
Citation: Lombardo, M.; Feraco, A.;

Bellia, C.; Prisco, L.; D’Ippolito, I.;

Padua, E.; Storz, M.A.; Lauro, D.;

Caprio, M.; Bellia, A. Influence of

Nutritional Status and Physical

Exercise on Immune Response in

Metabolic Syndrome. Nutrients 2022,

14, 2054. https://doi.org/10.3390/

nu14102054

Academic Editor: Pedro Tauler

Received: 13 April 2022

Accepted: 12 May 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Review

Influence of Nutritional Status and Physical Exercise on
Immune Response in Metabolic Syndrome
Mauro Lombardo 1,*,† , Alessandra Feraco 1,2,†, Chiara Bellia 3 , Luigi Prisco 1, Ilenia D’Ippolito 4,
Elvira Padua 1,5 , Maximilian Andreas Storz 6 , Davide Lauro 4 , Massimiliano Caprio 1,2

and Alfonso Bellia 1,4

1 Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University,
00166 Rome, Italy; alessandra.feraco@uniroma5.it (A.F.); luigi.prisco@uniroma5.it (L.P.);
elvira.padua@uniroma5.it (E.P.); massimiliano.caprio@uniroma5.it (M.C.); bellia@med.uniroma2.it (A.B.)

2 Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
3 Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo,

90127 Palermo, Italy; chiara.bellia@unipa.it
4 Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;

ileniadippolito@gmail.com (I.D.); d.lauro@med.uniroma2.it (D.L.)
5 School of Human Movement Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
6 Department of Internal Medicine II, Center for Complementary Medicine, Faculty of Medicine, University of

Freiburg, 79106 Freiburg, Germany; maximilian.storz@uniklinik-freiburg.de
* Correspondence: mauro.lombardo@uniroma5.it
† These authors contributed equally to this work.

Abstract: Metabolic Syndrome (MetS) is a cluster of metabolic alterations mostly related to visceral
adiposity, which in turn promotes glucose intolerance and a chronic systemic inflammatory state,
characterized by immune cell infiltration. Such immune system activation increases the risk of severe
disease subsequent to viral infections. Strong correlations between elevated body mass index (BMI),
type-2-diabetes and increased risk of hospitalization after pandemic influenza H1N1 infection have
been described. Similarly, a correlation between elevated blood glucose level and SARS-CoV-2 infec-
tion severity and mortality has been described, indicating MetS as an important predictor of clinical
outcomes in patients with COVID-19. Adipose secretome, including two of the most abundant and
well-studied adipokines, leptin and interleukin-6, is involved in the regulation of energy metabolism
and obesity-related low-grade inflammation. Similarly, skeletal muscle hormones—called myokines—
released in response to physical exercise affect both metabolic homeostasis and immune system
function. Of note, several circulating hormones originate from both adipose tissue and skeletal
muscle and display different functions, depending on the metabolic context. This review aims to
summarize recent data in the field of exercise immunology, investigating the acute and chronic effects
of exercise on myokines release and immune system function.

Keywords: nutrition; physical activity; immune function; aging; skeletal muscle; adipose tissue;
adipokines; obesity; COVID-19; myokines

1. Introduction

Metabolic Syndrome (MetS) is a cluster of metabolic alterations mostly related to
visceral adiposity and includes arterial hypertension, hyperglycemia and dyslipidemia [1].
The prevalence of obesity is increasing worldwide, contributing to the increasing incidence
of cardio-metabolic disorders [2]. In accordance with evidence supporting a strong as-
sociation between visceral adiposity and metabolic alterations, MetS is characterized by
a chronic systemic inflammatory state, which, in turn, is associated with a greater risk of
type 2 diabetes mellitus (T2DM) and cardiovascular disease. Importantly, MetS increases
the risk of severe disease due to viral infections [1].
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In general, excess adiposity results when energy intake exceeds energy expenditure,
due to both overnutrition and insufficient physical activity, leading to a positive energy
balance. There is accumulating evidence that the dysfunctional adipocyte is a major source
of pro-inflammatory cytokines, promoting systemic low-grade inflammation and thus
further contributing to the development of MetS and obesity-related disorders [3]. In
particular, pro-inflammatory immune cell infiltration in terms of macrophages, effector and
memory T-cells, T regulatory cells, natural killer and natural killer T cells and granulocytes
are a major contributor to an inflammatory milieu in obesity [4]. This immune system
activation might represent the link between MetS and the increased risk of severe disease
due to viral infection.

Exercise is considered a form of physical stress, acting as an immune system modula-
tor, through both neuro-endocrine and metabolic adaptations, underlying muscle contrac-
tion [5]. In the early 20th century, Larrabee, Tileston and Emerson were the first to observe
leukocytosis among athletes participating in the Boston Marathon two hours after the end
of the race [6]. In accordance with their observations, several studies indicated that pro-
longed and intensive exercise was associated with transient immune dysfunction, elevated
inflammatory biomarkers and increased risk of upper respiratory tract infections [7–12].

