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Deep transfer learning-based 
hologram classification for 
molecular diagnostics
Sung-Jin Kim1, Chuangqi Wang1, Bing Zhao2, Hyungsoon Im   4,5, Jouha Min   4,5, 
Hee June Choi1, Joseph Tadros1, Nu Ri Choi1, Cesar M. Castro4, Ralph Weissleder4,5,6, 
Hakho Lee   4,5 & Kwonmoo Lee   1,3

Lens-free digital in-line holography (LDIH) is a promising microscopic tool that overcomes several 
drawbacks (e.g., limited field of view) of traditional lens-based microcopy. However, extensive 
computation is required to reconstruct object images from the complex diffraction patterns produced 
by LDIH. This limits LDIH utility for point-of-care applications, particularly in resource limited settings. 
We describe a deep transfer learning (DTL) based approach to process LDIH images in the context 
of cellular analyses. Specifically, we captured holograms of cells labeled with molecular-specific 
microbeads and trained neural networks to classify these holograms without reconstruction. Using raw 
holograms as input, the trained networks were able to classify individual cells according to the number 
of cell-bound microbeads. The DTL-based approach including a VGG19 pretrained network showed 
robust performance with experimental data. Combined with the developed DTL approach, LDIH could 
be realized as a low-cost, portable tool for point-of-care diagnostics.

Lens-free digital in-line holography (LDIH) is a powerful imaging platform that overcomes many of the limita-
tions of traditional microscopy1–6. LDIH records diffraction patterns produced by samples, which can later be 
used to computationally reconstruct original object images. This strategy enables LDIH to image a large area 
(~mm2) while achieving a high spatial resolution (~µm). Furthermore, the simplistic optical design allows for 
compact setups, consisting of a semiconductor imager chip and a coherent light source. LDIH has been pre-
viously tested for potential point-of-care (POC) diagnoses7. Recently, we have advanced LDIH for the pur-
pose of molecular diagnostics (D3, digital diffraction diagnostics)3 wherein cancer cells were labeled with 
antibody-coated-microbeads, and bead-bound cells were counted for molecular profiling.

A major hurdle to translating LDIH into POC tests is the need for extensive computational power. In princi-
ple, diffraction patterns can be back-propagated to reconstruct human-friendly object images. The bottleneck lies 
in the recovery of phase information, lost during the imaging process. It has been shown that this information 
can be numerically recovered through iterative optimization1,8–13, but this process is costly in computation time 
and requires high-end resources. To overcome this issue, it was demonstrated that a deep neural network could 
be trained to recover phase information and reconstruct object images, substantially reducing the total com-
putational time14. However, this method still required an input of back-propagation images obtained from the 
holograms. In this paper, we explored an alternative approach in which diagnostic information could be extracted 
from the raw hologram images without the need for hologram reconstruction. In the microbead-based assay, we 
reasoned that cell-bead objects could generate distinct hologram patterns, albeit imperceptible to human eyes, 
recognizable by machine vision classifiers. Developing such a capacity would eliminate the need for image recon-
struction, further advancing LDIH utility for POC operations.

Here we report on new machine-learning (ML) based approaches for LDIH image analysis. ML has been mak-
ing significant progress in extracting information from complex biomedical images and has started to outperform 
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human experts for many data sets15–18. In this paper, we took deep transfer learning (DTL)19–25 approach to 
classify raw holograms and compared them with other ML schemes including convolutional neural networks 
(CNN)26–28. DTL extracts feature information from input data using the convolution part of pre-trained networks 
and subsequently feeds the information to classifiers. It has been known that pretrained networks can be exploited 
as a general-purpose feature extractor20. In this DTL approach, we used a VGG1929 model that was pretrained 
with a large number of ordinary images (i.e., not holograms) available in the ImageNet30, and fine-tuned the clas-
sifier to obtain high-performance classification. We applied these approaches to classifying holograms generated 
from cells and microbeads without a reconstruction process. Specifically, algorithms were developed to i) auto-
matically detect the holograms of cells labeled with microbeads, ii) classify detected cells according to the number 
of the cell-bound beads, and iii) construct the histogram of the cell-bound beads from the entire hologram. We 
found that a DTL approach offered more reliable, robust, and efficient performance in hologram classification 
than the conventional CNN.

