
Vol.:(0123456789)

SN Computer Science (2022) 3:496
https://doi.org/10.1007/s42979-022-01357-w

SN Computer Science

ORIGINAL RESEARCH

Checking Contact Tracing App Implementations with Bespoke Static
Analysis

Robert Flood1 · Sheung Chi Chan2 · Wei Chen1 · David Aspinall1,3

Received: 1 October 2021 / Accepted: 1 August 2022 / Published online: 28 September 2022
© The Author(s) 2022

Abstract
In the wake of the COVID-19 pandemic, contact tracing apps have been developed based on digital contact tracing frame-
works. These allow developers to build privacy-conscious apps that detect whether an infected individual is in close proximity
with others. Given the urgency of the problem, these apps have been developed at an accelerated rate with a brief testing
period. Such quick development may have led to mistakes in the apps’ implementations, resulting in problems with their
functionality, privacy and security. To mitigate these concerns, we develop and apply a methodology for evaluating the func-
tionality, privacy and security of Android apps using the Google/Apple Exposure Notification API. This is a three-pronged
approach consisting of a manual analysis, general static analysis and a bespoke static analysis, using a tool we have developed,
dubbed MonSTER. As a result, we have found that, although most apps met the basic standards outlined by Google/Apple,
there are issues with the functionality of some of these apps that could impact user safety.

Keywords Static analysis · COVID-19 · Contact tracing · Android · MonSTER

Introduction

As governments around the world attempt to contain the
spread of the COVID-19 virus, the research area of digi-
tal contact tracing has grown rapidly with several methods
being proposed to aid this cause. Digital contact tracing
refers to the tracking of individuals to determine poten-
tial exposure between an infected patient and a user, using
mobile technologies such as QR codes, Bluetooth and GPS.

Currently, the most effective strategy to control the outbreak
is widespread social-distancing and isolation of even healthy
individuals. This has significantly impacted almost every
aspect of daily life, with profound economic and social
drawbacks. Health authorities hope digital contact tracing
will allow for social-distancing measures to be eased by
automating the time-consuming process of manual contact
tracing, allowing more individuals to discover whether they
are infected.

Such efforts may leave users vulnerable to security and
privacy flaws. Due to the urgency in developing contact trac-
ing apps, many have been built at an accelerated rate. It is
unclear if measures were undertaken to minimise the risk
of security vulnerabilities. As these apps need to be used
by a large segment of a country’s population to be effective,
the integrity of many people’s data and digital assets may
be at risk.

So far, ensuring tracing frameworks maintain strong
privacy guarantees has been the focus of research, with
new privacy-preserving frameworks being designed by
several parties [1–3]. However, little research has investi-
gated implementations of these frameworks; the apps using
these frameworks can violate these privacy guarantees by
sharing additional information. As digital contact tracing
techniques involve the collection of sensitive medical and

This article is part of the topical collection “Information Systems
Security and Privacy” guest edited by Steven Furnell and Paolo
Mori.

 * Robert Flood
 r.flood@ed.ac.uk

 Sheung Chi Chan
 Sheung_Chi.Chan@hw.ac.uk

 Wei Chen
 wchen2@inf.ed.ac.uk

 David Aspinall
 David.Aspinall@ed.ac.uk

1 LFCS, University of Edinburgh, Edinburgh, Scotland, UK
2 MACS, Heriot-Watt University, Edinburgh, Scotland, UK
3 Alan Turing Institute, London, England, UK

http://orcid.org/0000-0001-7171-3364
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01357-w&domain=pdf

 SN Computer Science (2022) 3:496496 Page 2 of 15

SN Computer Science

location data to function, there are severe privacy implica-
tions if this information is improperly handled. For instance,
the Bahraini BeAware was linked to a televised game-show
‘Are You At Home?’, where users of the app were called
and offered prizes if they were at home and shamed oth-
erwise. This shows leveraged data collected from the app
such as the contestant’s name and phone number [4]. Such
misuse could have been prevented using a privacy-preserv-
ing framework, provided that the app did not retrieve fur-
ther information. Thus, it is important that a tracing app
uses a privacy-preserving framework, but also it does not
share data beyond what the framework allows. As govern-
ment bodies urge people to use tracing apps, they are an
enticing target for malicious actors. Malware claiming to
be contact tracing software or malicious, repackaged ver-
sions of contact tracing apps exist [5, 6] and more are likely
to be discovered. Developers may also introduce security
problems via misuse of these frameworks. Therefore, trac-
ing frameworks have considered potential security issues in
their design. For instance, the Google/Apple Exposure Noti-
fications (GAEN) API acts as a security boundary, allow-
ing developers to access its functionality whilst shielding
them from its internal operation. However, previous similar
secure APIs have had faulty implementations that led to
fundamental issues, such as the PCKS 11 API of hardware
security modules leaking their private keys [7]. This paper
introduces a methodology for analysing the functionality,
privacy and security of COVID-19 contact tracing apps.
We employ manual and static analysis alongside a bespoke,
customisable static analysis tool. This tool, developed by us
and dubbed MonSTER, ensures apps adhere to the require-
ments of a given framework, something impossible with an
out-of-the-box tool, and can provide repeatable, lightweight
checks throughout an app’s development and updates. We
target apps using the GAEN API. Our approach and analysis
focus solely on the implementation of the apps themselves
and assume the adopted contact tracing framework is well
defined and problem-free. This helps protect against mis-
takes by app developers, as well as attacks and infiltration by
adversaries by discovering potential security vulnerabilities.
Ultimately, work like this may help assuage public concerns
of using these apps and increase uptake, helping to better
contain the spread of COVID-19. The contributions of this
paper are as follows:

• We design a methodology with three stages, manual, off-
the-shelf static, and bespoke static analysis, to evaluate
the functionality, privacy and security of contact tracing
apps.

• We develop MonSTER, a configurable, lightweight static
analysis tool to verify an app’s adherence to API usage
requirements. We have made this tool publicly available.1

• We collect a set of 12 contact tracing apps using the
GAEN API and, where necessary, rebuild the apps from
their source code to obtain a non-obfuscated APK. We
collect two versions of each app, from 2020 and 2021
to chart their development over time. We have released
these apps as a public dataset.2

• We obtain results demonstrating that, although the major-
ity of apps tested functioned correctly, there were imple-
mentation problems in some apps that impacted their
functionality. Namely, we found that apps may incor-
rectly inform users contact tracing is enabled when it is
in fact disabled during reasonable usage.

The structure of the rest of this paper is as follows. The
section “Background” provides background information,
including security and privacy concerns, and an overview
of the GAEN API. The section “Methodology” describes
our methodology, including our lightweight static analysis
tool MonSTER (Monoid-based Static Analyser). The sec-
tion “MonSTER Checks” describes the process we under-
take for our manual, static, and MonSTER analysis in more
detail. The section “Results” shows the results of this analy-
sis. The section “Limitations” discusses the limitations of
our approach. The section “Related Work” summarises the
related work. The section “Retrospective and Conclusion”
concludes with a retrospective view of the contact tracing
app landscape and discusses ongoing and future steps.

Background

Due to privacy concerns surrounding the collection of user
location data by governments, decentralised approaches
to digital contact tracing are promoted. Decentralised
approaches trace contacts with minimal interaction with
a central database; several have been proposed, including
TCN [8], DP3T [2] and the Google/Apple Exposure Noti-
fication protocol or GAEN for short [1]. They are similar
in design, using Bluetooth Low Energy (BLE) to measure
distance between users. The effectiveness of BLE tracking
has been criticised [9], but tracking can be augmented with
the use of QR-code registrations, and even a partially suc-
cessful approach may help. In this section, we introduce
several existing contact tracing methodologies and discuss
details of the GAEN Framework and potential security/pri-
vacy problems.