In the last decades, advances in mass spectrometry and genetic testing allowed for
a better understanding of the emerging correlations between “homic” sciences (metabolomics,
proteomics, lipidomics, genomics), intestinal microbiota, physical exercise and the immune
system [13,14]. Like adipose tissue, skeletal muscle tissue is also considered a veritable
endocrine organ, releasing a number of circulating chemical mediators called “myokines”,
which are involved in the regulation of metabolic and immune health [15–17].

Myokines specifically act at the adipose tissue level, by reducing and regulating fat
mass expansion, favoring the beige/brown phenotype which, in turn, improves metabolic
homeostasis. At a systemic level, myokines improve insulin sensitivity in target tissues and
organs (e.g., liver, muscles) [18]. The endocrine adaptation of skeletal muscle in response to
exercise training can therefore result in systemic anti-inflammatory effects, counteracting
deleterious consequences of metabolic syndrome on the immune system [19].

As recommended by current guidelines, both physical exercise and adequate nutrition
are able to modulate myokines release, thus potentially contributing to improve insulin
sensitivity and mitigate the risk associated with cardiometabolic diseases [20]. The aim of
this narrative review is to report and discuss the latest evidence on the impact of physical
exercise and nutritional status on mediators of inflammation. In particular, the review
summarizes how metabolic dysregulation impairs immune responses during influenza
virus and coronavirus infection with a particular focus on patients with MetS at an increased
cardio-metabolic risk. The novelty of this manuscript resides in the change of perspective
adopted to discuss the impact of metabolic homeostasis on immune function in response
to physical exercise. Fat accumulation is widely considered the most important actor,
releasing hormones able to induce chronic inflammation with immune cells infiltration,
as well as metabolic alterations. On the other hand, skeletal muscle represents a veritable
endocrine organ, secreting a number of contraction-induced hormones, which are known
to regulate immunometabolism. To illustrate the complex relationships between physical
exercise, skeletal muscle, adipose tissue and immune system, a brief description of the
main hormones secreted by skeletal muscle and their physiological significance will be
also provided.

2. Metabolic Syndrome and Viral Infections

Visceral adiposity and glucose intolerance subsequent to overfeeding, as well as to al-
tered insulin signaling and progressive loss of beta-cell function, represent well established
features of MetS and type 2 diabetes (T2DM) [1,21,22]. Patients with obesity and T2DM are
particularly vulnerable to viral infections, although the underlying mechanisms are not
well established [23–26].
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A 2009 clinical study by Louie et al., investigating the impact of BMI on the inci-
dence of severe influenza infection among California residents hospitalized with H1N1,
reported that half of the 534 patients infected by influenza virus were obese [27]. In ac-
cordance with their findings, another study revealed that adults with a body mass index
(BMI) > 30 kg/m2 had a 1.45 to 3 times increased risk for hospitalization during influenza
seasons in Canada [28]. Similarly, patients with T2DM demonstrated increased influenza-
related mortality, showing an increased risk of hospitalization and intensive care unit (ICU)
admission upon hospitalization [29]. The greater prevalence of T2DM in individuals in-
fected by H1N1 developing fatal disease complications is related to chronic hyperglycemia,
which impairs innate and humoral immune systems, with reduced function of T cells
and neutrophils (Table 1) [30]. Similarly, obese individuals show alterations at different
steps of the innate and adaptive immune response, characterized by a state of chronic
and low-grade inflammation, which seems to be a major determinant in the severity of
viral infections in obesity. Indeed, the visceral adipose tissue secretome releasing leptin
and other pro-inflammatory cytokines is able to negatively affect immune system func-
tion, for example, by reducing macrophage activation after antigen presentation [31,32].
This may explain the increased susceptibility and delayed recovery of viral infections
in obese/diabetic individuals. Importantly, macrophage dysfunction may alter vaccine
efficacy together with virus pathogenicity [33,34].

Recently, several studies discussed the impact of MetS on COVID-19 clinical outcomes,
showing that elevated BMI, as well as obesity-related metabolic dysfunctions, including
T2DM, represent important risk factors for complications and mortality following SARS-
CoV-2 infection [35–37]. In particular, hyperglycemia has been indicated as a predictor for
the fatality of COVID-19 infection (Table 1) [38–40].

Table 1. Evidence of increased severity of H1N1 influenza and COVID-19 in diabetes and obesity
based on clinical studies.

Metabolic Alterations and Viral Infection Outcomes

First Author Viral Infection Results Type of Publication Country

Louie, J.K., 2011 [27] H1N1 Influenza

Half of 534 adult case patients
hospitalized with 2009 H1N1 infection

were obese. Extreme obesity
(BMI ≥ 40 kg/m2) was associated with

increased odds of death, thus
representing an independent risk factor

for mortality.