Results
System and assay setup.  Figure 1A shows the schematic of the LDIH system3. As a light source, we used 
a light-emitting diode (LED; λ = 420 nm). The light passes through a circular aperture (diameter, 100 µm), gen-
erating a coherent spherical wave on the sample plane. The incident light and the scattered light from the sample 
interfere with each other to generate holograms which are then recorded by a CMOS imager10,31. The system has 
a unit (×1) optical magnification, resulting in a field-of-view equal to the imager size.

To enable molecular-specific cell detection, we used antibody-coated microbeads (diameter, 6 µm) for cell 
labeling. The number of attached beads is proportional to the expression level of a target marker, allowing for 
quantitative molecular profiling3. Diffraction patterns from unlabeled and bead-bound cells have subtle differ-
ences that are hard to detect with human eyes (Fig. 1B). Only after image reconstruction can beads and cells be 
differentiated and counted; cells have high amplitude and phase values, whereas microbeads have negligible phase 
values.

Reconstruction-free ML approaches.  Conventional LDIH reconstruction (Fig. 2A) requires mul-
tiple repetitions of back-propagation, constraint application, and transformation8. This iterative algorithm 
is computationally intensive, either incurring long processing time or requiring high-end resources (e.g., a 
high-performance graphical processing unit server) for faster results3. Furthermore, human curation is occasion-
ally needed to correct for stray reconstruction (e.g., debris, twin images). In contrast, our ML-based approach is 
a reconstruction-free classification method (Fig. 2B). As an off-line task, we first built a training dataset by auto-
matically detecting cell candidates and cropping them from the entire holograms. Then, we labeled each cropped 
hologram with the number of the cell-bound beads using reconstructed image as ground truth. Next, we trained 
a network using annotated holograms of bead-bound cells. After the training was complete, the network was used 
for on-line classification tasks; cell candidate holograms were detected and their holograms, without any image 
preprocessing, were entered as input for classification based on the number of cell-bound beads. Finally, the his-
tograms of the cell-bound beads from the entire holograms were created for molecular diagnosis.

Both off-line and on-line tasks in the ML approach (Fig. 2B) required the automatic detection of holographic 
patterns of cells. To achieve this task, we implemented a computational method which identifies the center of 
individual diffraction patterns32. First, the images of the gradient magnitude of the holograms were generated. 
Next, they were thresholded based upon their intensities. The converging directions of the gradients were used to 
estimate the positions of cell candidates in the holograms (Fig. 3A; see Methods). Using this method, we detected 
2729 potential cell candidates from 31 holograms. The samples for these holograms were prepared by labeling 
SkBr3 breast carcinoma cells with polystyrene beads conjugated with control, EpCAM, and HER2 antibodies. 
Then, we reconstructed object images and cropped the holograms and the object images (270 × 270 pixels). We 
labeled the cropped holograms (Fig. 3C) and their reconstructed object images (Fig. 3D) with the number of the 
bead attached to a cell (NB: 0, 1, 2, 3, ≥4). There were also images of floating beads, multiple cells, and artifacts, 
which were collectively labeled as ‘background’ (BG). The distribution of the class in the final training set is 
shown in Fig. 3B.

Figure 1.  In-line holographic imaging. (A) A holography system includes LED, a sample glass and a sensor 
where light is passed to a sample through a pinhole disk. (B) A hologram image and its associated reconstructed 
images consisting of magnitude and phase images.
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Visualization of hologram features.  We first tested the feasibility of the reconstruction-free classification 
by visualizing the features extracted from the holograms. Using the VGG19 pretrained model, we extracted fea-
tures from the training set of holograms (Fig. 4A). Since VGG19 was trained using color images (RGB channels) 
and our data were grayscaled, we copied the same image in each channel in the VGG-19 pretrained model. Then, 
using PCA (Principal Component Analysis), we reduced the feature dimension from 32,768 to 500 and visual-
ized their distribution using t-SNE plots33. In both holograms (Fig. 4B) and object images (Fig. 4C), each class of 
bead-bound cells was visually more segregated than they were in the cases where only the same PCA was applied 
without using VGG19 (Fig. 4D,E), suggesting that VGG19-based features of the holograms could discriminate 
the numbers of cell-bound beads.