1 https:// github. com/ glo- fi/ MonST ER.
2 https:// github. com/ glo- fi/ GAEN- Conta ct- Traci ng- Apps.

https://github.com/glo-fi/MonSTER
https://github.com/glo-fi/GAEN-Contact-Tracing-Apps

SN Computer Science (2022) 3:496 Page 3 of 15 496

SN Computer Science

Contact Tracing Methodologies

Recently, increasing numbers of researchers and industry
leaders have started to raise awareness of the security and
privacy concerns of contact tracing apps. To balance the
effectiveness of contact tracing methodologies with the
security, privacy and anonymity of app users, they began
to design both open-source and proprietary frameworks
to handle the sensitive aspects of digital contact tracing.
These frameworks take responsibility in handling the
sensitive information and only provide developers with
access to the necessary functions to implement apps.
These abstractions of these sensitive features allow the
app developers to focus solely on their development and
not on the underlying contact tracing methodology; they
just need to follow the security guidelines and implement
the function/method calls accordingly without the need to
consider serious security problems. In this paper, we are
not considering the security features of those underlying
contact tracing framework developed by those researchers
and industry leaders. We are instead considering if the
app developers implement and use the data and method
calls of the contact tracing framework securely and follow
the security and functionality requirements of these open-
sourced frameworks.

There are currently several dozen contact tracing apps
adopting and employing a wide range of contact tracing
frameworks and methodologies. As more users and devel-
opers are concerned about the security and privacy issues,
many of these apps choose to adopt one of the many recom-
mended privacy-preserving protocols designed by research-
ers and industry leaders. Example includes the Decentralised
Privacy-Preserving Proximity Tracing (DP3T) [2], Google/
Apple Exposure Notification [1] or the Pan-European Pri-
vacy-Preserving Proximity Tracing [10] (PEPP-PT) speci-
fication. On the other hand, some apps still consider using
their own proprietary methodologies which are not the con-
cern of this paper.

The major features of these contact tracing methodolo-
gies and frameworks differ on how to determine proximity
between users and how to store and identify whether a user
is in close proximity with an individual who is diagnosed
with the virus. All of these frameworks implement a differ-
ent combinations of these features. For proximity determi-
nation, some of them make use of Bluetooth Low Energy
(BLE), GPS location service or active QR-code scanning.
On the other hand, the storage of information for contact
tracing is generally divided into two approaches: one uses a
centralised server to store contact and infection information,
whilst the other uses a decentralised approach where most of
the information is stored in the user’s device. These different
storage approaches directly affect how, where and what data
should be protected during the whole contact tracing period.

Google/Apple Exposure Notification

This framework is developed by Apple and Google for their
mobile operating systems, each providing the same set of
API calls. The major features of the GAEN Framework are
divided into three stages. For each stage, we summarise the
responsibilities of the app developers, the communication of
the servers and the underlying APIs. We focus our research
on version 1.3 of the framework.

Contact Exchange This feature makes use of BLE with
keys and identifiers—unique, random numbers derived from
the keys—that are modified frequently. These keys and iden-
tifiers serve as a record of all people that a user has been in
close proximity with over the last 14 days. The framework
handles rotating, generating and exchanging all keys and
identifiers. The app’s responsibility is limited to providing
the ability to start/stop the service. All keys and identifiers
exchanged will be stored locally and the app should not have
access to them. When first setting up the app, the device
generates a Temporary Exposure Key (TEK) using a crypto-
graphically secure random number generator. Every 24 h, a
new TEK is generated. Two further keys are generated using
this key via HKDF, a Rolling Proximity Identifier Key and
an Associated Encrypted Metadata Key. These keys are in
turn used to generate two BLE payloads: the Rolling Proxim-
ity Identifier (RPI) and the Associated Encrypted Metadata
(AEM). These consist of a byte string acting as an identifier
and a payload that can be later decrypted to reveal the user’s
TEK, both encrypted using AES-128. The phone alternates
between the Bluetooth client and host modes, continuously
broadcasting the RPI and AEM when in client mode and
seeking such broadcasts from nearby phones when in host
mode, storing any received payloads. Figure 1 shows a
sequence diagram for this stage.

Exposure Update All identifiers are all anonymous and
should not be linked with a real identity. It is the responsi-
bility of the server to only store this information without
recording which device uploaded them. Also, as mentioned
above, these identifiers received from other devices through
Bluetooth are handled by the underlying framework and the
apps cannot access them as they are stored in protected stor-
age locations. The apps are responsible to poll the central
server periodically to retrieve the new list of infected identi-
fiers and pass it to the framework. The framework will match
the stored identifiers with the infected list and determine if
the user has been in contact with an infected person. If the
result is positive, the framework will send a broadcast mes-
sage of the infection. The app should implement a broadcast
receiver to receive this information and use the API call
to retrieve further exposure summary information, notify-
ing the users of this fact. None of these steps should reveal
the identity of the infected person nor the notified users.
To determine if a user was exposed to an infected person,

 SN Computer Science (2022) 3:496496 Page 4 of 15

SN Computer Science

users routinely download the list of newly added Diagno-
sis Keys from the Diagnosis Server. As RPIs are derived
from TEKs, each client can then derive a series of RPIs
from these Diagnosis Keys. These derived identifiers can
then be matched with the list of stored identifiers discovered
over BLE scanning. If any of the derived identifiers match
a stored identifier, then the user has come into contact with
someone infected with COVID-19 and the app should notify
them of this. The app should implement a broadcast receiver
to receive this information and use an API call to retrieve
further exposure summary information, notifying the users
of this fact. None of these steps should reveal the identity of
the infected person nor the notified users. Figure 2 shows a
sequence diagram for this stage.

Infection Report If a user tests positive with COVID-19,
they can choose to upload their TEK history, extending back
14 days, to a Diagnosis Server, alongside a timestamp to
describe when their validity started. These are referred to
as Diagnosis Keys and only leave the device if the user tests
positive. The contact tracing app is responsible for verifying
a diagnosis report from an authorised medical provider. The
apps are responsible for protecting this information during
the uploading process. Identifiers over 14 days old are con-
sidered no longer useful as infected user would have likely

recovered in that time. Thus, identifiers are deleted from
both the device and central server 14 days after being first
created. Figure 3 shows a sequence diagram for this stage.

App Responsibilities

To aid the development of these apps, Google and Apple
provided the GAEN API and documentation outlining its
usage. They describe the functionality the API provides
and the functionality app developers must provide. The API
handles the complex aspects of the protocol including the
cryptographic systems, the broadcasting and collection of
BLE data and the calculation of an ‘exposure risk level’. The
documentation states the app must:

1. Allow users to start and stop contact tracing.
2. Register a Broadcast Receiver to receive the ACTION_

EXPOSURE_STATE_UPDATED intent
3. Poll the Diagnosis server to obtain keys.
4. Download Diagnosis Keys and provide them to the API.
5. Upload TEKs after a positive test and the user has pro-

vided permission.

Fig. 1 Contact exchange Fig. 2 Exposure update

SN Computer Science (2022) 3:496 Page 5 of 15 496

SN Computer Science

6. Notify the user with medical information when they have
been exposed to an infected user.

These responsibilities are part of the API lifecycle outlined
in the section “Google/Apple Exposure Notification”. To
fulfill these, the GAEN Framework provides developers
with an API via the ExposureNotificationClient
class. In this paper, we focus on the API methods start,
stop, isEnabled, getTemporaryExposureKey-
History (which retrieves the past 2 weeks of TEKs) and
provideDiagnosisKeys (which submits downloaded
keys to the API).

Functionality Concerns

In developing our methodology for analysing the security,
privacy and functionality of contact tracing apps, we con-
sider two attacker models.