Article California, USA

Kwong, J.C., 2011 [28] H1N1 Influenza

Logistic regression to examine the
association between BMI and

hospitalization for selected respiratory
diseases in a cohort of 82,545 adults over
12 influenza seasons (1996–1997 through
2007–2008) indicates that severely obese

individuals (Class II or III,
BMI > 35 kg/m2) with and without

chronic conditions are at increased risk
for respiratory hospitalizations during

influenza seasons.

Article Canada

Allard, R., 2010 [29] H1N1 Influenza

Diabetes triples the risk of
hospitalization after influenza A (H1N1)

p and quadruples the risk of ICU
admission once hospitalized.

Article Canada
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Table 1. Cont.

Metabolic Alterations and Viral Infection Outcomes

First Author Viral Infection Results Type of Publication Country

Pranata, R., 2021 [36] SARS-CoV-2

A total of 34,390 patients from
12 studies were included in this

meta-analysis. Increased BMI was
associated with increased poor outcome

in patients with COVID-19.

Meta-Analysis Several countries

Guo, W., 2020 [37] SARS-CoV-2

COVID-19 patients with diabetes
(n = 24) were at higher risk of severe

pneumonia, release of tissue
injury-related enzymes, excessive

uncontrolled inflammation responses
and hypercoagulable state associated

with dysregulation of glucose
metabolism. Diabetes should be

considered as a risk factor for a rapid
progression and bad prognosis

of COVID-19.

Article China

Wu, J., 2020 [38] SARS-CoV-2

Elevation of admission blood glucose
level was an independent risk factor for

progression to critical cases/death
among non-critical cases in a cohort of
2041 consecutive hospitalized patients

with COVID-19.

Article China

Abbreviations: BMI (body mass index), ICU (intensive care unit).

Elevation of initial blood glucose levels was identified as an independent risk factor
for in-hospital mortality among critical cases [38]. Moreover, patients with new-onset hy-
perglycemia, even in the absence of diabetes diagnosis, showed poorer outcome compared
to the normoglycemic individuals, as well as those with pre-existing diabetes [39]. On
the other hand, obesity per se induces detrimental effects in patients with SARS-CoV-2 in-
fection, potentially leading to worse outcomes, including respiratory and multiple organ
failure and thus increasing the mortality risk [41]. Several factors are implicated in the
association between obesity and increased risk of hospitalization due to a COVID-19 in-
fection. First, dysfunctional visceral fat secretome, including pro-inflammatory cytokines
and adipokines, impairs immune function, through a direct regulation of both innate and
adaptive immune response, as mentioned above [42]. Second, abdominal fat accumulation
hampers diaphragmatic movement, reducing basal lung expansion during inspiration. For
this reason, obese individuals are more likely to have worse lung function and respiratory
symptoms than individuals with a normal BMI [43,44].

Given the increasing prevalence of obesity worldwide in recent years, these data
highlight that increased risk of respiratory infections—with the relative burden of severe
complications—exists in obese subjects.

Despite such evidence, the impact of obesity and metabolic alterations on viral infec-
tions severity is underestimated probably due to the fact that BMI is generally not identified
as a significant problem in primary care. For this reason, it is usually not inserted in medical
records upon hospitalization, unless the patient undergoes invasive surgery [45]. This
could represent bias in the context of retrospective clinical studies focusing on the impact
of obesity on viral infection outcomes. Other bias, such as those correlating pneumonia
to obesity, may be due to the difficulty in reading X-ray reports in overweight people or
the fact that early studies in this field have used variable BMI values to define obesity [46].
Obese individuals were shown to have a higher morbidity and mortality from COVID-19.
A major concern is that vaccines could be less efficient in subjects with obesity [47].



Nutrients 2022, 14, 2054 5 of 17

3. Adipose Tissue Dysfunction and Immunomodulation in MetS

The histological and functional complexity of the adipose organ goes far beyond its
apparent nature as a ‘fat reservoir’ [48]. Adipose tissue is a specialized form of connective
tissue encompassing vascular stroma (containing endothelial cells, pericytes, fibroblasts
and pluripotent stem cells) and mature adipocytes, able to store fats in the form of triglyc-
erides [49]. Adipose tissue is mainly located under the skin at the level of the hypodermis
and internally, in the peritoneal area, at the level of the large omentum, behind the intestine,
around the kidneys and the pericardial [50].

