficient of the ME and
transcriptome data. Genes with a GS >0.60 and MM >0.80 were
selected as each module’s candidate hub genes. STRING is a
database of known and predicted protein–protein interactions.
The interactions include direct (physical) and indirect
(functional) associations; they stem from computational
prediction, from knowledge transfer between organisms, and
from interactions aggregated from other (primary) databases.
(30476243) A protein–protein interaction (PPI) network
contained all candidate hub genes obtained from the STRING
database. Nodes with 10 or more edges in the PPI network were
selected to intersectwith themodule’s candidate hub genes, and the
key hub genes were finally identified.
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Functional Enrichment Analysis
The functional enrichment analysis of DEGs was performed to
identify Gene Ontology categories by their biological processes,
molecular functions (MF), and cellular components and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses using the DAVID tool (https://david.ncifcrf.gov/tools.
jsp) (31).

Unsupervised Clustering for Meningioma
m6A Clusters and Molecular Subtypes
Meningioma m6A clusters and molecular subtypes were
determined according to the expression profile of m6A
regulators and hub genes, respectively. The best K value
(number of categories) was determined by finding the optimal
sum of the squared error (SSE). The meningioma samples were
divided into different subtypes by unsupervised clustering
K-means and t-Distributed Stochastic Neighbor Embedding
(t-SNE) descending dimension method. Significant DEGs,
which might potentially become the marker genes of
meningioma, were identified between different molecular
subtypes using the Kruskal−Wallis test (P < 0.05).

Statistics Analysis
The expression levels of DEGs higher and lower than the median
value were considered high and low expression levels,
respectively. The Kruskal–Wallis test was used to conduct
different comparisons of three or more groups. All statistical P
values were two-sided, with P <0.05 indicating statistically
significance. All data processing was done in R software
(Version 4.1.0).
RESULTS

A total of 19 m6A regulators were identified in the present study,
including 6 writers, 2 erasers, and 11 readers. The genes of these
regulators were distributed widely on multiple human
chromosomes (Figure 1A). Several m6A regulators were co-
expressed, including (a) HNRNPA2B1 and YTHDC2, (b)
LRPPRC, CBLL1, and FMR1, (c) FTO, YTHDC1, RMB15,
ELAVL1, HNRNPC, and ALKBH5, and (d) YTHDF2 and
WTAP (Figure 1C). K-means unsupervised clustering based
on the expression of the 19 m6A regulators segregated
meningioma samples into 2 clusters (Figure 1B and
Supplementary Figures 1A, B). PCA showed that these two
different m6A clusters could be well separated (Supplementary
Figure 1C). Eight m6A regulators were differentially expressed
between both clusters, including WTAP, ALKBH5, ELAVL1,
FTO, YTHDC1, YTHDC2, HNRNPA2B1, and METTL3 (P <
0.05, Figure 1D). Employing CIBERSORT to estimate immune
infiltration in both clusters suggested different numbers of
plasma B cells, resting mast cells, and neutrophils in the two
m6A clusters (P < 0.05, Figure 1E). As for some major
inflammatory reaction−related genes, we found that the
expression of IL-15 and IL-18 was also significantly different
between the two distinct m6A clusters (P < 0.05, Figure 1F).
December 2021 | Volume 11 | Article 760892
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Next, we performed weighted gene co-expression network
analyses to better characterize the biological traits of both
clusters. A total of 1,126 DEGs were used for the construction
of weighted gene co-expression networks. A soft threshold
power of b = 3 was used to construct co-expression modules
(Supplementary Figures 2A, B). Three modules were
identified and designated as the blue, gray, and turquoise
modules, comprising 137, 179, and 810 genes, respectively
(Supplementary Figure 2C). WGCNA was then applied to
explore the module-trait relationships of different modules and
m6A clusters, and the turquoise module was identified as a hub
Frontiers in Oncology | www.frontiersin.org 4
gene set for explaining the difference between both clusters
(Supplementary Figure 2D). Gene set enrichment analysis of
the 810 genes in the turquoise module identified Notch and
Wnt signaling as the key differentially expressed oncogenic
pathways in either cluster (Figures 2A–D).