Classification results by deep transfer learning.  Using the features from VGG19-PCA or PCA alone, 
we trained the multilayer perceptron (MLP, Fig. 5A) separately for holograms or object images. Since the train-
ing data were unbalanced (Fig. 3B), we took the following approaches: To balance the training set of cell-bound 
beads, we applied data augmentation (rotation and zoom-in) to increase the data size in the case of NB ≥1 (see 
Methods). Then, to address the unbalance between bead-bound cells (NB: 0 to ≥4) and background (BG) data 
we used a weighted cost function using the proportion of bead-bound cells to BG data. From the whole dataset 
consisting of 2729 cropped images from 31 holograms, we randomly split the data into training, validation, and 
testing dataset with a 64:16:20 ratio. The model was selected based on the validation loss, and the model perfor-
mance was evaluated based on the testing data. For statistical analysis, we repeated the training 20 times with 
different data splitting (see Methods for detail).

Since cells with more than two bead attachments are considered positive for a given target biomarker3, we 
first performed the binary classification (N/P) based on the bead number (NB): negative (NB ≤ 1) vs. positive 
(NB ≥ 2). The accuracies of VGG19-PCA-MLP in N/P were 90.2% for holograms and 93.4% for object images, 
whereas the accuracies of PCA-MLP were only 79.5% for holograms and 76.8% for object images (Fig. 5B and 
Supplementary Table 1). Since the background (BG) data are included in real situations, we also trained the 
classifiers after adding the BG class (N/P + BG). In comparison to the N/P classification, the accuracies were still 
similar (VGG19-PCA-MLP: 90.4% for holograms and 92.3% for object images, PCA-MLP: 79.1% for holograms 
and 76.4% for object images) (Fig. 5B and Supplementary Table 1). The sensitivity and specificity also showed that 
VGG19-PCA-MLP outperformed PCA-MLP in all cases (Fig. 5C, Supplementary Tables 2 and 3).

While this binary classification for the negative and positive cells can be applied to molecular diagnostics, 
the actual number of the beads and their distribution from a given patient sample can provide more detailed 
information including cancer stages and patient sub-types. Therefore, we trained the classifiers based on the 
number of the cell-bound beads. When we performed the classification using the number of beads (0, 1, 2, 3, ≥4), 

Figure 2.  Flow charts of holographic diagnostic approaches. (A) A conventional approach includes iterative 
reconstruction processes by phase retrieval. (B) A machine learning based workflow for hologram classification.
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VGG19-PCA-MLP achieved significantly higher accuracies, 75.5% for holograms and 82.0% for object images 
than PCA-MLP (52.8% for holograms and 53.4% for object images) (Fig. 5B and Supplementary Table 1). When 
BG class was considered together for the real application (NB + BG), VGG19-PCA-MLP achieved 83.2% for hol-
ograms, and 86.2% for object images, whereas PCA-MLP achieved 65.8% for holograms and 64.3% for object 
images (Fig. 5B and Supplementary Table 1). The distinctiveness of the BG class from the other classes (Fig. 4B,C) 
increased the overall classification accuracies.

To quantitatively compare the classification performance among all classification cases, we employed the 
Cohen’s kappa coefficient34 and the relative classifier information (RCI)35,36 (Fig. 5D,E, Supplementary Tables 4 
and 5). Cohen’s kappa compensates for classifications by random chance, and RCI quantifies how much uncer-
tainty had been reduced by the classification relative to the prior probabilities of each class. Both measures are 
between 0 and 1 (0: worst, 1: perfect classification). The NB classification using VGG19-PCA-MLP and the holo-
grams produced significantly larger values of Cohen’s kappa (0.687) and RCI (0.487) than that of the PCA-MLP 
(Cohen’s kappa: 0.392, RCI, 0. 0.204, Supplementary Tables 4 and 5). The results showed the following: i) N/P 

Figure 3.  Training set preparation for hologram classification. (A) Cell candidates detection workflow. (B) 
Class distribution in the training dataset. (C,D) Sample examples of holograms (C) and corresponding object 
images (D).
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classifiers has better performance than NB classifiers since multi-category classification is more prone to error 
than binary classification. ii) The VGG19-PCA-MLP outperforms PCA-MLP in all cases. iii) While the classifi-
cation using holograms showed good performance, the classification using object images performs marginally 
better than holograms.

To see the performance of the multi-category classification more closely, we computed the average confusion 
matrices of the bead classification (NB, NB + BG). The prediction accuracy was high when the number of beads 
is 0 or ≥4, or the BG class, and the accuracies decreased when the bead number was between 1 and 3 (Fig. 5F–I). 
Since the high occurrence values of the confusion matrices were near the diagonals, the misclassification mainly 
happened among neighboring numbers for both holograms and object images. This property makes the molecu-
lar profiling from the entire holograms less susceptible to mis-classification error.

