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ABSTRACT

Small RNAs (sRNAs) are a class of short (20–25 nt)
non-coding RNAs that play important regula-
tory roles in gene expression. An essential first
step in understanding their function is to confidently
identify sRNA targets. In plants, several classes
of sRNAs such as microRNAs (miRNAs) and
trans-acting small interfering RNAs have been
shown to bind with near-perfect complementarity
to their messenger RNA (mRNA) targets, generally
leading to cleavage of the mRNA. Recently, a
high-throughput technique known as Parallel
Analysis of RNA Ends (PARE) has made it possible
to sequence mRNA cleavage products on a
large-scale. Computational methods now exist to
use these data to find targets of conserved and
newly identified miRNAs. Due to speed limitations
such methods rely on the user knowing which
sRNA sequences are likely to target a transcript.
By limiting the search to a tiny subset of sRNAs it
is likely that many other sRNA/mRNA interactions
will be missed. Here, we describe a new software
tool called PAREsnip that allows users to
search for potential targets of all sRNAs obtained
from high-throughput sequencing experiments. By
searching for targets of a complete ‘sRNAome’
we can facilitate large-scale identification of sRNA
targets, allowing us to discover regulatory inter-
action networks.

INTRODUCTION

RNA silencing is a phenomenon that was independently
discovered in animals and plants in the early 1990s. The
core RNA silencing machinery is now known to be highly
conserved between eukaryotic kingdoms, and the common
feature of all RNA silencing pathways is the production of
non-coding small RNAs (sRNAs), mostly in the size range
of 20–25 nt. These sRNAs are excised from longer,
double-stranded or hairpin precursors by RNaseIII-type
enzymes called Dicers (1). One strand of the initial sRNA
duplex is recruited into a member of the Argonaute
protein family, which can be part of a larger complex
known as the RNA Induced Silencing Complex (RISC).
The sRNA component confers sequence specificity to
RISC by establishing Watson–Crick base pairs with
potential target RNA or DNA molecules. Having bound
its target, the effector complex can silence it at the tran-
scriptional or translational level by employing one of the
following mechanisms: (i) cleavage and degradation, (ii)
translational repression, (iii) DNA methylation and
heterochromatin formation (2). This highly versatile ma-
chinery plays important roles in gene regulation, defence
against pathogens and genome maintenance (3,4).
In plants, sRNA-mediated post-transcriptional gene
regulation generally leads to messenger RNA (mRNA)
cleavage and degradation due to a high degree of
sequence complementarity between the sRNA and its
mRNA target (5). This cleavage is highly specific and
the mRNA is sliced between positions 10 and 11 of the
bound sRNA (6). Computational prediction methods such
as (ref. 7–9) have been successfully employed to find
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sRNA targets in plants but tend to suffer from a high
number of false positive predictions (10) and therefore
usually require further experimental validation.
Next generation sequencing has become a de-facto

standard for the analysis of sRNA samples in recent years
(11–13). Typically, a single experiment will produce
millions of sRNA reads capturing a snapshot of the
expression profile of the ‘sRNAome’ in a single sample
(14,15). Recent technological advances have enabled
researchers to conduct high-throughput target identifica-
tion experiments in plants by using an approach
called ‘Parallel Analysis of RNA Ends’ (PARE). This
approach sequences the 50-ends of uncapped mRNAs
including all transcripts targeted by sRNAs and subjected
to endonucleolytic cleavage, i.e. it captures a snapshot of
the ‘degradome’ of an organism (16–18). The sRNA and
degradome data can be used to identify interactions
between sRNAs and their target mRNAs. Degraded
mRNA fragments provide support for the interaction
between sRNAs and their complementary mRNA
targets that lead to cleavage and degradation of the
mRNA (16).
Computational tools to analyse such data are both