At the histological-functional level, we distinguish mainly between two types of adi-
pose tissue. White adipose tissue (WAT), located both in the hypodermis and viscerally, is
characterized by adipocytes containing a single large lipid droplet and low mitochondrial
density with low metabolic activity [51]. Brown adipose tissue (BAT), which is more preva-
lent in infants than in adults, is characterized by adipocytes with a number of small lipid
droplets, higher mitochondrial density and with important thermogenic function [52,53].
Recently, beige adipose tissue with intermediate characteristics of both tissues has been
identified. The onset of the beige adipocyte is still controversial, but it is well established
that it is capable of expressing discrete quantities of thermogenin in response to both physi-
cal exercise and calorie restriction [54]. Genetic, hormonal and environmental factors are
involved in beige/BAT development and metabolism as well as in the browning process of
WAT [55,56]. Adipose depots are considered a veritable endocrine organ secreting different
adipokines which regulate several neuroendocrine functions, including energy expenditure,
insulin sensitivity, lipid and glucose metabolism, endothelial function, blood pressure and
immunity [57,58]. Visceral fat also releases free fatty acids (FFAs) through lipolysis into
the portal bloodstream, determining intrahepatic fat accumulation and skeletal muscle
insulin resistance [59].

In obesity, dysfunctional adipose tissue promotes systemic low-grade inflammation
which, in turn, contributes to the development of obesity-related diseases [3]. In particular,
adipose tissue hypertrophy and hyperplasia determine local hypoxia and cell death, as
well as extracellular matrix remodeling and mitochondrial dysfunction, leading to immune
cell infiltration [60]. Adipocytes secrete chemoattractant factors, including the stromal
cell-derived factor-1 α (SDF-1α), which promotes recruitment and survival of cluster of
differentiation 4+ (CD4+) T-lymphocytes, resulting in adipose tissue inflammation and
subsequent recruitment of proinflammatory macrophages [61,62].

On the other hand, macrophages infiltrating adipose tissue shift to a pro-inflammatory
phenotype, forming typical crown-like structures around adipocytes and secreting pro-
inflammatory cytokines [63]. Of note, the most studied adipokine leptin plays an essential
role in regulating immune system function, promoting an obesity-related low-grade inflam-
mation state. Preclinical studies using transgenic mice clarified the role of leptin as a potent
immune modulator [64,65].

Accordingly, genetic mutations in leptin or the leptin receptor promote fat accumu-
lation and obesity development with immune system dysfunction in humans [66]. With
regard to the adaptive immunity response, pro-inflammatory effects of leptin have been
described. Leptin receptors are expressed in CD4+ T-lymphocytes [67], where leptin sig-
naling regulates survival, proliferation, cytokine release and differentiation [68,69]; on the
other hand, the proliferation of regulatory T cells (Treg cells), showing anti-inflammatory
activity, is inhibited by leptin in human cells ex vivo [70]. Similarly, leptin signaling medi-
ates pro-inflammatory effects in innate immune cells, including macrophages where the
adipokine induces both phagocytosis and cytokine production [71,72].

Adipose tissue and the immune system share cytokines secretion whose role can vary
enormously depending on their targets, as well as the metabolic context in which they are
secreted [73]. Given the strong correlation between obesity, low-grade inflammation and
metabolic diseases, inflammation pathways represent a valid target for the treatment of
obesity-related comorbidities [74].
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4. Skeletal Muscle and Exercise Immunology

The skeletal muscle system is essential to maintain general health and well-being and
plays a pivotal role in ensuring vital functions such as movement, postural support, breath-
ing and thermogenesis. Sarcopenia is a clinical condition characterized by progressive
decline in skeletal muscle mass and strength occurring in aging, and it is considered a pre-
dictor factor of fractures, disability and functional impairments associated with significant
morbidity and mortality. Interestingly, Sarcopenia is also associated with increased infec-
tion susceptibility, thus representing a potential link between impaired muscle function and
impaired immune response. On the other hand, sarcopenic obesity occurs when reduced
skeletal muscle mass and strength are accompanied by visceral fat accumulation, which
induces lipotoxicity as well as systemic inflammation, as already discussed [75–81]. The
combination of muscle loss and ectopic lipid deposition, induced by visceral fat expansion,
leads to impaired immune response to a greater extent compared to sarcopenia or obesity
alone and [82] reduces the ability to respond to metabolic stress [83]. Such evidence is of
particular interest due to the current global pandemic caused by COVID-19.

Exercise immunology is an important research area investigating acute and chronic
effects of exercise on the immune system function, including clinical benefits of the exercise–
immunity relationship and nutritional influences on the immune response to exercise.
Skeletal muscle contraction induced by physical exercise triggers neuro-endocrine and
metabolic adaptations, which potentially influence the immune system function [5]. Like
adipose tissue, skeletal muscle tissue displays endocrine properties [84] essential in regulat-
ing physiological response to physical exercise, through the release of chemical mediators,
the so-called myokines, capable of exerting effects at an autocrine, paracrine and even
endocrine level through the blood circulation on different target tissues (Figure 1) [85,86].