For the first, we assume the developers attempted to
securely and faithfully adopt the GAEN framework but
failed, reducing user privacy or providing exploit vectors.
Although the GAEN API has been designed with privacy
and security in mind, apps using this API must adhere
to strict requirements to maintain these properties. For
instance, developers accidentally misusing the GAEN API
may build an app that retrieves and uploads the users’ TEK
history overly frequently. This results in the online database
resembling a centralised protocol, such as BlueTrace, dam-
aging user privacy. These functionality failings may lead
to numerous security and privacy violations: exposure of
a user’s identity; their address; their infection status; the
identities of their contacts; their location and the loss of
security of their device, which may lead to other potential
data exposures. Even if the GAEN API is correctly utilised,

the app may contain vulnerabilities impacting user security,
such as misconfigured webviews or exported components.

For the second, we consider the case where the app is
malware purporting to perform contact tracing, perhaps as
a repackaged version of a legitimate app. Such apps have
already been discovered, including backdoors [5] and ran-
somware [6]. In this situation, the fact that the malware
claims to be a contact tracing app is incidental to its true
behaviour. Nevertheless, any systematic review of the secu-
rity of contact tracing apps needs to consider this possibility.

There is much work considering the security and privacy
properties of the GAEN framework, discussed in the sec-
tion “Related Work”. Unlike this work, we treat the GAEN
framework itself as a blackbox and assume it is functional
and effective. This is reflected in the above attack models as
we focus primarily on whether these apps have successfully
adhered to the GAEN’s requirements. Without this assur-
ance, the end-user has little guarantee that they are benefit-
ing from the claimed protection of the GAEN framework,
regardless of its effectiveness.

We discuss how these models inform our methodology for
analysing contact tracing apps in the section “Methodology”.

Static Analysis Tools

There are many static analysis tools for Android software.
However, these tools know little about the context in which
they are applied. Many tools used for Android code analysis
are primarily Java analysis tools, such as Error-Prone [11]
and FindBugs [12], and are unaware of any potential prob-
lems specific to the Android platform or any particular
details of the app. Many security vulnerabilities are the
result of faulty implementation logic which cannot be
divorced from the app’s utility. As such, there are a wide

Fig. 3 Infection report sequence
diagram

 SN Computer Science (2022) 3:496496 Page 6 of 15

SN Computer Science

range of bugs that general static analysis tools are incapable
of finding.

Contact tracing apps are one domain where general static
analysis is lacking and implementation bugs may arise [13].
Prior to March 2020, there were no tracing apps developers
could base their apps on, and disparate teams are developing
apps with little guidance. The challenges faced by tracing
apps are unique, and it is unlikely general static analysis
solutions could detect functionality issues or missing fea-
tures, such as notifying the user when an exposure occurs.
It would be extremely beneficial to have a static analysis tool
that ensures an app is adhering to necessary standards during
its development and release.

Methodology

In this section, we discuss our methodology, together with
the static analysis tool MonSTER (Monoid-based Static Ana-
lyser) developed to identify problematic patterns in Android
apps which may pose security, privacy or functionality con-
cerns. In this paper, we use this methodology to verify the
apps studied in the section “Collection of Apps” adhere to
the basic requirements needed to function as contact tracing
tools, based on the responsibilities discussed in the section
“App Responsibilities”.

Although we apply this three-pronged methodology, con-
sisting of manual, general static and bespoke static analysis,
to contact tracing apps, we stress this methodology is highly
customisable and can be applied to many domains. The man-
ual analysis acts as a research stage, providing us with an
understanding of the inner workings of a set of related apps.
During the general static analysis stage, we screen the apps
for common vulnerabilities that could occur in any domain.
We also ensure that the app is not malware. We then apply
the knowledge gained during our manual analysis to our

bespoke analysis stage, allowing us to search for design vul-
nerabilities that are unique to the domain in a repeatable,
automated manner.

Collection of Apps

We chose a set of Android apps using the GAEN framework
with open-source code.3 Table 1 shows a list of the apps,
their country of origin or developer, the analysed versions,
the primary language used and the size of the code. We con-
sider two different versions of each app. The first of these
were downloaded on the 28th July 2020, except for Stop-
COVID-19 and NHS Test & Trace, which were downloaded
on the 12th August 2020, and Protect Scotland, which was
downloaded on the 10th September 2020. Only SwissCovid
was developed using the DP3T protocol: this is extremely
similar to the GAEN framework and uses the GAEN API as
part of its design. We had to build some apps from source
and disable ProGuard to generate unobfuscated APK files.
This is the first ‘round’ of our analysis. We then repeat this
process for the versions of the apps available on 25th August
2021 to evaluate their development over time, which is the
second ‘round’ of our analysis. CovidShield and Covid Safe
Paths were not updated during this period of time.

Manual Analysis

Having collected a series of apps, we began a manual analy-
sis process. First, we ran the apps and systematically iterated
over all possible functionality, with the exception of the later
stages of the key submission process. Following this, we
began a code review, plotting out the general structure of
each app and noting how they interacted with the GAEN

Table 1 Contact tracing apps App name Origin Versions Versions Language Code size Code size
(2020) (2021) (2020) (2021)

ApturiCovid Latvia 1.0.47 1.0.52 Kotlin 313 KB 360 KB
Corona-Warn-App Germany 1.0 2.7.1 Kotlin 650 KB 4.7 MB
Covid Safe Paths MIT None None TypeScript 2.4 MB 2.4 MB
CovidShield Shopify None None TypeScript 790 KB 790 KB
Covid Tracker App Ireland 1.0.4 1.0.7 TypeScript 430 KB 565 KB
Immuni Italy 1.0.3 2.5.3 Kotlin 850 KB 935 KB
NHS Test & Trace UK 3.0 4.10 Kotlin 570 KB 2 MB
Protect Scotland Scotland 1.0.0.30 1.2.3 TypeScript Unknown 425 KB
ProtegoSafe Poland 1.0 4.12 Kotlin 500 KB 640 KB
Stop-Covid-19 Croatia 1.0 2.20 Java 230 KB 235 KB
Stopp Corona Austria 1.2.0 2.1.4 Kotlin 860 KB 1.2 MB
SwissCovid (DP3T) Swiss 1.0.4 2.0.1 Java/Kotlin 520 KB 680 KB

3 During our first round of analysis, Protect Scotland was only par-
tially open-sourced.

SN Computer Science (2022) 3:496 Page 7 of 15 496

SN Computer Science

API. We achieved this by finding where the app calls the
various GAEN API methods and following their respective
call flows through the application. Finally, we reviewed any
publicly released documentation.

General Static Analysis

We evaluated several Android static analysis tools as options
for conducting off-the-shelf static analysis as might be used
by a professional security analyst or penetration tester. Many
tools are available freely and as commercial products; our
point was to select something typical which demonstrates
the capability of general static analysis tools in the context of
our methodology, rather than find some “ultimate” best pos-
sible tool. We looked on GitHub and considered popularity
as measured by GitHub stars. The most popular tools were
MobSF [14] and QARK [15]. Ultimately, we chose MobSF,
since QARK flagged many trivial issues.

MobSF flags many generic Android security problems,
such as certificate issues, hard-coded API keys and black-
listed malicious domains. It provides a useful condensed
overview of the app including measurements such as the
permissions used, the included native code libraries and the
number of components—including exported components
which extend an app’s attack surface. Finally, MobSF sum-
marises the overall code quality with an app security score,
ranging from 0 to 100. We ran MobSF on all of our apps;
the results are summarised in the section “General Static
Analysis”.

Bespoke Static Analysis: MonSTER

MonSTER is a static analysis tool written in Haskell and
Python, using Androguard [16]. It can be configured to
detect patterns of method calls in Android apps. These pat-
terns are customisable to ensure certain liveness and safety
properties are present in an app. It is intended to function
as a tool to aid the testing of apps during and after develop-
ment, using bespoke patterns to detect desirable or undesir-
able properties (Fig. 4).

MonSTER uses a control-flow abstraction. A program
is a collection of recursive procedures f = ef where f is a
procedure identifier and ef is an expression in the grammar:

Here, a is an atomic procedure, and ; and ? are sequential
composition and non-deterministic branching.