scarce and limited in functionality. CleaveLand (19) was
the first tool developed specifically to analyse degradome
data, and it has been successfully used to identify micro
RNA (miRNA) targets in a variety of organisms
(18,20–22). Due to the algorithms implemented in
CleaveLand and the size of sRNA and degradome data
sets (typically millions of sequences) it is impractical to
analyse all possible sRNA/degradome interactions using
this software in a reasonable timescale without a large
degree of parallelization across multiple machines. As a
consequence the tool is generally used to find cleaved
targets of a small number of sRNAs, such as known or
candidate miRNAs. This means that users typically have
to ignore the vast majority of sRNA reads in such analyses
and have to assume some prior knowledge of which
sRNAs are likely to have targets. As a result many legit-
imate sRNA-mediated mRNA cleavages could potentially
be missed. While this is acceptable for users interested in
looking for targets of known miRNAs, it greatly restricts
the possibility to get a sense of all of the sRNA regulatory
interactions leading to mRNA cleavage. In addition,
CleaveLand is a command-line-based application that
can only be used in a Linux/UNIX environment. This
excludes a large number of potential users who do not
have access to, or expertise in, such environments.
To the best of our knowledge, only two other methods

have been developed for identifying sRNA/target inter-
actions evidenced through the degradome in addition to
CleaveLand; SoMART (23) and SeqTar (24). SoMART is
a collection of web server tools for processing sRNAs.
To process degradome data, the user first needs to
predict sRNAs that could potentially target a user-
supplied transcript with the Slicer detector tool. The
dRNA mapper tool can then be used to align degradome
sequences to the transcript sequence. The user then has to
manually compare the output from Slicer detector and
dRNA mapper to identify cleaved targets. To automatic-
ally process more than one transcript the user would

therefore have to develop additional methods and post-
processing software. In addition, the SoMART website is
restricted to a prescribed list of sRNA and degradome
databases. SeqTar attempts to broaden the alignment
rules used in CleaveLand between sRNAs and their po-
tential targets so as to identify miRNA targets. As with
CleaveLand, SeqTar suffers from the fact that its
underlying algorithms make it impractical to analyse all
possible sRNA/degradome interactions in a reasonable
timescale without a large degree of parallelization across
multiple machines. Moreover, SeqTar is not available in a
publicly downloadable package, which greatly reduces its
potential user base.

Here, we describe a new, user-friendly, cross-platform
degradome analysis tool, PAREsnip, which enables flexible
and comprehensive high-throughput target analysis,
allowing users to identify genome-wide networks of
sRNA/target interactions resulting in transcript cleavage.
As well as being able to analyse data sets like CleaveLand
PAREsnip is also able to process entire sRNAome and
transcriptome data sets in a short timeframe on a typical
desktop computer.

MATERIALS AND METHODS

Input

For a specific organism the inputs for PAREsnip are:

. the mRNA data set (transcriptome),

. the transcript degradation fragments obtained from a
PARE experiment (degradome),

. the sRNA data set (sRNAome) and

. the genome sequence.

The first three inputs are required but the genome is
optional. When included, the genome is used during the
data-filtering process described later. All of the inputs
must be in FASTA format and must only contain the
characters ‘A’, ‘C’, ‘G’, ‘T’ and ‘U’. Sequences containing
unknown characters and ambiguity codes are discarded as
they cannot be accurately aligned later. FASTQ to
FASTA and adaptor removal tools are provided within
the UEA sRNA Workbench (7). An overview of the steps
involved in processing the input data is shown in Figure 1.

Data filtering

Several user-configurable filters based on: sequence length,
sequence abundance and sequence complexity may be
applied to the sRNAome. If a sequence has an exact
full-length match to known tRNA or rRNA, it will be
omitted. T/rRNA sequences are obtained from Rfam
(25) and EMBL/Genbank (26) sequence databases. If a
genome is provided, sRNA sequences are mapped to it
using PatMaN (27). Any sequences without a match to
the genome are removed from further analysis, as they
are likely to be either sequencing errors or sample
contamination.
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Signals of cleavage

Degradome fragments are exactly matched to the tran-
scriptome and 50-end alignment positions are recorded.
The degradome fragment abundance at any given
position could represent an sRNA cleavage event at that
position (16,18). Potential cleavage sites on a single tran-
script can be categorized according to degradome read
abundance. Higher abundance reads are more likely to
be the result of endonucleolytic cleavage as opposed
to random degradation products, which are more likely
to accumulate at a lower background level. PAREsnip
uses the 5-category system defined in CleaveLand
(version 2) (19), which are:

. Category 0 is defined as a signal having greater than
one raw read at the position. The abundance at that
position is equal to the maximum on the transcript,
and there is only one maximum.