We chose a combined approach by (i) employing the
STRING tool for functional interaction analyses to identify key
network nodes (Supplementary Figure 3A) and (ii) calculating
the Pearson correlation coefficient of the turquoise module and
m6A cluster characteristics to define hub genes and further
characterize each m6A cluster (Supplementary Figure 3B).
A B

D

E

F

C

FIGURE 1 | (A) Location of 19 m6A regulators on 23 chromosomes using GSE136661 cohort. (B) Clustering of meningioma samples. (C) Correlations between among
19 m6A regulators in the GSE136661 cohort using Spearman analysis. Negative correlation was marked with blue and positive correlation with red. (D) Heatmap of the
expression of 19 m6A regulators in two distinct m6A clusters. (E) Heatmap of immune cell infiltration in two distinct m6A clusters. (F) Heatmap of the expression of
inflammatory reaction-related genes in two distinct m6A clusters (*P < 0.05; ***P < 0.005; ****P < 0.001).
December 2021 | Volume 11 | Article 760892
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After intersecting these two results, 32 key hub genes were
identified (Supplementary Figure 3C). These key hub genes
comprised ACOT2, ALDH16A1, ALKBH7, BAD, C1orf122,
C6orf226, CTSD, DNPH1, EPN1, EXOSC4, FAAP20, FAM207A,
FZD2, H2AX, LINC00863, LTBP3, MAP1S, MEMO1, MFSD3,
MZT2B, NME3, NT5C, PGLS, RPL13, RPL21P28, RPS15,
SCAND1, STUB1, TIGD5, UBE2S, WDR18, and ZNF358. All of
these 32 hub genes had lower expression in cluster 1 and higher
expression in cluster 2 (P < 0.05, Figure 3A). Moreover, 8 hub
genes were associated with WHO grade (Figure 3B) and 20 were
associated with age (Figure 3C), but no gene was related to the
sex of patients with meningioma.

Besides, we also analyzed the association of key hub genes
with normal meningeal tissues and meningiomas. Further, 18 out
of 32 key hub genes were included in the GSE43290 dataset, and
Frontiers in Oncology | www.frontiersin.org 5
11 key hub genes (CTSD, DNPH1, EPN1, EXOSC4, FZD2,H2AX,
MAP1S, MZT2B, RPS15, STUB1, and WDR18) showed
significantly different expression between normal meningeal
tissues and meningiomas (P < 0.05, Figure 4A).

Based on the expression profile of these 32 key genes, we
divided the meningioma samples into two clusters by K-means
unsupervised clustering (Supplementary Figures 4A, B).
Based on the heatmap drawn by R language, the
combination of these 32 key hub genes could help
distinguish the meningioma dataset into two subtypes,
indicating that these 32 key hub genes were critical for
meningioma molecular subtypes (Figure 4B). Furthermore,
we analyzed the expression of these 32 key hub genes and
discovered that all these 32 key hub genes had significantly
different expression levels between two different molecular
A B

C D

FIGURE 2 | (A–C) Gene Ontology terms in the biological process, cellular component, and molecular function categories. (D) Enrichment plot conducted via KEGG analysis.
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subtypes. Also, all of them had lower expression in subtype 1
and higher expression in subtype 2, which uncovered that
these key hub genes might function as the marker genes of
different meningioma molecular subtypes (Figure 4C).

For a better understanding of the association of m6A clusters
and molecular subtypes with the sex, age, and WHO grade of
patients with meningioma, we conducted a correlation analysis
and found that every WHO grade was composed of two m6A
clusters and two molecular subtypes, and the age of patients was
most likely between 30 and 70 years (Figure 5).
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

Increasing evidence revealed that m6A modification played an
important role in regulating tumor immunity and shaping TME
through interaction with various m6A regulators. However, most
research focused on a single m6A regulator, and the integrated
roles of multiple m6A regulators were not comprehensively
understood, especially for meningioma.