1 
 

 
Figure 1. Skeletal muscle as an endocrine organ: metabolic effects of muscle-contraction-induced
myokines. Physical exercise stimulates myokine release showing endocrine function at target tissues
level, including adipose organ, liver and endothelium. Indeed, the skeletal muscle secretome plays
an essential role in the maintenance of whole-body metabolic homeostasis, regulating lipolysis, fat
oxidation, inflammation and insulin sensitivity. In particular, myokines release induced by physical
exercise contributes to the immune system stimulation, producing an anti-inflammatory cellular
response with potential protective effects against infections. Abbreviations: TNF-α (Tumor necrosis
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factor-alpha), IL-1ra (Interleukin-1 Receptor Antagonist), IL-10 (Interleukin-10), PAI-1 (Plasminogen
activator inhibitor-1), eNOS (Endothelial nitric oxide synthase), SOD1 (Superoxide Dismutase 1),
SOD2 (Superoxide Dismutase 2), FGF21 (Fibroblast growth factor 21), BDNF (Brain-derived
neurotrophic factor), MCP-1 (Monocyte chemoattractant protein-1), IL-6 (Interleukin-6), IL-15
(Interleukin-15), METRNL (Meteorin-like protein), BAIBA (Beta-Aminoisobutyric acid), MSTN (Myo-
statin), LIF (Leukemia inhibitory factor), (↓) decrease, (↑) increase.

Notably, in 2013, Raschke and Eckel discussed the existence of adipo-myokines. In-
deed, several myokines, whose expression is regulated by physical exercise-induced con-
traction, are also secreted by adipocytes thus playing a dual role as mediators of both
inflammation and metabolic health, depending on the circumstances [87]. This paragraph
focuses both on the main myokines, produced by muscle tissue in response to physical
exercise and involved in metabolic homeostasis and immune system modulation, as well
as on adipo-myokines, capable of exerting bioactive functions that vary depending on the
source tissue and the metabolic context [85].

5. Myokines

Fibroblast growth factor 21 (FGF21) is an endocrine hormone secreted by several
organs and involved in energy homeostasis regulation. In particular, FGF21 is induced in
response to mitochondrial dysfunction, starvation and endoplasmic reticulum stress, and it
is considered a powerful endocrine mediator, capable of improving glucose tolerance, lipid
metabolism and energy expenditure in murine models [88,89].

Some studies suggest that skeletal muscle FGF21 favors browning by regulating the
expression of the mitochondrial protein uncoupling protein 1 (UCP1) in white adipose
tissue depots [90] Despite the aforementioned studies, the role of FGF21 as an exercise-
induced myokine remains controversial.

A clinical study demonstrated that physiological insulin concentrations induce muscle
expression of FGF21, which, in turn, correlates with increased hormone circulating levels
in overweight/obese diabetic individuals. Interestingly, physical exercise showed no
effects on FGF21 expression in skeletal muscle and adipose tissue, although a significant
improvement in insulin sensitivity was observed in these subjects, suggesting that FGF21 is
a direct target of insulin action, even in the presence of insulin resistance [91]. In addition to
that, several studies showed that aerobic exercise increases in FGF21 serum levels in healthy
individuals, immediately after exercise session and after two weeks of training [92,93].
Further studies are necessary to clarify the therapeutic potential of muscle FGF21.

Myogenin is a transcription factor essential for myogenesis and skeletal muscle re-
pair [94]. Different stimuli, including muscle trauma induced by physical training, are able
to promote satellite cells (SCs) proliferation, thus increasing the expression of myogenic
markers [95]. Myogenin is one of the so-called “regulatory myogenic factors” (along with
myogenic factor 5 (Myf5) and myoblast determination protein 1 (MyoD)) that plays a key
role in the transition from satellite cells to myoblasts and their fusion to restore damaged
myofibrils [96]. Accordingly, myogenin gene expression increases in SCs isolated from
human skeletal muscle biopsy samples following eccentric contractions [97]. On the other
hand, recruited immune cells play a critical role in muscle repair.

During muscle regeneration, SCs are reprogrammed by infiltrating neutrophils and
monocytes, through pro-inflammatory cytokines release, which represents the initial stages
of myogenesis. Then, activated macrophages acquire anti-inflammatory properties to
resolve inflammation and facilitate tissue recovery, determining the transition from the
proliferative stage to the differentiation and growth stage of myogenesis [98–100].

Myonectin, also known as CTRP15, is a very important exercise-training-responsive
myokine, regulating lipid metabolism in skeletal muscle, adipose tissue and liver and show-
ing a significant positive impact on NEFA (non-esterified fatty acids) levels, in mice [101].
Of note, lipid oxidation represents the most effective molecular adaptation to training,



Nutrients 2022, 14, 2054 8 of 17

and it is accompanied by an increase in mitochondria number and activity in response to
physical exercise [102,103].