. Category 1 is the same as Category 0 in all aspects
except that more than one maximum is found on the
transcript. This implies that there are two or more
signals on the transcript with the same strength
(abundance).

. Category 2 is defined as a signal having greater than
one raw read at the position. The abundance at that
position is less than the maximum, but greater than
the median abundance for that transcript.

. Category 3 is defined as a signal having greater than
one raw read at the position and the abundance at
that position is less than or equal to the median
value for that transcript.

. Category 4 is defined as only one raw read at the
position.

The categorization of the signal strength is based on
either the raw abundance or weighted abundance of deg-
radation fragments; the latter is the default PAREsnip
setting. Weighted abundance is calculated by dividing
the abundance of a degradome fragment (tag) by the
number of positions across all transcripts to which the
tag has aligned. The strongest signals, described as
Categories 0, 1 and 2, convey the strongest empirical
evidence for true cleavage products (18). The weaker
Categories 3 and 4 signals could be difficult to distinguish
from background noise and random degradation. It is
therefore possible for the user to exclude any of the five
categories before commencing an analysis in PAREsnip.

Data structures

Small RNA sequences are encoded into unique paths
within a trie (28), which is an m-way search tree data
structure. Since RNA and DNA sequences are described
by the symbols (‘A’,‘C’,‘G’,‘T’ or ‘A’,‘C’,‘G’,‘U’) we use a
4-way tree (Figure 2A). Edges represent nucleotide bases
and nodes offer path choice through the tree. Many short
sequences share a similar nucleotide composition. By
encoding all sequences into a 4-way tree, those that
share a similar composition will lie on the same path
until the similarity ends and new branches are created.
A terminator node marks the end of a path and therefore
an sRNA sequence encoded within the tree. This structure
allows us to remove sequence and subsequence redun-
dancy, therefore reducing our search space and memory
footprint. Also, the number of nucleotide/edge compari-
sons required when attempting to search for a sequence
within the tree is reduced.

Figure 1. Schematic of PAREsnip. Boxes represent functions and solid arrowed lines represent data flow. The functions and dataflow operating
concurrently using multithreading are enclosed with a dotted line.
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Once the sRNAs are encoded in the tree, target searches
can be performed. The starting node for each search is the
10th node because we know that position 10 of the sRNA/
target duplex must be complementary in order to cleave a
target (6,29). Therefore pairs of nodes at levels 10 and 11
within the 4-way tree are collected and placed into labelled
bins (Figure 3) according to the pair’s nucleotide compos-
ition. There are a total of 16 bins that correspond to the 16
possible dinucleotide combinations. Searches for sRNAs
that could cause cleavage at a given degradome peak
position are initiated by identifying the bin corresponding
to nucleotides 10 and 11 of the candidate sequence. The
tree is then traversed from nucleotide 10 towards the root.
We place a restriction that once a walk up the tree from an

entry point has occurred, the parent node of the entry
point obtained from the bin may never be visited again
during the current search and only descendent nodes
of the entry point may be traversed. This restriction
ensures that unnecessary nucleotide comparisons are not
computed. We partition the tree by hiding all paths that
have starting nodes in any of the other 15 labelled bins.

The organization of the data in this way lends itself to
the fast mapping of sequences in an all-against-all search
because only a small fraction of the millions of sequences
obtained from a high-throughput sequencing experiment,
that are encoded into the 4-way tree, have the potential to
be aligned with the candidate pattern. This is possible as
we know that the 10th and 11th nucleotides of the sRNA,

Figure 2. (A) Applying the binding rules to the partitioned 4-way tree. Small RNAs are encoded into a 4-way tree. The tree is partitioned based on
the nucleotides at positions 10 and 11 in the pattern sequence to be searched for. As the tree is searched, sRNA/target binding rules are applied.
(B) Searching the partitioned 4-way tree. To search for a pattern within the tree we start at level 10 denoted as (1), which corresponds to the 10th
nucleotide in a small RNA (counted from the 50 end). The tree is followed towards the root performing Watson and Crick base pairing denoted as
(2). At each traversal, the binding rules are checked. If the root is reached successfully the algorithm jumps back to (1) and begins a pre-order walk
down the tree, denoted as (3). While walking down the tree, if the rules are broken, then the traversals of that branch stop. If a terminator node is
reached, then a successful alignment has been made and an sRNA/target interaction discovered.