MonSTER converts method calls from Dalvik bytecode
in an APK into this expression language. Branch points
are abstracted by considering exit points of basic blocks as
potential branches. Methods whose body can be ignored—
such as API calls or those we aren’t interested in—are
treated as atomic methods and the rest are identifiers with
definitions. This gives a set of expressions defining the over-
all program’s execution, called the call flow expression form
of the APK. Methods from this expression form are lifted
into a monoid, picking out ones of interest.

Consider the first GAEN check as an illustration. For
many of the analysed apps, before starting the GAEN cli-
ent, there is a check to see it is already running. If it is,
the function exits gracefully. The GAEN documentation is
unclear as to what happens when the API is started if already
running and whether this causes unexpected behaviour, such
as the “resetting” of the protocol, inhibiting its effective-
ness. Therefore, we treat the already-running check as good
practice and will use MonSTER to verify that it takes place.

We wish to verify that a call to isEnabled() is fol-
lowed by a call to start(). In Listing 1, the monoid’s
operator mult models method sequencing. To keep the
monoid’s policy clear and succinct, we use keywords to
stand for groups of methods—for instance, every method
considered to be a network sink is modelled by Sink. In

(1)

Fig. 4 MonSTER workflow

 SN Computer Science (2022) 3:496496 Page 8 of 15

SN Computer Science

this case, we replace all appearances of the isEnabled()
and start() methods with the keywords Enabled and
START . When parsing the call flow expression, these key-
words are embedded into the monoid using the lift opera-
tor shown in Listing 1. Methods that are not of interest are
lifted to the monoid’s identity.

By creating such policies as monoids, we can define
desirable or undesirable patterns customised to an app or
app type. This is particularly relevant in the case of Contact
Tracing Apps which rely on a common API. The expected
behaviour of the GAEN can be encoded in this policy for-
mat, allowing MonSTER to perform checks specific to the
Contact Tracing Domain. MonSTER is unique in this regard
as such specificity is impossible with off-the-shelf, general
static analysis software as they are geared towards detecting
vulnerabilities irrespective of the target app’s functionality.

Once translated into the monoid, MonSTER generates a
system of equations using the program’s call flow expres-
sion, consisting of a type expression for each procedure.
MonSTER solves this system of equations by calculating its
least fixed point. We expect to see the element ENABLED-
2START appear in the output of MonSTER only in cases
where this pattern occurs.

MonSTER is kept simple by design: it focuses on an app’s
call flow and ignores its data flow. However, crucially, it
can capture call flows for continually executing code in its
model of mutually recursive Büchi automata. Therefore, we
can model the Android activity lifecycle, including implicit
invocations (e.g., onCreate() followed by onStart())
as well as cycles (onStop() followed by onResume()
then onStart() again). Liveness and safety properties can
be ensured regardless of how the app is used, which is useful
for checking longer term API call sequences such as used
in GAEN. As the section “Introduction” mentioned, secure
APIs can be vulnerable to API fuzzing attacks: a string of
API calls in a certain order leads to a security issue. Such
vulnerabilities, once discovered, could be captured as cus-
tom rules in MonSTER.

MonSTER Checks

In this section, we outline the call flow patterns we aim to
discover, alongside the example in the section “Bespoke
Static Analysis: MonSTER”. These patterns are intended to
act as sanity checks, allowing a developer to verify an app
meets the API requirements and is functional. Although we
apply these checks to contact tracing apps, the methodol-
ogy is highly customisable and similar checks can be per-
formed on a variety of apps. We base these checks around
the necessary operations discussed in the section “App

Responsibilities”. To ensure accuracy, we also test a modi-
fied version of the Google reference app4 designed to fail
all of the checks.

Registration of Broadcast Receiver

The GAEN documentation states apps must register a
Broadcast Receiver that handles the ACTION_EXPOSURE_
STATE_UPDATED intent. This intent is broadcast when the
user’s exposure status has changed. The documentation con-
tains a recommended way of doing this, as seen in Listing 2.

We implement a check to verify whether apps follow this
recommendation. We identify the methods that compose this
pattern: getStringExtra(), OneTimeWorkReque
st<init>(), build() and enqueue() and replace
them with the keywords gse, otwr, build and enqueue. As
we are interested in a specific pattern, we do not need to
define our multiplication rules fully, treating irrelevant situ-
ations as having no effect. Defining the monoid this way,
we produce an element that represents the behaviour we are
hoping to express: gse_otwr_build_enqueue. If this ele-
ment is in MonSTER’s output, then the pattern is present
in the app.

Handling of Keys

We introduce another check to ensure the apps are cor-
rectly managing their keys. This consists of two parts: the

4 https:// github. com/ google/ expos ure- notifi cati ons- andro id.

https://github.com/google/exposure-notifications-android

SN Computer Science (2022) 3:496 Page 9 of 15 496

SN Computer Science

handling of the TEKs and the handling of the Diagno-
sis Keys. For the TEKs, we verify that they are accessed
only to be submitted to a central server, i.e., retrieving
the keys is always followed by a network sink. For the
Diagnosis Keys, we ensure that they are downloaded from
a central server and then provided to the API, i.e., provid-
ing the keys is always preceded by a network source. To
do this, we build a monoid consisting of the GAEN API
methods getTemporaryExposureKeyHistory(),
provideDiagnosisKeys() and all network sinks/
sources. We encode these as recentkeys, providekeys and
network. We also introduce an element double_share that
allows us to see if there are multiple paths through the app
that lead to TEK sharing.

Notifying Users of Exposure

When a user becomes potentially infected after being
exposed to an infected passerby, the app should inform
the user via a push notification. Again, we can modify
MonSTER to test whether this happens across all of the
apps tested.

We use the monoid displayed in Listing 5 to test
whether a notification is created after the ACTION_
EXPOSURE_STATE_UPDATED broadcast receiver is
triggered. We introduce a fictional method receive to the
start of the broadcast receiver’s onReceive() method
in the call flow expression form of each app. Furthermore,
we replace any methods that create a push notification—
such as NotificationCompat.Builder()—with
the keyword notify. In particular, we are hoping we see
the element receive_notify in the output.

Updating the UI Correctly

Although not mentioned in the GAEN documentation,
ensuring the user interface accurately reflects the state
of the GAEN client is important. For instance, if an app
stopped sharing TEKs but failed to indicate this, the user
would reasonably assume they have a greater level of pro-
tection against COVID-19 than in reality. Similar prob-
lems may occur with privacy-conscious users unwittingly
sharing TEKs.

The UI should update regardless of the entrypoint into
the app. This problem can easily be represented in Mon-
STER by encoding each stage of the Android app lifecycle
as a method. These methods can then call the methods of
other stages in the lifecycle that are immediately reach-
able. This technique embeds all potential paths through
the Android app lifecycle in the app’s call flow expression,
allowing us to check if a property occurs in any possible
path.

Following these preparations, we build our monoid as
before. We are hoping to see a call to isEnabled() fol-
lowed by a call to any function that changes the UI, which
we treat as a single class of methods. We replace these
with enabled and ui_change respectively. The desired pat-
tern is represented by the element updated.

Results

In this section, we discuss the results of the three stages
of our analysis.

Manual Analysis

All of the apps tested could be described as wrappers around
the GAEN API of various sizes and complexity, with the
exception of Covid-Safe-Paths which has a GPS tracing
mode. Almost all the activities of these apps are static and
there are few ways the user can input arbitrary data; users
can often only enter a random identification number to con-
firm they have been tested. There is no link between the
user’s identity and the identification number, which is pro-
vided in person at a medical centre.

 SN Computer Science (2022) 3:496496 Page 10 of 15

SN Computer Science

Permissions and Services

In many of our apps, there is a failure to accurately convey
the services and permissions needed for the GAEN client
to operate. On Android, apps must request the Internet and
Bluetooth permissions. They do not need any location per-
missions. However, Android requires Bluetooth, location
and network services are active for the GAEN to function.
In Google Play reviews, several users express confusion over
this distinction, questioning why an app needs location ser-
vices when it claims not to be tracking users.