Increased myonectin circulating levels correlate with insulin resistance in humans.
On the other hand, the same study indicates that obese subjects show reduced myokine
levels, demonstrating an inverse relationship between myonectin and BMI values [104],
thus suggesting that increased myonectin levels in the presence of IR may represent a com-
pensatory mechanism. In accordance with this evidence, a recent study showed that
a moderate-intensity aerobic exercise program (between 50% and 70% of maximum heart
rate) is capable not only of increasing myonectin levels but also of reducing insulin resis-
tance in obese subjects [105]. Given the described role of myonectin in energy metabolism
regulation, the specific impact of this myokine on immune system in response to exercise
needs to be explored.

Brain-derived neurotrophic factor (BDNF) is a small protein mainly produced by
the central nervous system (but also by skeletal muscle) and plays an important role in
neurogenesis processes related to memory and learning. Studies conducted so far show that
physical exercise is able to positively stimulate BDNF release [106,107]. In particular, the
increase in BDNF levels after aerobic exercise is closely correlated to energy expenditure,
therefore, high intensity and/or high-volume training is more effective in inducing an
increase in BDNF blood concentration. [106].

BDNF displays both autocrine action at a muscular level in muscle regeneration,
as well as in muscular adaptation to exercise, and endocrine action at a central nervous
system (CNS) level, as revealed by a positive neurotrophic impact in terms of enhanced
cognitive function correlated to increased plasma levels of BDNF after physical exercise,
especially in elderly subjects [108]. Moreover, BDNF exerts anorexic actions at a CNS level
by interacting with hypothalamic centers regulating appetite [109]. Interestingly, it has
been demonstrated that, like other neurotrophins, BDNF contributes to the functioning of
both innate and acquired immunity [110]. Such immunomodulatory property results in
potential neuroprotective effects in the presence of neurodegenerative diseases [111].

As regards metabolic aspects, BDNF regulates both glucose and lipid metabolism [112].
In particular, physical exercise enhances circulating levels of BDNF, which are decreased in
obesity and type 2 diabetes mellitus, improving lipid oxidation and insulin sensitivity [113].
Of note, BDNF preserves pancreatic beta-cell function in experimental models [114]. Fur-
thermore, emerging evidence indicates a link between BNDF and COVID-19 disease. SARS-
CoV-2 infection dampens BDNF synthesis and release, thus favoring COVID-19 associated
neurologic symptoms. For this reason, BDNF levels have been proposed as a predictive
factor of intensive care unit admission in COVID-19 patients [115].

Monocyte chemoattractant protein-1 (MCP-1/CCL2) is the best-characterized
chemokine released by skeletal muscle in response to injury. It is involved both in the
recruitment of monocytes and T lymphocytes, thus triggering the beneficial inflammation
essential to support muscle regeneration but also in the alteration of insulin sensitivity and
obesity-related low-grade inflammation [116,117].

Indeed, diabetic patients show elevated MCP-1 circulating levels, and it has been
shown that exercise is able to significantly reduce MCP-1 plasma levels [118,119]. Notably,
even mild physical exercise (10,000 steps a day, 3 times a week, for 8 weeks) is capable
of downregulating MCP-1 expression in sedentary subjects, supporting the beneficial
anti-inflammatory benefit of low-intensity exercise [120]. Although there is a lack of
reliable data on human models, the possible role of MCP-1 as a connecting link between
exercise, immune response and skeletal muscle insulin resistance needs to be established
by further studies.

6. Adipo-Myokines

Interleukin 6 (IL-6) is a protein composed of 212 amino acids, produced from adipose
tissue, skeletal muscle and immune system cells [121]. It is well established that IL-6 plays
a different role (inflammatory or anti-inflammatory) depending on the tissue where it is ex-
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pressed, as well as on its mechanism of action. Despite the well-described pro-inflammatory
effects of systemic IL-6 in metabolic diseases, clinical studies demonstrate that IL-6 secreted
by skeletal muscle in response to physical exercise exerts anti-inflammatory effects with
beneficial metabolic responses [8]. Indeed, IL-6 membrane receptor (IL-6R) requires a pair
of glycoproteins (gp130) as co-receptors to form the IL-6–IL6R–gp130 complex in order
to activate the intracellular signaling transduction. However, a small number of cells
express IL-6R, whereas gp130 is present in almost all cell populations; thus, in the ab-
sence of IL-6R, IL-6 requires a soluble receptor (sIL-6R) to initiate signaling [122]. When
IL-6 exerts its effects via soluble receptors, the signaling pathway is called “trans” and has
a pro-inflammatory effect; on the other hand, when membrane receptors are expressed
by target cells, the triggered pathway is called “classic” and displays anti-inflammatory
effects. Plasma levels of IL-6 increase as a result of muscle exercise and depend closely on
the intensity and duration of the stimulus [123]. During physical exercise, skeletal muscle
secretes IL-6, whereas sIL-6R is not expressed [124]. In this tissue, sIL-6R is produced as
a result of enzymatic reactions in the presence of other chemical mediators of inflammation,
such as tumor necrosis factor alpha (TNF-alpha) produced by dysfunctional adipocytes.
Skeletal muscle IL-6 specifically acts at the level of the target cells expressing IL-6R, induc-
ing a cascade of signals that culminate in biological actions aimed at improving the body’s
metabolic profile in terms of energy substrates, improved insulin sensitivity and fatty acids
oxidation, increased lipolysis and glycogenolysis in liver [125]. In addition, skeletal muscle
IL-6 plays an important role in processes related to muscle growth, stimulating satellite
cells, the differentiation, browning of fat deposits and cardiovascular protection [126].