Figure 3. Organization of partitioned 4-way tree entry points. Nodes at levels 10 and 11 within a 4-way tree data structure are collected and placed
into labelled bins. There are a total of 16 bins as there are a total of 16 possible dinucleotide combinations. The label for each bin is the nucleotide at
level 10 followed by the nucleotide at level 11. The bins hold entry points into the tree data structure. Entry nodes within a bin are used to partition
the 4-way tree.
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which sit at levels 10 and 11 in the tree, must match
the 10th and 11th nucleotide of the search pattern
exactly (29). This contributes to the computational speed
of PAREsnip.

Search algorithm

The core of PAREsnip’s operation is what we call the
Rule-Based Complementarity Search algorithm. It is a
method of traversing the partitioned 4-way tree, searching
for sRNA sequences that could potentially cleave a tran-
script accounting for the degradome peak at a given
position. The method is designed to make as few nucleo-
tide comparisons as possible and will disregard the large
sections of the 4-way tree that will never produce a valid
alignment, based on a set of previously described targeting
rules (29,30). The rules used by the search algorithm are
user configurable and the default settings are:

. No more than 4.5 mismatches between sRNA and
target (G-U bases count as 0.5 mismatches).

. No more than two adjacent mismatches in the sRNA/
target duplex.

. No adjacent mismatches in positions 2–12 of the
sRNA/target duplex (50 end of the sRNA).

. No mismatches in positions 10–11 of sRNA/target
duplex.

. No more than 2.5 mismatches in positions 1–12 of the
sRNA/target duplex (50 of sRNA).

The algorithm requires a candidate pattern on which to
execute its rules. The pattern is the reverse complement of
the first 11-nt downstream and up to 15-nt upstream
from the position of a categorized degradome cleavage
signal on the transcript. The algorithm looks at the two
nucleotides either side of the cleavage position in the
pattern and identifies the appropriate bin (Figure 3). The
algorithm retrieves a starting node from the bin and tra-
verses a single path up the tree to the root (Figure 2B). As
it does so, it makes a nucleotide comparison between the
pattern and the edge in the path and tests the rule set
(Figure 2A). If at any point one of the rules is broken,
the search is aborted, the starting node discarded and the
next starting node is obtained from the bin. If, on the
other hand, the algorithm successfully reaches the root
of the tree without breaking any of the rules, then it
returns to the entry point and begins a pre-order walk
through the tree. A history of alignment records is kept
while the tree is traversed. Each record is composed of
nucleotide matches, mismatches and single gaps along
with a running alignment score. A mismatch contributes
1.0 to the score, unless it is a G-U (wobble) pair in which
case it contributes 0.5 to the score. A gap in the alignment
contributes a value of 1.0 to the score. If a terminator
node is found, then the algorithm must have reached it
without breaking the rules in one or more of the alignment
records kept in its history. In this case the algorithm
examines its history of alignment records and selects the
alignment with the lowest score and places it onto a
communal stack of identified valid alignments. If at any
point a rule is broken during a traversal and there is no
valid alignment in its maintained history, the algorithm no

longer continues down its current path. When there are no
more paths to traverse, the algorithm looks in the bin and
if there are any remaining starting nodes, it will obtain the
next starting node from the bin and repeat the procedure
until the bin is empty. The stack of valid alignments rep-
resents possible sRNA/target interactions. Each inter-
action within the stack is passed on to the system to
calculate the P-value before being reported to the user.