During our manual analysis, we found that several apps
exacerbate this problem by failing to properly check whether
the needed services are running when turning on exposure
notifications, namely Apturi Covid, Corona-Warn-App,
Covid Tracker App and Protect Scotland. All of these apps
indicate exposure notifications are active when the GAEN
client is blocked at an OS level due to some services not
running. Corona-Warn-App and Protect Scotland trigger
a notification asking the user to activate the required ser-
vices, but this is unreliable and can be dismissed. Otherwise,
users are only informed of this problem in their phone’s set-
tings menu. This could easily impact the effectiveness of
the GAEN protocol and user safety as user’s may be misin-
formed to their level of protection against COVID-19.

Individual App Comments

We include some comments for a subset of seven tested
apps. These apps fulfill one of the following requirements:
either problems with their functionality were uncovered dur-
ing out analysis process or significant changes were made
to their design between the first and second round of our
analysis.

Apturi Covid During the first round of investigations, we
found that if the user hands the responsibility of managing
the GAEN client from this app to another app, Apturi Covid
still indicates it is seeking nearby keys when, in actuality, it
isn’t. If the user then deactivates exposure notifications in
the other app, Apturi Covid still indicates it is actively work-
ing, when no exposure notifications are being sent. We think
that this is a significant safety problem, as a user could be
misled into believing they were protected by the app when
nothing was happening. We notified the developers of Apturi
Covid of this and received a response stating they would fix
this issue. As highlighted by the MonSTER test, the prob-
lem was caused by a failure to check whether the exposure
notification service was enabled through every path in the
Android Lifecycle. During the second round of checks, we
found that this problem still existed in the updated version
of Apturi Covid.

Corona-Warn-App During the first round of checks, this
is one of three apps whose functionality was questionable.

When a user switches between contact tracing apps, this
app throws a Java exception error. The error states that the
GAEN API is not active, although it actually is; it’s just
not being managed by Corona-Warn-App. Although minor,
this error together with other problems discussed in this
section may exacerbate confusion about the GAEN client’s
functionality.

The complexity of this app increased dramatically
between the two versions that we tested, with the source
code expanding by more than 700% over the course of the
year. Although some of this increase is due to additional fea-
tures—such as allowing users to set up a QR code for others
to scan during gatherings for better tracking and allowing
users to upload a digital copy of their EU Digital Vaccine
Certificate—much of it is caused by increased design com-
plexity. This expanded code size, alongside the introduction
of libraries that are not supported by MonSTER, made it
impossible to run some of the bespoke checks.

Covid-Safe-Paths During the first round of analysis, this
app had two distinct functionalities, GPS tracing and BLE
tracing. Therefore, its attack surface is larger than other apps
tested and it collected more sensitive information. Although
users could delete their GPS location history from the app,
there was no way from within the app to turn off this feature.

Since the first round of the analysis, both Google and
Apple have enforced stricter guidelines on the functional-
ity that an app can have whilst maintaining access to the
GAEN API, banning developers from tracking users. As
a result, PathCheck, the organisation behind Covid-Safe-
Paths, ceased development, and began focusing their efforts
on developing a new contact-tracing app, PathCheck, that
relies exclusively on the GAEN framework and bears little
resemblance to the original Covid-Safe-Paths.

Covid Tracker App This app was donated to the Linux
Foundation Public Health group; modified versions of it may
be developed for other countries. The Linux Foundation will
take care of the app’s maintenance. The app allows the user
to supply a phone number, but this number is stored on the
phone and is only shared with the health authority if the user
tests positive and provides permission. Covid Tracker App
collects anonymised metric data, such as whether the user
deleted the app during the onboarding process, but users
must opt-in to this service. The second version of Covid
Tracker App that we tested allows the user to store a copy of
an EU Digital COVID Certificate on their phone by scan-
ning a QR code.

NHS Test & Trace. (England/Wales) NHS Test & Trace
was the first GAEN app that allowed users to scan QR codes
outside of public spaces to provide the app with a rough user
location and, thus, this functionality was available during the
first round of analysis. However, this analysis was limited,
because a beta key was necessary to access the app’s full
functionality, which we did not get access to.

SN Computer Science (2022) 3:496 Page 11 of 15 496

SN Computer Science

Stopp Corona. As with Apturi Covid, switching between
apps or toggling the GAEN client via the phone’s settings
causes problems with this app. As tracing apps act passively
in the background, we feel that this could be a significant
problem as a user rarely interacting with Stopp Corona app
may be inadvertently unprotected. Following the first round
of analysis, we notified the developers of Stopp Corona of
this but received no response. The problem remained unfixed
during the second round of analysis.

SwissCovid. SwissCovid is produced by the researchers
behind DP3T and can be seen as its reference implementa-
tion. We found the information and notifications shown to
the user to be of a high standard compared to other apps,
even warning users of the risk of linkage attacks when sub-
mitting their keys. Like other apps, between the first and
second rounds of the analysis, SwissCovid was updated to
allow users to scan QR codes to register their location with
a venue.

General Static Analysis

We outline the results of the MobSF scans in Tables 2 and 3
which detail our static analysis in 2020 and 2021, respec-
tively. These tables contain the number of exported com-
ponents, the number of potentially dangerous permissions
requested, the certificate signing schemes used, the num-
ber of tracking libraries used and the code score—a score
MobSF generates to surmise the code quality, ranging from
0 (worst) to 100 (best).

The OWASP Mobile Security Testing Guide (MSTG)5
suggests these checks are relevant:

• exported components form an attack surface that may be
exploited by malware. Thus, exported components could
cause future vulnerabilities;

• tracking libraries introduce potential privacy violations
of user data;

• insufficient signing schemes prevent developers from
rotating their signing keys;

• additional permissions represent the capability for the
phone to access user data or undertake “risky” actions.

For the number of exported components, Covid Safe Paths
exceeds the other examples by some margin, demonstrating
a concerning attack surface.

Due to the privacy-focus of these apps, most use no track-
ing libraries. Of the apps that use tracking libraries, these
consist of Google Crashlytics, Firebase Analytics and, in the

Table 2 MobSF summary of
Apps in Table 1 as at July 2020

Key: WL Wake Lock, BA Bluetooth Admin, CA Camera, AW Alert Window, NL Network Location, GL
GPS Location, LB Location in Background, DS Device Sync, AR Activity Recognition, AA Account
Authentication, ST Device Storage, AT Access OS Task List

App name Comp. Additional permissions Certificate Trackers Score

Apturi Covid 4 WL v1, v2 2 65

Corona Warn 3 WL CA v1, v2, v3 0 50

Safe Paths 11 WL NL GL DS AA DS AR AA ST AT None 1 5

CovidShield 4 WL AW None 0 45

Covid Tracker 4 None v1, v2 0 30

Immuni 3 WL v1, v2 0 35

NHS Test & Trace 6 WL CA v1, v2, v3 0 60

Protect Scotland 6 None v1, v2, v3 0 30

ProtegoSafe 5 WL v1, v2 2 70

Stop-Covid-19 3 WL v1, v2, v3 3 90

Stopp Corona 3 WL BA NL LB v1, v2 0 35

SwissCovid (DP3T) 3 WL v1, v2 0 45

Table 3 MobSF summary of Apps in Table 1 as at August 2021

Key: WL Wake Lock, BA Bluetooth Admin, CA Camera, AW Alert
Window, NL Network Location, GL GPS Location, LB Location in
Background, DS Device Sync, AR Activity Recognition, AA Account
Authentication, ST Device Storage, AT Access OS Task List

App name Comp. Additional
permissions

Certificate Trackers Score

Apturi Covid 6 WL v1, v2, v3 2 80
Corona Warn 3 WL CA v1, v2, v3 0 30
Covid Tracker 7 CA v1, v2, v3 0 45
Immuni 4 WL v2, v3 0 30
NHS Test & Trace 7 None v1, v2, v3 0 40
Protect Scotland 7 None v1, v2, v3 0 40
ProtegoSafe 7 WL v1, v2 2 90
Stop-Covid-19 2 WL v1, v2, v3 2 100
Stopp Corona 5 WL v1, v2 0 75
SwissCovid (DP3T) 6 WL v1, v2 0 65

5 https:// github. com/ OWASP/ owasp- mstg/.

https://github.com/OWASP/owasp-mstg/

 SN Computer Science (2022) 3:496496 Page 12 of 15

SN Computer Science

case of the earlier version of Stop-Covid-19, Google Admob.
All of these libraries allow for the harvesting of information
that is tangential to the operation of the GAEN API and
could harm user privacy.