Interleukin 15 (IL-15) is a cytokine discovered in 1994 in T lymphocytes and generally
associated with inflammatory processes; IL-15 is also produced by skeletal muscle in
response to physical exercise [127], and its receptors (interleukin 15 receptor alpha (IL-
15Ralfa)) are expressed by different tissues involved in metabolic homeostasis [128].

Very similar signaling has been observed for IL-15 and IL-6, with increased glucose
transporter type 4 (GLUT-4) expression and tanslocation, thus resulting in improved glucose
uptake and energy metabolism [129,130]. At the adipocyte level, IL-15 promotes lipolysis
and stimulates mitochondrial activity in brown adipocytes, increasing the expression of
UCP1 [131], as well as regulating cell proliferation by inhibiting pre-adipocytes. Such
a property is of particular interest due to the well-known role of adipose tissue expansion
in the increase in mechanical stress, hypoxia and low-grade inflammation [132]. Short
sessions of aerobic activity seem to increase IL-15 levels in both lean and overweight/obese
subjects [133]. A more recent study showed an increase (2.2-fold) in serum IL-15 levels
even after an acute trail run session (35 km); in the same study, a greater increase (13.2-fold)
in circulating IL-6 levels was observed [127].

Leukaemia inhibitory factor (LIF) is a small protein composed of 181 amino acids.
It plays an important role in hematopoietic processes related to the differentiation of
myeloid line cells (monocytes, neutrophil granulocytes, eosinophils, basophils, erythrocytes,
megakaryocytes, dendritic cells) [134].

It shares the same gp130 co-receptors with IL-6, thus performing an anti-inflammatory
function. A recent preclinical study hypothesized a role for LIF in improving glucose
uptake, at muscle level, as well as in inhibiting adipocyte proliferation [135]. In humans it
has been shown that both aerobic activity and exercise with overloads regulate LIF mRNA
expression in skeletal muscle [136].

Irisin (FNDC5) has been identified for the first time in 2012 by Spiegelman’s group.
It is a hormone produced by muscle tissue following physical exercise, and it plays an es-
sential role in the cross-talk between different tissues/organs, including adipose tissue,
bone, brain and skeletal muscle [137]. Irisin promotes browning of adipose tissue with
beneficial effects in term of weight loss, thermogenesis activation and improved glucose
tolerance. Moreover, it stimulates new bone formation and displays neuroprotective effects,
through the upregulation of BDNF, thereby also enhancing cognitive capacity, by increasing
the number of synapses [138,139]. As regards metabolic action, reduced irisin circulat-
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ing levels have been associated with angiopathy and renal dysfunction development in
T2D mellitus [140].

Myostatin (MSTN) is a protein discovered in 1997 by McPherron and Se-Jin Lee
with an important role in regulating skeletal muscle growth [141]. Its action is in fact
regulated by the presence of follistatin, which is produced by the liver in response to
physical activity and is known to antagonize MSTN, promoting browning both in vitro
and in vivo [142]. Interestingly, MSTN is also expressed in the adipose tissue exerting
a dual function, either inhibiting or promoting adipogenesis depending on the context.
Despite many aspects that need to be clarified, preclinical studies showed that MSTN
genetic deletion leads to increased muscle mass, with reduced fat mass and resistance to
diet-induced obesity [143,144].

Clinical studies display a direct effect of physical exercise on skeletal muscle MSTN
mRNA expression, which is reduced after sessions of variable duration of exercise, especially
if the exercise is structured on a multiweekly program aimed at sedentary subjects [145,146].

Meteorin-like protein precursor (METRNL) is a factor induced in muscle in response
to exercise and in adipose tissue as a result of exposure to cold [147]. Its biological activity
is mainly expressed in increasing energy expenditure, improving glucose tolerance and
inducing thermogenesis in beige adipose tissue, as well as in promoting anti-inflammatory
cytokines release [148,149]. Despite the established role of METRNL in thermogenesis,
a clinical study demonstrated that aerobic activity performed at low temperatures does not
improve its expression. Moreover, a positive association has been found between METRNL
and Irisin, whose circulating levels are elevated in individuals with T2D [150]. Further
studies are necessary to clarify the metabolic impact of this adipo-myokine.