Calculating P-values

For each sRNA/target duplex reported by PAREsnip, a
P-value is calculated. The P-value gives us a score that
indicates how likely the reported duplex occurred by
chance. The P-value calculation methods are based on
those published in CleaveLand (version 2.0) (19) but use
our Rule-Based Complementarity Search algorithm and
partitioned 4-way trees during the calculation. For every
position, on every mRNA containing a cleavage signal a
26-nt sequence representing the sRNA-binding site is
extracted and placed into one of five possible category
trees (Figure 4). The category trees are the same in struc-
ture and function to the partitioned 4-way tree used to
encode sRNAs, but instead contain sections of mRNAs
where cleavage has occurred.
The sRNA for each sRNA/target alignment on the

stack of valid alignments is randomly shuffled and
mapped to all target sites encoded into a 4-way tree
(Figure 2A). The chosen 4-way tree corresponds to the
category given to the output sRNA/target record.
The random shuffles of the sRNA preserve dinucleotide

Figure 4. Data structure created from degradome fragments mapped to
transcripts. Bars represent 50 ends of degradome fragments aligned to a
transcript. Degradome signals are characterized by category. A sub-
sequence of 26 nt is extracted from the transcript based on the
cleavage site. The sub-sequence is encoded into a partitioned 4-way
tree according to the assigned category.
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frequency and are generated by the third-party Java pro-
gramme uShuffle (31). The user may define the number of
shuffles to be used (the default is 100) and the resulting
P-value is the number of times the randomly shuffled
sRNA aligns to a target site encoded within the category
tree. The P-value is provided as a decimal. For example, if
100 shuffles were used and 5 of those aligned to a target
site of the same category, then the resulting P-value would
be 0.05. An alignment below the user-specified P-value
cut-off is accepted as valid and output to file or to the
user interface.

Output

PAREsnip displays results in a tabular format where each
row in the table shows an sRNA/target interaction. The
columns show alignment category, P-value, binding score
and abundance information along with a visual sequence
alignment of sRNA and target mRNA. Statistics relating
to the input data set are provided such as sequence count
and sequence length distribution. When the tool is
operated in GUI mode, a results table is displayed and
updated as interactions are found. Columns and rows
may be sorted and re-arranged and the data in the table
may be saved as comma separated value (csv) format. If
the user operates the tool from the command line, the
table is saved straight to disk in csv format, which can
be imported directly into most spreadsheet and statistical
packages. PAREsnip lets the user generate and investigate
publication quality t-plots through the UEA sRNA
Workbench tool called VisSR (7).

Availability

PAREsnip is a multi-platform, multi-threaded (Figure 1)
application written in Java and is released as part of the
UEA sRNA Workbench (7) (http://srna-workbench.cmp
.uea.ac.uk). It may be run from the command line or a
graphical user interface (GUI).

RESULTS

Benchmarking

To measure the runtime performance of PAREsnip we
simulated 10 sRNA data sets of increasing size. The
sRNAs were generated by extracting 19–24 nt sequences
centred on cleavage positions within the Arabidopsis
thaliana transcriptome (TAIR 10 representative gene
model) (32). Transcripts, cleavage positions and sRNA
sequence lengths were selected at random. The perform-
ance of PAREsnip was measured by using the simulated
sRNAs with the A. thaliana transcriptome and the
publicly available PARE degradome library GSM278370
A. thaliana Col-0 wild-type seedlings (18,33). We observe a
linear time operation with a peak memory requirement of
5.5 gigabytes.
We also benchmarked the performance of CleaveLand

(version 2) and compared the runtime with that of
PAREsnip (Table 1). We found that PAREsnip signifi-
cantly outperformed CleaveLand for the considered data
sets. Note that, even though there is a version 3 of

CleaveLand, we compared PAREsnip with version 2
since the target prediction step of version 3 only receives
a single sRNA sequence for analysis, and therefore cannot
be practically used on larger numbers of sRNAs without
developing additional software. Even so, to get a rough
idea of the performance of CleaveLand (version 3), we
obtained an average runtime of 87 s per sRNA sequence
for 10 simulated sRNAs, which is roughly 3 times faster
than version 2, but still significantly slower than
PAREsnip.