The present study investigated the association of meningioma
with multiple m6A regulators, established meningioma
A

B

C

FIGURE 3 | (A) Expression of 32 key hub genes in two distinct m6A clusters. (B) Expression of 32 key hub genes in different meningioma WHO grades (Grade 1 vs
Grade 2–3). (C) Expression of 32 key hub genes at different ages of patients with meningioma (<70 years old vs ≥70 years old). (*P < 0.05; **P < 0.01; ***P < 0.005;
****P < 0.001).
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classification based on m6A regulator gene expression, and
evaluated its merit with immune infiltration in meningioma.
Based on 19 m6A regulators, we constructed and segregated
meningiomas into two clusters. We found that the genes of 19
m6A regulators distributed widely on multiple human
Frontiers in Oncology | www.frontiersin.org 7
chromosomes and different m6A regulators [e.g., (a)
HNRNPA2B1 and YTHDC2; (b) LRPPRC, CBLL1, and FMR1;
(c) FTO, YTHDC1, RMB15, ELAVL1, HNRNPC, and ALKBH5;
and (d) YTHDF2 and WTAP] might have common effects. As
for the difference between two distinct m6A clusters, we revealed
A

B

C

FIGURE 4 | (A) Expression of 18 key hub genes between normal meningeal tissues and meningioma tissues. (B) Heatmap of the expression of 32 key hub genes
between two different meningioma molecular subtypes. (C) Expression of 32 key hub genes in two different meningioma molecular subtypes. (*P < 0.05; **P < 0.01;
***P < 0.005; ns, Non-significant.
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FIGURE 5 | Relation diagram of meningioma WHO grades, m6A clusters, molecular subtypes, sex, and age.
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that the gene expression of WTAP, ALKBH5, ELAVL1, FTO,
YTHDC1, YTHDC2, HNRNPA2B1, and METTL3; the
infiltration of some immune cells (plasma cells, resting mast
cells, and neutrophils); and the expression of IL15 and IL18 were
significantly different. A total of 1,126 DEGs were included in
their different modules between the two different m6A clusters,
and the turquoise module containing 810 DEGs was the key
module. Besides, these 810 DEGs played regulatory roles in
organ and tissue generation and development and multiple
important signaling pathways involved in tumor development.
ACOT2, ALDH16A1, ALKBH7, BAD, C1orf122, C6orf226, CTSD,
DNPH1, EPN1, EXOSC4, FAAP20, FAM207A, FZD2, H2AX,
LINC00863, LTBP3, MAP1S, MEMO1, MFSD3, MZT2B,
NME3, NT5C, PGLS, RPL13, RPL21P28, RPS15, SCAND1,
STUB1, TIGD5, UBE2S, WDR18, and ZNF358 were identified
as key hub genes, and all these genes could be the marker genes
to distinguish different m6A clusters for their different
expression. Among these DEGs, the expression of FAM207A,
EXOSC4, ALDH16A1, MZT2B, UBE2S, ACOT2, EPN1, and
H2AX was significantly related to WHO grades, while the
expression of UBE2S, FAM207A, NT5C, STUB1, MZT2B,
SCAND1, EPN1, CTSD, EXOSC4, H2AX, NME3, ALDH16A1,
C1orf122, BAD, TIGD5, MAP1S, FAAP20, FZD2, PGLS, and
ZNF358 was significantly related to the age of patients with
meningioma. Additionally, CTSD, DNPH1, EPN1, EXOSC4,
FZD2, H2AX, MAP1S, MZT2B, RPS15, STUB1, and WDR18
showed significantly different expression levels between normal
meningeal tissues and meningiomas. Furthermore, the
combination of these 32 DEGs could be marker genes to help
in segregating meningiomas into 2 subtypes based on their gene
expression. The expression of EPN1, EXOSC4, H2AX, and
MZT2B was related to both WHO grades and age of patients
and was significantly different between normal meningeal tissues
and meningiomas.