For APKs downloaded from the Play Store, the certificate
signing schemes used are shown. MSTG recommends using
all three schemes in apps that target modern Android SDK
levels. During the first round of analysis, only 3 apps do this.

For apps using GAEN, the minimum required permis-
sions are Bluetooth and Internet; some apps request much
more than is necessary, particularly Covid Safe Paths and
Stopp Corona. The version of Covid Safe Paths analysed
includes GPS tracking functionality, which accounts for
GL, but the other permissions seem unnecessary when con-
trasted with other apps. Similarly, Stopp Corona requests the
usage of Bluetooth Admin, which is strongly discouraged
by the GAEN documentation, and location services and is
thus over-privileged. Permission creep is a well-established
problem in Android [17] and the principle of least privilege
is considered good practise by MSTG. Corona-Warn-App,
NHS Test & Trace and the later versions of Covid Tracker
require the use of the phone’s camera (CA) as these apps
utilise QR-code scanning.

As most functionality of the GAEN framework is pro-
vided by the API, apps only need to be a wrapper around it,
preferably as thin as possible. Any additional functionality
increases the risk of security, privacy or functionality issues.
This is reflected in the code score of each app which, as
can be seen by cross-referencing Table 1 with Table 2, is
inversely correlated with the code size; Covid-Safe-Paths
has the worst score and is largest, whilst Stop-Covid-19 has
the best score and is smallest.

Contrasting Table 2 with Table 3, we observe that most
of the contact tracing apps have been improved according to
several factors, including decreasing the number of exported
components, decreasing requests for additional dangerous
permissions, upgrading their certificate signing schemes
and decrease the number of long running trackers. These
changes significantly improve the security and privacy of
an application by reducing the apps overall attack surface
and by decreasing the permission and privilege level of the
applications, reducing an adversaries capabilities follow-
ing a successful attack. These improvements in our sample
of contact tracing apps shows that the general populace is
demanding more secure apps to protect their privacy and
that developers have started to update their apps towards
these ends. The methodology proposed in this work aims to
provide developers with an immediate, customisable pro-
cess to discover potential problems and thus allow them to
rectify those issues. In general, this should help to improve
the overall security and privacy considerations of essential
contact tracing apps.

Bespoke Static Analysis

The output of MonSTER is a list of tuples containing a
method name and the monoid elements that can be reached
from that method. We confirm the existence of a pattern in
an app’s source code by the existence of the monoid element
representing that pattern in the output. We summarise the
results for the two rounds of analysis in Tables 4 and 5.

Check 1-Starting Tracing in a Suitable Manner All
apps tested met this requirement except for ProtegoSafe and
Stop-Covid-19, indicating neither app checks whether the
Exposure Notification client is running before starting.

Check 2-Registering a Broadcast Receiver All apps
tested met this requirement, except Stop-Covid-19. Of those
that passed, all but one followed the implementation listed
in the Google documentation exactly. The app that failed
was Stop-Covid-19 which registered a broadcast receiver but
did not do so in the manner described in the documentation.

Table 4 Results of our MonSTER checks (2020)

App name 1 2 3 4 5

Apturi Covid ✓ ✓ ✓ ✓ X
Covid Tracker App ✓ ✓ – ✓ ✓

Corona-Warn-App ✓ ✓ ✓ ✓ ✓

CovidShield ✓ ✓ – – –
Covid Safe Paths ✓ ✓ ✓ X –
Immuni ✓ ✓ ✓ – ✓

Protect Scotland ✓ ✓ – ✓ ✓

ProtegoSafe X ✓ ✓ – ✓

NHS Test & Trace ✓ ✓ ✓ ✓ ✓

Stop-Covid-19 X X ✓ ✓ ✓

Stopp Corona ✓ ✓ ✓ ✓ X
SwissCovid (DP3T) ✓ ✓ ✓ ✓ ✓

Misconfigured App X X X X X

Table 5 Results of our MonSTER checks (2021)

App name 1 2 3 4 5

Apturi Covid ✓ ✓ ✓ ✓ X
Covid Tracker App ✓ ✓ – ✓ ✓

Corona-Warn-App ✓ ✓ – – ✓

Immuni ✓ ✓ ✓ – ✓

Protect Scotland ✓ ✓ – ✓ ✓

ProtegoSafe X ✓ ✓ – ✓

NHS Test & Trace ✓ ✓ ✓ ✓ ✓

Stop-Covid-19 X X ✓ ✓ ✓

Stopp Corona ✓ ✓ ✓ ✓ X
SwissCovid ✓ ✓ ✓ ✓ ✓

SN Computer Science (2022) 3:496 Page 13 of 15 496

SN Computer Science

Check 3-Handling of Temporary Keys We could not
perform this test on Covid Tracker App, CovidShield and
Protect Scotland as parts of this process are coded in Type-
Script; similarly, we could not test Corona-Warn-App during
the second round of analysis due to unsupported libraries.
For all other apps, we found that all calls to getTempora-
ryExposureKeys() are followed by a network sink and
all calls to provideDiagnosisKeys() are preceded
by a network source. We also ensure that keys are sent to
a single sink when submitted. We surmise that if a user is
presented with the option to share their keys, all apps tested
submit them to only one Diagnosis Server. Similarly, we
conclude that after retrieving the Diagnosis Keys from the
server, these apps correctly provide them to the API.

Check 4-Notifying Users of Exposure Again, we could
not run this check on CovidShield as it is largely written
in Typescript. Furthermore, the heavy use of dependency
injection or unsupported libraries in Immuni, ProtegoSafe
and Corona-Warn-App (during the second round of analysis)
limits MonSTER’s ability to generate meaningful call flow
expressions which hinders its ability to analyse these apps.
Of the apps properly tested, only Covid-Safe-Paths failed.

Check 5-Updating the UI Correctly Stopp Corona and
Apturi Covid failed this check during both rounds of our
analysis. The logic for updating the UI in these apps is han-
dled in the onCreate() method of the main landing page
instead of onResume(). Thus, one can activate exposure
notifications, close the app and turn them off—either in the
phone’s settings or using another contact tracing app—and
neither app will update the UI, instead incorrectly inform-
ing the user that the app is contact tracing. As discussed in
the section “Individual App Comments”, we informed the
developers of Apturi Covid of this and received confirma-
tion that the problem would be fixed. However, the app still
failed the check. Manual testing confirmed this behaviour.

As seen from Table 3 and “General Static Analysis”, the
results generated by MobSF, although worthwhile from a
security perspective, reveal nothing about the usage of the
GAEN framework. In contrast, the bespoke analysis with
MonSTER allows us to generate strong guarantees about the
functionality of the apps and their adherence to the GAEN
requirements.

Although MonSTER requires more effort to produce cus-
tomised checks, its advantages over general static analysis
are clear. MonSTER’s call flow checking allows the user to
fine-tune the properties to be checked that are unique to a
given app or set of apps. Such properties can then be checked
repeatedly throughout the app’s development and release.