Comparison with CleaveLand

As CleaveLand is currently the only publicly available tool
for degradome analysis, we compared all miRNA targets
reported by CleaveLand (version 2) (19) with those
reported by PAREsnip using two data sets. We obtained
all known mature A. thaliana miRNAs from miRBase
(release 17) (34) and analysed them using both tools,
seeking targets within the transcriptome (A. thaliana rep-
resentative gene model TAIR release 10) (32) using
two publicly available degradome libraries: GSM278335
and GSM278370 A. thaliana Col-0 wild-type inflores-
cence tissue taken from Gene Expression Omnibus (18,33).
A collection of previously validated miRNA targets
obtained from the literature (16,35–38) and the MPSS
database (39) (Supplementary Table S1) were used to
identify previously validated miRNA targets reported by
both tools.

The results are summarized in Figure 5 (see full results
in Supplementary Tables S2 and S3). As can be seen,
PAREsnip reports either the same number or slightly
more previously validated targets than CleaveLand.
The interactions reported by PAREsnip and not by
CleaveLand or vice versa are due to the random factor
within the P-value systems used by both tools. For
example, in contrast to CleaveLand, PAREsnip uses
dinucleotide random shuffles when calculating a P-value
through the use of uShuffle (31). Furthermore, differences

Table 1. Run time for PAREsnip and CleaveLanda

Number of sRNAs CleaveLand Timing PAREsnip
Timing

10 46min 6s 29s
25 1 h 55min 25s 30s
50 3 h 51min 35s 31s
1000 – 2min 3s
10 000 – 10min 14s
20 000 – 19min 11s
40 000 – 39min 8s
60 000 – 53min 9s
80 000 – 73min 24s
100 000 – 87min 16s

aThe number of sRNAs processed. The amount of time taken to
process the sRNAs in hours (h), minutes (min) and seconds (s).
A desktop PC was used with the following specification: Intel i7 960
(3.20GHz) CPU with 24Gb of RAM using Windows 7 (64 bit) native
and Linux (Ubuntu) virtualized. Transcripts used were A. thaliana
(TAIR 10 representative gene model) consisting of 33 602 sequences.
The degradome library used was GSM278370 consisting of 5 639 743
degradation tags.
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between the interactions predicted by the two tools are
probably also due to the reporting of hits that contain a
mismatch at position 10 (from 50 of sRNA), multiple gaps
within a duplex and more than 2.5 mismatches or adjacent
mismatches within the seed region (positions 1–12 50 of
sRNA) of the duplex. Again, in contrast to CleaveLand,
these features within a duplex are not permitted by the
Rule-Based Complementarity Search algorithm used by
PAREsnip.

Filtering by P-value

To examine the usefulness of the P-value computed
by PAREsnip as a confidence score upon which predicted
interactions can be excluded, we ran it on all known
mature A. thaliana miRNAs, GSM278370 (18,33) deg-
radome and the A. thaliana transcriptome (representative
gene model, TAIR release 10) (32) with increasing P-value
thresholds. The predictions were compared with previ-
ously validated interactions (Supplementary Table S1) to
provide an insight into the number of validated inter-
actions retained along with the number of other inter-
actions reported in relation to the increasing threshold
(Figure 6). Note that a P-value cut-off of 1 captures all
possible predictions. PAREsnip reported a total of 91
validated and 1026 non-validated interactions using a
P-value cut-off of 1. We find that a threshold of 0.05
captures 94.5% of possible validated interactions (a loss
of 5.5% validated interactions) while capturing 7.6% of
the total non-validated interactions. In light of this and
other similar experiments we have chosen a default
P-value setting for PAREsnip of 0.05.