Several studies revealed the importance of the m6A
modification pattern, regulated by m6A regulators, for the
development and progression of a tumor. Liu et al. revealed
reduced m6A mRNAmethylation as an oncogenic mechanism in
endometrial cancer and identified m6A methylation as a
regulator of Akt signaling (32). However, Li et al. found
enhanced m6A mRNA methylation as an oncogenic
mechanism in hepatoblastoma because METTL3 was
significantly upregulated and promoted hepatoblastoma
development (33). Du et al. suggested two distinct m6A
modification patterns (an immune-activated differentiation
pattern and an immune-desert dedifferentiation pattern) in
lower-grade glioma, which were associated with different
clinical outcomes, burden of neoepitope, immune infiltration,
and stemness (34). The emerging functions of m6A regulators in
GSCs and immune infiltration have been confirmed, including
roles in radio-chemotherapy resistance, tumorigenesis,
promotion of the self-renewal of cancer stem cells,
programmed proliferation of cancer cells, induction of
apoptosis, and reduction of migration (8, 35, 36). Xu et al.’s
work demonstrated the carcinogenic activity of FTO in
promoting the invasion and migration of breast cancer cells
Frontiers in Oncology | www.frontiersin.org 9
via the FTO/miR-181b-3p/ARL5B signaling pathway, which
highlighted the important role of FTO in tumor pathogenesis
(37). Chang et al. uncovered an essential role of YTHDF3 in
regulating the interaction between breast cancer cells and brain
microenvironment by upregulating key brain metastatic
proteins, thereby facilitating brain metastasis (38). Wang
et al.’s research suggested that the upregulation of METTL14
could lead to the decrease of PERP mRNA levels via m6A
modification, promoting the growth, invasion, and metastasis
of pancreatic cancer cells (39). Our results were consistent with
the former findings. The m6A regulators played an important
role in meningiomas and segregated them into two distinct m6A
clusters, which were correlated with different m6A regulator gene
expression, interleukin gene expression, and immune cell
infiltration. Besides, Mathoux et al. elaborated that m6A was
enriched in the brain and emerged as a key regulator of neuronal
activity and function in processes including neurodevelopment,
learning and memory, synaptic plasticity, and stress response
(40). Li et al. revealed that YTHDF2, an m6A regulator,
functioned as a contributor to lung adenocarcinoma
development through the upregulation of the AXIN1/Wnt/b-
catenin signaling pathway (41). Another study revealed that m6A
mRNA methylation contributed significantly to regulate the
Wnt/b-catenin pathway (33). Similar to the research listed
earlier, our present study also found that m6A modification
patterns were related to several important signaling pathways
in meningioma, such as Wnt signaling pathway, and
development of organs and tissues in the nervous system.

With the rapid development of multi-omics and big data
analysis, more research focuses on meningioma molecular
subtypes. DNA methylation-based classification and grading
system for meningioma had a higher power for tumor
recurrence and progression prediction compared with the
WHO classification (42). Another study demonstrated a highly
distinct epigenetic signature of clear cell meningiomas, which
was associated with frequent mutations within the SMARCE1
gene and/or loss of SMARCE1 protein expression (43). Zador
et al. found that WHO grade II meningiomas could be further
segregated into two distinct subgroups (a benign “grade I-like”
and a malignant “grade III-like”) with different tumor recurrence
rates (0 and 75%, respectively) (44). Williams et al. found that the
patterns of genomic alterations in high-grade/progressive
meningiomas were commonly grouped into three different
categories. The NF2-associated canonical group frequently
harbored CDKN2A/B alterations, which was potentially
amenable to targeted therapies. An NF2-agnostic group
harbored frequent TERTp and TP53 mutations. An NF2-
exclusive group was partly characterized by BAP1/PBRM1
alterations (rhabdoid/papillary histology) or skull-base disease
(45). Also, it was of great importance to identify some marker
genes to help distinguish the molecular subtypes of meningioma.
EPN1 was identified as one of the hub genes in pediatric
medulloblastoma by multiple-microarray analysis (46).
EXOSC4 functioned as a potential oncogene in the
development and progression of colorectal cancer and was
identified as a potential diagnostic molecular biomarker (47).
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To the best of our knowledge, EPN1, EXOSC4, H2AX, and
MZT2B have not been identified as the marker genes of
specific meningioma subtype.

This study had several limitations. First, the dataset we
analyzed lacked survival information, and our results might
have been affected by the small sample size. Therefore,
improving the sample size, sequencing data, and clinical
information of patients with meningioma is of great necessity
in further studies. In addition, our results and conclusions are
based on the bioinformatics analysis of datasets, which require
further verification by basic biological experiments and
clinical research.
CONCLUSIONS

In conclusion, this study suggested that the m6A regulators
played an important role in meningiomas and segregated them
into two distinct m6A clusters, which were correlated with
different m6A regulator gene expression, interleukin gene
expression, and immune cell infiltration. Also, m6A
modification patterns were related to several important
signaling pathways in meningioma and the development of
organs and tissues in the nervous system. Among 32 key hub
genes screened, EPN1, EXOSC4, H2AX, and MZT2B not only
showed significant differences between meningioma molecular
subtypes but also had the potential to be the marker genes of
specific meningioma subtype.
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