Limitations

MonSTER is a prototype designed to explore our methodol-
ogy and thus has issues. One pitfall is scalability; larger apps
take far longer to analyse. We can mitigate this problem by
excluding irrelevant code from the analysis. Moreover, we
can only analyse patterns that appear in the app’s bytecode,
i.e., those written using Java or Kotlin. Finally, some pro-
gramming constructs that rely on generated methods, such as
Dependency Injection libraries and coroutine support, limit
MonSTER’s ability to build accurate call flow expressions,
requiring manual fixing.

When evaluating apps for this paper, we found few we
could properly analyse. Many tracing apps using the GAEN
API are not open source and these all used code obfuscation.
We believe that this is counter-productive to the goals of
the GAEN as the end-user has little guarantee of the app’s
capabilities and whether it has faithfully implemented the
protocol. To instill greater trust in end-users that the apps are
working as intended, providing a public verification method,
such as open-source code or third-party audits, would be
advantageous. In these times, accurately functioning contact
tracing should take precedence over intellectual property.

Related Work

Unlike our work which focuses on correct implementation,
most current research on contact tracing apps focuses on
the design of the underlying frameworks, particularly with
respect to privacy. Cho et al. define three notions of privacy
for contact tracing apps: privacy from snoopers, contacts,
and the authorities [18]. They note that some information
will always be revealed and simple attacks can always be
performed; therefore, an acceptable level of privacy should
be defined with respect to these three parties. Gvili analyzes
privacy issues with the GAEN framework and proposes
attacks that would hinder its effectiveness, such as relay and
replay attacks [19]. Similarly, Magklaras et al. assess the
weaknesses of published tracing frameworks [20]. Some
research does focus on app implementations, but at a higher
level compared to us. Samhi et el. provide a categorisation
of existing apps on Google Play related to COVID-19, but
do not analyse apps individually [21].

Following our first round of analysis, research evaluating
the security and privacy issues of contact tracing apps inde-
pendently from the underlying framework increased. Both
Hatamian et al. [22] and Kouliaridis et al. [23] employed
a similar analysis to ours, combining static, dynamic and
manual analysis to evaluate the security and privacy proper-
ties of contact tracing apps. However, their analysis does not
include a bespoke static analysis stage as ours does and they

 SN Computer Science (2022) 3:496496 Page 14 of 15

SN Computer Science

do not check whether apps adhere to the GAEN documenta-
tion. Similarly, Sun et al. [24] produce a tool titled COVID-
Guardian that incorporates static and data flow analysis to
determine security and privacy weaknesses. Although tar-
geted towards contact tracing apps, COVIDGuardian lacks
the flexibility of MonSTER which allows for bespoke rules
to be verified regardless of domain.

There are many static analysing tools for the Android
platform. Li et al. [25] identified over 100 such tools. Unlike
MonSTER, the majority of these tools establish that an
app is secure using a generalised ruleset. For instance, the
MobSF [14] and QARK [15] work by analysing decompiled
code and flagging bad programming practises that may lead
to security issues, such as the existence of logging or API
keys. Some tools are more specific but lacking the customi-
sation of MonSTER; for instance, taint analysis research
has led to tools such as FlowDroid [26], designed to ensure
sensitive information cannot be exfiltrated from an app.
MonSTER can also be seen as a static analogue of dynamic
analysis call tracing, utilised by tools such as DroitMat [27]
and DroidTrace [28]. However, both of these tools focus
on identifying malware, rather than functionality properties
like MonSTER.

Retrospective and Conclusion

Retrospective

Between our first and second round of analysis, the land-
scape of contact tracing apps has changed considerably as
these apps adapt to the limitations of digital contact tracing.
For instance, Leigh et al. [9] found the reliance on BLE to
be lacking as it failed to detect exposures in indoor spaces.
This manifested during the production of the first NHS app,
preventing its release. Leigh et al. therefore suggested sup-
plementing the protocol by introducing a stage where the
user can scan a QR code at the entrance to an indoor area to
indicate their location, an addition that has been adopted by
several of the apps that we tested. Furthermore, we see the
incorporation of digital Vaccine Passports in the current ver-
sions of Covid Tracker App, Corona Warn App and Immuni,
with other apps planning to introduce similar functionality.
Obviously, this introduces new privacy and functionality
concerns not considered by our MonSTER checks.

Despite being available for download for over a year at the
time of writing, the evidence that contact tracing apps mean-
ingfully reduce the spread of infection remains thin. The
first impediment to their effectiveness is uptake; although
many counties saw a sizable percentage of their population
use these apps—for instance, a report by privacy watchdog
Liberties found that NHS Test & Trace and COVID Tracker
have been downloaded by 36% and 49% of their respective

target populations as of February 2021 [29]—other apps
achieved considerably less adoption. Again, Liberties report
that, as of February 2021, only 2% of the Croatian popula-
tion had downloaded Stop-Covid-19, released in July 2020.
Clearly, the release of contact tracing apps necessitates
health authorities to assuage privacy concerns and encour-
age widespread adoption, with some research demonstrating
the effectiveness of monetary incentives.

However, even in populations where contact tracing apps
saw high uptake, their efficacy is questionable. In an analysis
of the effectiveness of SwissCovid in the canton of Zurich,
Menges et al. [30] estimated that, in the month of September
2020, the app triggered notifications for 1374 individuals.
Of these, 722 users called the quarantine helpline, 170 were
instructed to quarantine and 30 tested positive for COVID-
19. With only roughly 2% of notified users testing positive
for COVID-19—with no evidence that they were infected
due to the close contact event that triggered the notifica-
tion—the extent to which contact tracing apps reduce the
strain on manual contact tracing systems is potentially mini-
mal. Furthermore, in the case of NHS Test & Trace, the spe-
cific threshold values chosen to notify users of close contacts
were too sensitive, resulting in an exponential increase in
the number users told to self-isolate by the app, peaking at
over 600,000 a week [31]. This resulted in the temporary
closure of many business who could not operate due to the
large percentage of staff required to quarantine, despite the
fact that the overwhelming majority of these close contacts
were likely false positives. As one of the stated goals by the
GAEN project is to reduce the economic strain of the pan-
demic, such an outcome seems counter-productive.

Conclusion

This paper presented an analysis into the functionality,
security and privacy of contact tracing apps using a meth-
odology involving manual, general static and bespoke
static analysis. For the bespoke case, we present Mon-
STER, a lightweight, static analysis tool that can detect
the existence of patterns of Android app behaviour in a
customisable way, as general static analysis tools were
not sufficient. Using this process, we verified that many
contact tracing apps adhered to the GAEN API’s recom-
mended usage. However, we found failings in tested ver-
sions of some apps that could impact user safety or secu-
rity, namely Covid-Safe-Paths, which failed to adhere to
design practises that minimise user risk, Apturi Covid and
Stopp Corona, which failed to correctly inform users of
the status of the GAEN client. For future work, we men-
tion that MonSTER’s generation of call flow expressions
from an app’s bytecode could be improved to capture more
programming constructs, such as coroutines.

SN Computer Science (2022) 3:496 Page 15 of 15 496

SN Computer Science

Funding We are grateful for support for this work from the Office of
Naval Research ONR NICOP award N62909-17-1-2065 and The Alan
Turing Institute under the EPSRC Grant EP/N510129/1.

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Google. Google/Apple exposure notifications: Android API doc-
umentation PDF. Version 1.3.2. 2020. https://web.archive.org/
web/20200603200341/https://static.googleusercontent.com/media/
www.google.com/en//covid19/exposurenotifications/pdfs/Android-
Exposure-Notification-API-documentation-v1.3.2.pdf. Accessed 04
Aug 2020.

 2. Troncoso C, Payer M, Hubaux J-P, Salathé M, Larus J, Bugnion E,
Lueks W, Stadler T, Pyrgelis A, Antonioli D, et al. Decentralized
privacy-preserving proximity tracing. 2020. arXiv preprint. arXiv:
2005. 12273.

 3. Wan Z, Liu X. ContactChaser: a simple yet effective contact trac-
ing scheme with strong privacy. Cryptology ePrint Archive, Report
2020/630. 2020. https:// eprint. iacr. org/ 2020/ 630.