Genome-wide discovery of sRNA/target interactions

Small RNA sample libraries obtained from a high-
throughput sequencing experiment typically contain

millions of sequences. To look for interactions on
a genome-wide scale, including all sRNAs obtained from
a high-throughput sequencing experiment, we used
PAREsnip to analyse the following data sets: sRNAome
GSM342999 A. thaliana Col-0 biological replicate 1 inflor-
escence tissue (33,40); degradome GSM278335; tran-
scripts: A. thaliana (representative gene model TAIR
release 10) (32). For this and every subsequent analysis
the following settings were used: a maximum of 4.0
mismatches, 100 dinucleotide shuffles and a P-value
threshold of 0.05. Within these data, PAREsnip reported
36 351 interactions. Despite the support found for these
interactions, in particular the degradation signal, observed
sRNA, sequence specificity within each duplex and low
P-value, it is difficult to believe that so many interactions
are genuine. Therefore the combined restrictions of
mismatch positions, the number of permitted mismatches
and P-value filter, on their own, do not appear to be suf-
ficient measures to extract valid interactions above the
noise when performing an analysis on such a large scale.
It is likely that many degradome signals are not the
product of sRNA-induced cleavage but are instead
random degradation fragments that happen to also be
complementary to one or more of the millions of sRNA
inputs. To address this problem we employed cross-
sample conservation with the aim of reducing the
number of reported targets. The rationale behind this
approach is that both degradome fragments and sRNA
sequences that are products of random degradation are
unlikely to be conserved between biological replicates
whereas bona fide cleavage signals and functional sRNAs
are likely to be present across samples.
To explore this approach we used PAREsnip to

independently analyse two sRNA biological replicates
GSM342999 (set B1) and GSM343000 A. thaliana Col-0

Figure 5. Venn diagram showing the comparison of results produced by CleaveLand and PAREsnip. The Venn diagram shows the intersection of
predictions made by PAREsnip and CleaveLand and is a summary of the results within Supplementary Tables S2 and S3.
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biological replicate 2 inflorescence tissue (set B2) (33,40)
along with the degradome GSM278335. The results were
compared and only the conserved interactions across the
two samples were retained. For an interaction to be
conserved the interaction must share the same target tran-
script, cleavage site and sRNA sequence. In set B1 36 351
interactions were identified (Supplementary Table S4a and
b) and in set B2 26 098 interactions (Supplementary Table
S5a–c). By comparing the interactions between the sets we
found 7273 conserved interactions. To ascertain whether
such a result could occur by chance, we carried out the
same experiment again but using simulated sRNA sets
containing randomly generated sequences. The simulated
sets (set R1 and R2) maintained the same characteristics
as the real sRNA libraries, including unique and redun-
dant sequence count and sequence length distribution. The
sequences themselves were randomly generated by
sampling from the Arabidopsis genome sequence. Set R1
identified a total of 21 783 interactions and R2 identified
21 862 interactions. Comparing the interactions of R1 and
R2 using the same conservation criteria we found that no
interactions were conserved. This indicates that sRNAs
being observed in multiple samples (biological replicates)
could provide a method for extracting reliable hits above
noise with some measure of confidence.
We extended the conservation method to include sig-

nals of degradation so that a reliable interaction should
contain degradation products that are conserved across
multiple degradome library samples as well as the sRNA
being conserved across multiple sRNAomes. We analysed
two data sets: Set D1 comprised sRNAome-GSM342999
and degradome-GSM280226 A. thaliana Col-0 inflores-
cence tissue (16,33) and set D2 comprised sRNAome-
GSM343000 and degradome-GSM280227 A. thaliana
xrn4 inflorescence tissue (16,33). Reference transcripts

were the A. thaliana representative gene model (TAIR
release 10) (32). Within sets D1 and D2 we found a total
of 65 110 and 49 938 interactions, respectively. The 65 110
interactions are shown in Supplementary Table S6a–d,
and the 49 938 interactions are shown in Supplementary
Table S7a–c. Based on the previously validated inter-
actions (Supplementary Table S1), 163 and 179 inter-
actions within the total number of interactions found in
sets D1 and D2, respectively, had been previously experi-
mentally validated. When comparing the results of sets D1
and D2 we found a total of 4466 conserved interactions.
Of the validated interactions, 149 were conserved giving
an above 80% retention rate. The 4466 conserved inter-
actions meet the binding rules criteria for mismatch pos-
itioning within the sRNA/mRNA duplex and have a
mismatch score of 4 or less. They have a P-value of 0.05
or less and the sRNA and positional cleavage signal are
conserved across multiple samples.