Figure 4.  Feature extraction from holograms. (A) Features extraction by the pretrained VGG19 model and 
PCA. (B–D) t-SNE plots of the extracted features. VGG19-PCA feature extraction from the holograms (B) and 
object images (C). PCA feature extraction from the holograms (D) and object images (E).
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To compare the performances of different classifiers in our DTL approach, we also trained SVM (Support 
Vector Machine) and RF (Random Forest) models using the same VGG19-PCA features. In both N/P and NB 
classifications, MLP outperformed SVM and RF significantly (see p-values in Supplementary Tables 6 and 7).

Figure 5.  Classification performance of the deep transfer learning for holograms. (A) MLP (Multi-Layer 
Perceptron) neural network classifier used in this study (FC: fully connected layer, BN: batch normalization 
layer). (B–E) Performance Comparison between VGG19-PCA-MLP and PCA-MLP. N/P: negative (NB ≤ 1) 
and positive (NB ≥ 2) bead attachment. N/P + BG: NB ≤ 1, NB ≥2, BG (background class), NB: the numbers of 
beads (0, 1, 2, 3, ≥4 beads), NB + BG: the numbers of beads(0, 1, 2, 3, ≥4), BG. The performance measures are 
accuracy (B), sensitivity/specificity (C), Cohen’s Kappa (D), and RCI (E). (F–K) Average confusion matrices 
using VGG19-PCA-MLP using NB (five classes) classification (F) and NB + BG (6 classes) classification (G) 
for holograms, and NB classification (H), NB + BG classification (I) for object images. (J,K) The performance 
comparisons of VGG19-PCA-MLP (MLP), Support Vector Machine (SVM), Random Forest (RF) in N/P (two 
classes) classification (J) and NB (five classes) classification (K) using holograms.
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Molecular profiling using the deep transfer learning.  When it comes to the molecular diagnosis using 
LDIH, the clinical decision is often made at the cell population level. Therefore, we assessed how our hologram 
multi-category classification (NB) matched with the distribution of the cell-bound beads from an entire hologram. 
We overlaid the actual and predicted distributions of cell-bound beads from 18 different samples, whose number 
of detected cell candidates are more than 15, excluding BG (Fig. 6A). We also plotted the histograms of the actual 
and predicted numbers of the cell-bound beads in each sample (Fig. 6B). These show that the predicted bead 
proportions matched well with the actual distribution. Also, the mean difference between the proportions of the 
actual and the prediction was within 5% (Fig. 6C). This suggests that our multi-category classification based on 
the number of the cell-bound beads can be used to characterize the molecular profiles of the cancer cell popula-
tion from a patient sample.

Roles of VGG19 pretrained model.  To evaluate the role of the pretrained model in our classification, we 
also trained a conventional convolutional neural network (CNN) de novo for NB classification (Fig. 7A). Whereas 
there were no statistical differences in accuracy, RCI, and kappa between the CNN and the VGG19-PCA-MLP 
(Fig. 7B, Supplementary Table 8), we observed that the validation loss and accuracy of the training curves of this 
CNN were far more fluctuating than those of the VGG19-PCA-MLP (Fig. 7C,D). Therefore, the standard devia-
tion of the accuracy and the loss in the steady state of the CNN training was significantly larger than those of the 
VGG19-PCA-MLP (p-values: 2.30 × 10−107 for the loss, and 1.03 × 10−255 for the accuracy by two sample F-test) 
(Fig. 7E,F). Since the CNN has many more parameters to learn than VGG19-PCA-MLP, the cost function of the 
validation set may have many more local minima than that of the training set, which makes the validation loss 
and accuracy fluctuate during the training process. This suggests that DTL is more robust to the data variability 
and can produce a more generalizable classifier.