Beta-Aminoisobutyric Acid (BAIBA) is a recently described adipo-myokine, whose
importance has increased due to its implications in metabolic homeostasis [151]. In particu-
lar, two enantiomers exist in biological systems: R-BAIBA and S-BAIBA. BAIBA release is
induced, at the skeletal muscle level, as a result of physical exercise, playing a protective
role against diet-induced obesity due to its ability to induce browning of WAT in animal
models. This metabolic effect is also related to increased fatty acid oxidation and ketone
body production, as well as increased expression of carnitine palmitoyltransferase 1 (CPT-1)
in the liver, resulting in improved insulin sensitivity [152]. It has been shown that BAIBA
release protects osteocytes from apoptosis, thus preventing bone tissue dysfunction by
reducing reactive oxygen species (ROS) production at the mitochondrial level [153]. Al-
though many mechanisms related to its biological action still need to be clarified, it has
been hypothesized that BAIBA exerts its action on lipid metabolism and insulin sensitivity
by restoring and enhancing the biological action of leptin [154]. Of note, acute aerobic
exercise sessions induce increase in both the enantiomer R (13%) and S (20%) in the plasma
of healthy subjects [155]. Accordingly, a general BAIBA increase (17%) was observed in
healthy sedentary subjects after aerobic exercise programs performed three times per week
over a period of 20 weeks [156].

Overall, it seems evident that physical exercise is able to modulate systemic inflamma-
tion through adipo-myokines release, thus potentially inducing different immune changes
depending also on exercise intensity. Thus, physical exercise together with adequate nu-
trition may be the main preventive measures to maintain metabolic health and energy
balance. Both adipose tissue and skeletal muscle are considered endocrine organs secreting
hormones able to modulate metabolic homeostasis, as well as immune system function.
Physical-exercise-induced myokines and muscle-adipose tissue cross-talk have important
implications for health and metabolic diseases. Generally, adipokines play a pivotal role
in low-grade inflammation associated with visceral fat accumulation, whereas myokines
are released in response to muscle contraction and show anti-inflammatory and beneficial
metabolic effects. The immune system is responsive to the physiological stress induced by
skeletal muscle contraction. Exercise immunology takes advantage from this observation
and suggests that physical exercise may induce beneficial metabolic changes in immune
cells, through myokines secretion, by regulating cellular energy sensors. On the other
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hand, it is well established that physical inactivity contributes to obesity and MetS develop-
ment [157]. Actually, evidence supporting the correlation between physical inactivity, MetS
and infectious risk is limited due to the lack of epidemiological studies, as well as to social
influences considering physical exercise as a hobby more than preventive/therapeutical
approach aimed to maintain individual health. Yet it should be considered that physical
activity promotion is at the heart of the Global Action Plan on Physical Activity 2018–
2030 proposed by the World Health Organization (WHO). Such a plan involves several
countries and aims to improve social, economic, political and infrastructural processes able
to counteract physical inactivity by promoting a culture of movement. To date, the rate
of physical inactivity in countries with strong industrialization and urban development,
reaches almost 70%; the WHO aims to reduce this value by at least 15%, by 2030, in all
age groups in order to promote the concept of active society. The achievement of this goal
will take into account differences in motor possibilities between population groups from
each country involved. It is important to highlight that there are still deeply rooted beliefs,
already discussed in this manuscript, indicating that a certain amount of exercise can exert
opposite effects, not only worsening the inflammatory status but also dysregulating the
immune response and exposing the subject to a specific type of infectious risk [158].

7. Conclusions

Obesity correlates with altered metabolic homeostasis mostly due to visceral fat accu-
mulation, which, in turn, promotes systemic low-grade inflammation, affecting the immune
response to infections. Thus, MetS represents a risk factor not only for non-communicable
diseases but also in the assessment of infectious risk. In particular, obese patients display
respiratory dysfunction due to altered respiratory mechanisms, caused also by mechanical
compression of the diaphragm and reduced lung volume. Such impairment in the respira-
tory function due to visceral fat accumulation can facilitate pneumonia infections in these
individuals, increasing the risk of pulmonary hypertension and cardiac stress. Obesity-
related comorbidities increase the risk of organ failure associated with pneumonia [159].
Such evidence is of particular interest with regard to pandemic COVID-19. Indeed, glucose
homeostasis, lipid profile as well as blood pressure control are essential to determine the
clinical outcome in these patients [160]. In this context, the assessment of anthropometric
and metabolic parameters, including BMI, waist and hip circumferences and glucose and
insulin levels, is crucial to estimate the risk of complications in patients with COVID-19.
In particular, insulin resistance represents a strong determinant of metabolic health im-
pairment, cardiac dysfunction and cardiovascular disease (CVD)-related mortality. Future
studies will improve knowledge in the field of personalized nutrition, also providing
physical exercise guidelines based on real needs of the population, thus taking into account
social, economic and environmental factors influencing people’s lifestyle. This approach
may be essential to improve the quality of life, as well as to prevent the development of
cardiometabolic disease, showing negative impact on infections outcome and rehabilitation
programs, thus reducing individual life expectancy.
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