DISCUSSION

We have described a novel, freely-available application
called PAREsnip, designed for the identification of
cleaved targets from sRNA and degradome data sets
generated using next-generation sequencing technologies.
The tool can also be used on small-scale experiments.
PAREsnip is a user-friendly GUI-based, cross-platform
(Windows, Linux, MacOS) application that enables biolo-
gists to run the application and analyse their data with-
out the need for dedicated bioinformatics support or
specialized computer hardware. We have also made a
command-line version of the tool available for users
who wish to incorporate PAREsnip into computational
pipelines.

Figure 6. Interactions reported by PAREsnip with P-value increases. Starting from the smallest P-value of 0.00, we see a progressive increase in the
number of small RNA/mRNA interactions reported. The P-value cut-off of 0.05 captures 94.5% of total validated interactions reported by
PAREsnip and is the default setting.
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We have shown that PAREsnip performs at least as well
as current methods in detecting validated miRNA–mRNA
interactions in published data sets and that it runs signifi-
cantly faster than the competition on a standard desktop
computer. The speed of PAREsnip opens up new avenues
in the sRNA field as it enables users to look for targets of
all sequenced sRNAs rather than a subset of sequences
that they suspect might have a target (such as annotated
miRNAs and trans-acting small interfering RNAs).

We have demonstrated that degradome and sRNA data
are inherently noisy (probably due to background mRNA
degradation) and that searching a random sRNA data
set with the same properties as a real input data set
against the degradome can lead to a comparable number
of predicted target interactions. This makes it difficult to
separate real targets from false positives when running on
high-throughput data. However, by using biological repli-
cates of sRNA and degradome data sets we appear to be
able to remove spurious degradation products, as they
are highly unlikely to be conserved between two or more
samples. We show that by using this conservation method
on a random sRNA set no targets are predicted (resulting in
zero false positives), whereas when applying it to a real set
we retrieve 4466 high-confidence interactions and recover
�80% of the previously validated targets present.

PAREsnip is extensively user-configurable; this allows
users to customize search parameters and binding rules in
order to make searches more liberal or stringent. It was
recently reported that several new miRNA targets were
discovered and validated using more relaxed binding rules
implemented in the SeqTar algorithm (24). By relaxing the
stringency of the binding rules PAREsnip can also be used
to search more deeply for individual miRNA targets.
Conversely, tightening the rules will lead to a reduction in
the number of candidates reported when run across entire
sRNA sets. This flexibility also allows users to customize
searches and could allow them to optimize parameters for
searching degradome data sets such as those published by
Bracken (41) and Karginov (42).

While the use of published binding rules and P-value
filtering provides a strong set of predicted sRNA/target
interactions it is difficult to estimate an accurate false
positive rate. One of the reasons is that currently there is
no experimental method to directly test sRNA/target
interactions. The only method is the 50RACE to map
the non-capped 50 end of individual mRNA fragments.
However, this method is based on the same principle
as the PARE/degradome library generation and so it is
questionable whether it can be used to validate the
high-throughput results. In fact, since 50RACE experi-
ments focus on a small region of an mRNA, it is more
likely to yield an artefact than the unbiased PARE/
degradome library approach.

CONCLUSION

PAREsnip can be used to search for genome-wide inter-
actions between all sRNAs and transcripts as well as
predicting targets of small groups of miRNAs. This
high-throughput approach to degradome analysis opens

a new avenue for researchers interested in identification
of sRNA targets. Due to its speed and efficiency
PAREsnip removes the need for users to know in
advance which sequences are likely to have a target and
instead allows users to generate complete networks of
sRNA target interactions. By using replicates and
applying a conservation rule we predict over 4000
putative sRNA/mRNA interactions in the Arabidopsis
sets we analysed. This suggests that sRNA-mediated tar-
geting and cleavage of transcripts may be even more wide-
spread than previously anticipated and provides a useful
new tool for experimentalists to study such interactions in
more depth.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–7 and Supplementary References
[16,34–39,43–46,12].
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