Figure 6.  Molecular profiling using deep transfer learning. (A,B) Comparison of the proportions (A) and 
numbers (B) of the cell-bound beads in each entire hologram between the actual labels (left) and predicted 
results (right). The classifier was built without BG class (NB). The color represents each hologram. (C) The 
residuals between actual and predicted proportions in each class.
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The DTL also used significantly less computational resources than the CNN. For one-time train-
ing, the VGG19-PCA-MLP took 30% less time than the CNN (Fig. 7G; NVIDIA GTX 1080Ti was used). In 
the VGG19-PCA-MLP training, the majority of time was spent in the feature extraction (VGG-PCA) rather 
than MLP training (Fig. 7G). Once the features of the training set were extracted, the repeated training was 
highly efficient whereas the CNN training required the feature extraction in every step of the training. 
Optimizing VGG19-PCA-MLP was much more efficient compared to the CNN, which could allow for training 
VGG19-PCA-MLP with computationally limited POC devices. Moreover, after combining the automatic cell 
candidate identification and our DTL based prediction, it took 7.7 seconds to process the whole FOV image 
(3000 × 3500 pixels, the number of cell candidates: 100). In summary, these results demonstrate the feasibility of 
hologram classification without reconstruction, simplifying the workflow and decreasing the computational cost 
for a POC application.

Figure 7.  Classification performance of convolution neural networks (CNN). (A) The structure of the CNN 
used in this study. (B) Performance comparison between VGG19-PCA-MLP and CNN in the case of NB and 
holograms. (C,D) Training curves of VGG19-PCA-MLP (C) and CNN (D). (E,F) Fluctuations and standard 
deviations of the validation accuracy (E) and the validation loss (F) during the training * and ** indicate the 
statistical significance with p-value, 2.30 × 10−107 and 1.03 × 10−255 respectively by two sample F-tests. (G) 
Comparison of computing times of the feature extraction (VGG19), MLP training, and CNN training (64 
epochs).
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Discussion
We have demonstrated that DTL approaches can effectively classify holograms of bead-bound cells without 
reconstructing original object images. The conventional reconstruction involves heavy computation, executing 
iterative phase recovery processes. Our DTL approach requires much less computational power, which could 
allow for POC devices to train and predict raw holograms.

Intriguingly, our neural networks reliably handled overlapping interference patterns among cells or between 
cells and unbound beads. In our training set, the target cells were positioned at the centers of the images, and 
other cells or unbound beads were away from the image centers. More than 70% of intensity is concentrated in 
the first inner circle of a hologram, whereas interferences between two holograms usually happen in the fringes 
and have much weaker signal strength. Conceivably, the trained networks placed more weight on the hologram 
center, effectively ignoring fringe patterns.

Our DTL approach could offer appealing new directions to further advance LDIH: (i) deep learning-based 
training/classification can be executed at the local device level without complex computation; (ii) not relying on 
high-resolution reconstructed images - the classification network is robust to experimental noise such as recon-
struction errors or artifacts; and (iii) the network is elastic and can be continuously updated for higher accuracy 
in POC devices. With these merits, we envision that the developed ML networks will significantly empower 
LDIH, realizing a truly POC diagnostic platform.

Methods
Data Collection.  Samples were prepared by labeling cancer cells (SkBr3, A431) with polystyrene beads 
(diameter, 6 µm). We prepared four different sets of beads. Three sets were conjugated with antibodies against dif-
ferent molecular targets: EGFR, EpCAM, and HER2; the fourth set was conjugated with control IgG antibodies. 
Aliquots of cells were labeled with each set of beads. Labeled cells, suspended in buffer, were loaded on a micro-
scope slide, and their holograms were imaged using the LDIH system3. To prepare the dataset set for classification, 
we reconstructed object images from holograms using a previously developed algorithm3. We cropped holograms 
(270 × 270 pixels) around the position of the automatically detected cell candidates (see Cell Candidate Detection 
below). Three researchers manually annotated the holograms of the cropped cell candidates with the following 
labels: the number (0, 1, 2, 3, ≥4) of the beads attached to cells, an unattached bead, multiple cells, and artifacts. 
Later, we collectively labeled the beads unattached to cells, multiple cells, and artifacts as ‘background.’

Cell Candidates Detection.  We implemented computational methods which automatically localized the 
single-cell candidates in the hologram images based on the diffracted patterns of concentric circles in the holo-
grams32. The algorithm uses the fact that the gradient directions of holograms on concentric circles converge to 
the centers of the diffraction patterns. The detailed detection procedure is the following:

	(1)	 We normalized the holograms by dividing the pixel values by the background intensity values and then 
rescaled them into a range [0, 255].

	(2)	 We denoised the normalized hologram using Gaussian blurring with a 6-pixel size (MATLAB function 
imgaussfilt()). Then, we calculated the gradient direction and magnitude of the denoised holograms using 
the MATLAB build-in function imgradient () with ‘prewitt’ method.