 4. Amnesty. Bahrain, Kuwait and Norway contact tracing apps among
most dangerous for privacy. 2020. https:// www. amnes ty. org/ en/
latest/ news/ 2020/ 06/ bahra in- kuwait- norway- conta ct- traci ng- apps-
danger- for- priva cy/. Accessed 04 Aug 2020.

 5. Anomali. Anomali threat research identifies fake COVID-19 contact
tracing apps used to download malware that monitors devices, steals
personal data. 2020. https:// www. anoma li. com/ blog. Accessed 10
Sept 2020.

 6. ESET. New ransomware posing as COVID-19 tracing app tar-
gets Canada. 2020. https:// www. weliv esecu rity. com/ 2020/ 06/ 24/.
Accessed 10 Sept 2020.

 7. Bortolozzo M, Centenaro M, Focardi R, Steel G. Attacking and
fixing PKCS#11 security tokens; 2010. p. 260–9.

 8. TCN. TCN coalition. 2020. https:// web. archi ve. org/ web/ 20200
81706 0508/ https:// tcn- coali tion. org/. Accessed 5 Sept 2022.

 9. Leith DJ, Farrell S. Coronavirus contact tracing: evaluating the
potential of using bluetooth received signal strength for proximity
detection. Comput Commun Rev. 2020;50(4):66–74.

 10. PePP-PT. Pan-European privacy-preserving proximity tracing. 2020.
https:// www. pepp- pt. org/. Accessed 04 Aug 2020.

 11. Sadowski C, Aftandilian E, Eagle A, Miller-Cushon L, Jaspan C.
Lessons from building static analysis tools at Google. Commun
ACM. 2018;61(4):58–66.

 12. Ayewah N, Pugh W, Hovemeyer D, Morgenthaler JD, Penix J. Using
static analysis to find bugs. IEEE Softw. 2008;25(5):22–9.

 13. Kleinman Z. NHS Covid-19: app issue fixed for people who test
positive. 2020. https:// www. bbc. com/ news/ techn ology- 54307 526.
Accessed 06 June 2022.

 14. Abraham A, Schlecht D, Dobrushin M, Nadal V. Mobile security
framework (MobSF). 2016. https:// github. com/ MobSF. Accessed 5
Sept 2022.

 15. LinkedIn. Quick Android review kit (QARK). 2015. https:// github.
com/ linke din/ qark. Accessed 5 Sept 2022.

 16. Desnos A, et al. Androguard. 2015. https:// github. com/ andro guard/
andro guard. Accessed 5 Sept 2022.

 17. Vidas T, Christin N, Cranor L. Curbing android permission creep.
In: Proceedings of the Web, vol. 2; 2011. p. 91–6.

 18. Cho, H, Ippolito, D, Yu, Y. Contact tracing mobile apps for COVID-
19: Privacy considerations and related trade-offs. arXiv preprint.
2020. arXiv: 2003. 11511.

 19. Gvili, Y. Security analysis of the COVID-19 contact tracing speci-
fications by Apple Inc. and Google Inc. Cryptology ePrint Archive.
2020.

 20. Magklaras G, Bojorquez LNL. A review of information security
aspects of the emerging COVID-19 contact tracing mobile phone
applications. In: Clarke N, Furnell S, editors. Human aspects of infor-
mation security and assurance. HAISA. IFIP advances in information
and communication technology, vol. 593. Cham: Springer; 2020.

 21. Samhi J, Allix K, Bissyandé TF, Klein J. A first look at android
applications in Google Play related to Covid-19. Empir Softw Eng.
2020;26(4):1–49.

 22. Hatamian M, Wairimu S, Momen N, Fritsch L. A privacy and secu-
rity analysis of early-deployed COVID-19 contact tracing Android
apps. Empir Softw Eng. 2021;26(3):1–51.

 23. Kouliaridis V, Kambourakis G, Chatzoglou E, Geneiatakis D, Wang
H. Dissecting contact tracing apps in the Android platform. PloS
One. 2021;16(3).

 24. Sun R, Wang W, Xue M, Tyson G, Camtepe S, Ranasinghe DC. An
empirical assessment of global COVID-19 contact tracing applica-
tions. In: 2021 IEEE/ACM 43rd international conference on soft-
ware engineering (ICSE). IEEE; 2021. p. 1085–97.

 25. Li L, Bissyandé TF, Papadakis M, Rasthofer S, Bartel A, Octeau
D, Klein J, Traon L. Static analysis of Android apps: a systematic
literature review. Inf Softw Technol. 2017;88:67–95.

 26. Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon
Y, Octeau D, McDaniel P. Flowdroid: precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps.
ACM SIGPLAN Not. 2014;49(6):259–69.

 27. Wu D-J, Mao C-H, Wei T-E, Lee H-M, Wu K-P. Droidmat: Android
malware detection through manifest and API calls tracing. In: 2012
Seventh Asia joint conference on information security. IEEE; 2012.
p. 62–9.

 28. Zheng M, Sun M, Lui JC. DroidTrace: a ptrace based Android
dynamic analysis system with forward execution capability. In: 2014
International wireless communications and mobile computing con-
ference (IWCMC). IEEE; 2014. p. 128–33.

 29. Civil Liberties Union for Europe. COVID-19 contact tracing apps in
the EU. 2021. https:// www. liber ties. eu/ en/ stori es/ track erhub1- mainp
age/ 43437. Accessed 20 Sept 2021.

 30. Menges D, Aschmann HE, Moser A, Althaus CL, von Wyl V. The
role of the SwissCovid digital contact tracing app during the pan-
demic response: results for the Canton of Zurich. medRxiv preprint;
2021.

 31. Plummer R. ‘Pingdemic’ dents UK economic growth in July. 2021.
https:// www. bbc. co. uk/ news/ busin ess- 58502 593. Accessed 06 June
2022.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2005.12273
http://arxiv.org/abs/2005.12273
https://eprint.iacr.org/2020/630
https://www.amnesty.org/en/latest/news/2020/06/bahrain-kuwait-norway-contact-tracing-apps-danger-for-privacy/
https://www.amnesty.org/en/latest/news/2020/06/bahrain-kuwait-norway-contact-tracing-apps-danger-for-privacy/
https://www.amnesty.org/en/latest/news/2020/06/bahrain-kuwait-norway-contact-tracing-apps-danger-for-privacy/
https://www.anomali.com/blog
https://www.welivesecurity.com/2020/06/24/
https://web.archive.org/web/20200817060508/https://tcn-coalition.org/
https://web.archive.org/web/20200817060508/https://tcn-coalition.org/
https://www.pepp-pt.org/
https://www.bbc.com/news/technology-54307526
https://github.com/MobSF
https://github.com/linkedin/qark
https://github.com/linkedin/qark
https://github.com/androguard/androguard
https://github.com/androguard/androguard
http://arxiv.org/abs/2003.11511
https://www.liberties.eu/en/stories/trackerhub1-mainpage/43437
https://www.liberties.eu/en/stories/trackerhub1-mainpage/43437
https://www.bbc.co.uk/news/business-58502593

	Checking Contact Tracing App Implementations with Bespoke Static Analysis
	Abstract
	Introduction
	Background
	Contact Tracing Methodologies
	GoogleApple Exposure Notification
	App Responsibilities

	Functionality Concerns
	Static Analysis Tools

	Methodology
	Collection of Apps
	Manual Analysis
	General Static Analysis
	Bespoke Static Analysis: MonSTER

	MonSTER Checks
	Registration of Broadcast Receiver
	Handling of Keys
	Notifying Users of Exposure
	Updating the UI Correctly

	Results
	Manual Analysis
	Permissions and Services
	Individual App Comments

	General Static Analysis
	Bespoke Static Analysis

	Limitations
	Related Work
	Retrospective and Conclusion
	Retrospective
	Conclusion

	References