	(3)	 We thresholded the gradient magnitude images using a threshold value of 8.0, which removed the small 
gradient magnitude pixels and generated the binary mask. Then, the gradient direction images were 
masked by the gradient magnitude binary mask.

	(4)	 Along each direction in the masked gradient direction images, the frequencies of the gradient directions 
were accumulated within a specified range (50-pixel length, which generated the frequency maps of the 
gradient direction).

	(5)	 We denoised the frequency accumulation map using Gaussian blurring with 3-pixel size (MATLAB func-
tion imgaussfilt()). Then, we thresholded the denoised frequency accumulation map using the top 1% of 
the pixel values, and locate the center candidates. Then, we cropped 270 × 270 hologram and object image 
patches around the detected candidate center positions.

Labelling Training Set.  Three annotators independently labeled cropped holograms and their correspond-
ing object images. In order to balance the class distribution, we augmented the image data labeled with NB = 1, 2, 
3, and ≥4. The augmentation was performed by two strategies: rotation with a range of [0, 40] and zooming-in 
with the maximum value, 0.2, using the Keras library.

Machine Learning Classification.  Using the VGG19 pretrained model, we extracted image features from 
cropped holograms and object images. Since VGG19 was originally used for color images (RGB channels), and 
our data were of grayscale format, the same data was used in each channel. For data preprocessing, we perform 
the standard normalization, where each image patch was subtracted by its mean value and divided by its standard 
deviation. After the features extracted from VGG19, PCA (Principal Component Analysis) was performed to 
reduce the dimensionality of the data from 32768 to 500.

After the feature extraction step, we used an MLP (Multilayer Perceptron) consisting of three fully-connected 
neural network blocks for the classification. The first two blocks have a fully-connected (FC) layer, Batch 
Normalization layer, ReLU activation and Dropout layer (parameter: 0.5). The FC layers in the first two blocks 
have the sizes of 128 and 64, and the L2 norm regularizer (parameter: 0.05). The third block has an FC layer with 
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‘softmax’ activation. Also, Support Vector Machine (SVM) and Random Forest (RF) were applied to compare the 
performance with the MLP. The parameters of SVM and RF were optimized by using the grid-search method 
from the sklearn package shown below.

The parameters of the grid search for RF
The parameters of the grid search for SVM

To show the roles of the pretrained VGG19 model, we trained a CNN using the same dataset (Fig. 7A). The 
CNN has three feature extraction blocks consisting of two convolutions layers and one max-pool layer (4 × 4.) 
After this feature extraction, the same MLP structure was used for the classification.

Performance evaluation of the classifiers.  We split the augmented dataset into three groups in a strat-
ified fashion using the class labels: training, validation and test sets (64:16:20). The training set (64%) was used 
for training the network. The validation set (16%) was used for the model selections. After the training, the 
classification performance was evaluated using the testing set (20%). For robust statistical analysis, we repeated 
the training 20 times. The performance measures were the accuracy, Cohen’s Kappa coefficient (Kappa)34, and 
relative classifier information (RCI)36. Kappa is a standard metric for multi-categorical classification and RCI, as 
an entropy-based measure, is also suitable to evaluate the performance by measuring the reduced uncertainty by 
the classifier in comparison to the prior class distribution. For the classification involved with negative and pos-
itive bead attachment, we also measure sensitivity and specificity using the sklearn.metrics python package. The 
samples of the positive bead attachment were treated as ‘positive,’ and the other cases were treated as ‘negative’. For 
the statistical testing, we used unpaired two-tailed Wilcoxon rank sum tests which do not rely on the assumption 
of normality.

Molecular Profiling.  To quantify the distribution of the proportion or the frequency of the number of the 
attached beads (NB), we chose 18 images, whose cell candidates were larger than 15. For each image, we calculated 
the proportion and the frequency of the predicted and the actual number of attached beads in each hologram.

Comparison between VGG19-PCA-MLP and CNN.  To evaluate the performance between VGG19-PCA- 
MLP and CNN, the performance measures including accuracy, Kappa and RCI were used as described above. 
Then, the fluctuations of the validation accuracy and loss were measured as follows: we selected the last 20 epochs 
for each training process, and then calculate the residuals by subtracting the sample mean value. We repeated the 
training twenty times with random data splitting. The statistical test for the difference of variance was performed 
by two sample F-test.

Code Availability Statement
The code used in the current study is available from the corresponding author upon reasonable request.

Data Availability Statement
The datasets used in the current study are available from the corresponding author on reasonable request.
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