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Abstract

Background: Dual-purpose cattle are more adaptive to environmental challenges than single-purpose dairy or beef
cattle. Balance among milk, reproductive, and mastitis resistance traits in breeding programs is therefore more
critical for dual-purpose cattle to increase net income and maintain well-being. With dual-purpose Xinjiang Brown
cattle adapted to the Xinjiang Region in northwestern China, we conducted genome-wide association studies
(GWAS) to dissect the genetic architecture related to milk, reproductive, and mastitis resistance traits. Phenotypic
data were collected for 2410 individuals measured during 1995–2017. By adding another 445 ancestors, a total of
2855 related individuals were used to derive estimated breeding values for all individuals, including the 2410
individuals with phenotypes. Among phenotyped individuals, we genotyped 403 cows with the Illumina 150 K
Bovine BeadChip.

Results: GWAS were conducted with the FarmCPU (Fixed and random model circulating probability unification)
method. We identified 12 markers significantly associated with six of the 10 traits under the threshold of 5% after a
Bonferroni multiple test correction. Seven of these SNPs were in QTL regions previously identified to be associated
with related traits. One identified SNP, BovineHD1600006691, was significantly associated with both age at first
service and age at first calving. This SNP directly overlapped a QTL previously reported to be associated with
calving ease. Within 160 Kb upstream and downstream of each significant SNP identified, we speculated candidate
genes based on functionality. Four of the SNPs were located within four candidate genes, including CDH2, which is
linked to milk fat percentage, and GABRG2, which is associated with milk protein yield.

Conclusions: These findings are beneficial not only for breeding through marker-assisted selection, but also for
genome editing underlying the related traits to enhance the overall performance of dual-purpose cattle.
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Background
The Xinjiang Brown was recognized as a new dual-
purpose cattle breed in China in 1983 [1]. Xinjiang Brown
cattle have strong adaptability and resistance under ex-
treme weather conditions. For example, these cattle can

graze in temperatures below -40 °C and in snow up to 20
cm deep [1]. Because of these superior characteristics, the
breed has spread widely across the northern area of
Xinjiang. By the end of 2017, the population had reached
nearly 1.5 million, including hybrid progeny [2]. Similar to
breeders of other dual-purpose cattle breeds, Xinjiang
Brown breeders took both dairy and beef traits into con-
sideration to achieve comprehensive breeding objectives.
Characteristics unique to dual-purpose cattle must be pre-
served, including the capacity to produce multiple prod-
ucts that can adapt to market demands. This product
flexibility is particularly beneficial to small-scale herdsman
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who are more financially vulnerable to the whims of mar-
ket changes and consumer preferences.
With the development of genotyping technologies and

new genetic analysis methods, the genetic architecture of
economically important traits have been explored across
different cattle breeds and populations. Substantial genomic
regions have been identified [3–6]. According to Release 36
in the Animal Quantitative Trait Loci (QTL) Database [7],
41,234 QTL are associated with 154 milk traits, 42,648
QTL with 71 reproductive traits, and 4081 QTL with 92
health traits. Potential candidate genes were also identified
for these traits. For example, the DGAT1 gene associates
with milk composition and yield traits [8, 9] and has been
validated as a major gene in Holstein populations across
multiple countries [10]. FASN has a significant effect on
milk fat component traits [11, 12]. BRCA1 has an effect on
somatic cell score (SCC), which influences mastitis disease
in dairy cows [13, 14]. For reproductive traits, the GH-
L127 V mutation was reported to be associated with calving
interval in a Jersey cattle population [15].
Although many genome-wide association studies (GWAS)

and genomic functional validation studies on dairy and beef
cattle traits have been performed, few studies have focused
on dual-purpose breeds and populations. For Xinjiang
Brown, only a few genetic polymorphisms have been re-
ported for milk composition, somatic cell score, and early
growth traits [16–19]. Studies on the dual-purpose cattle
breed, German Fleckvieh, reported a QTL on the Bos taurus
(bovine) autosome (BTA) 5 associated with milk production
[20] and two loci on BTA 14 and 21 associated with calving
ease and growth-related traits [21]. Another study reported
several SNPs associated with milk and functional traits in a
population of the dual-purpose breed, Italian Simmental
[22]. A few selection signature studies revealed several gen-
etic variations in both dairy and beef cattle (Gir) populations
[23, 24], and a few genetic polymorphism studies discussed
the genetic architecture of milk production traits in the Ital-
ian Simmental breed [25, 26]. Despite the valuable informa-
tion provided by these previous genomic studies, GWAS
using high-density SNPs are still limited in dual-purpose
breeds. Because the genetic linkage phase could be different
across breeds and populations, using the previously identi-
fied markers to conduct marker-assisted selection is prob-
lematic, especially when marker density was low during the
discoveries. Therefore, GWAS with high-density SNPs are
needed to understand the genetic architecture of important,
complex traits in dual-purpose cattle breeds.
In this study, we evaluated five milk production traits:

milk yield (MY), fat yield (FY), protein yield (PY), fat
percentage (FP), and protein percentage (PP); four re-
productive traits: age at first service (AFS), age at first
calving (AFC), gestation length (GL), and calving interval
(CI); and one health trait: somatic cell score (SCS) in the
Chinese dual-purpose cattle breed, Xinjiang Brown. We

used milk production, reproductive, and health data re-
cords, collected during 1995–2017 on 2410 individuals,
from four different breeding herds raised in the Xinjiang
region of northwestern China. We used another 445 an-
cestors to obtain a total of 2855 individuals connected
by pedigree to estimate variance components and breed-
ing values. Ultimately, a total of 403 cattle were selected
for genotyping with the 150 K Bovine BeadChip, which
resulted in a total of 139,376 markers. Our objective was
to identify SNPs associated with milk, reproductive, and
health traits in the Xinjiang Brown for the benefit of
marker-assisted selection and dissection of genetic archi-
tecture of these complex traits.

Results
Descriptive statistics
A total of 2410 individuals with 6811 reproductive re-
cords and 5441 milk records were used in this study.
The descriptive statistics results of milk, health, and re-
productive traits in Xinjiang Brown Cattle are shown in
the Table 1. Based on the milk records, the mean 305-
day milk yield (MY) was 4216.49 kg. This mean MY
value is within the normal range compared with Chinese
dual-purpose Sanhe cattle, Simental cattle, and Chinese
Range Red cattle [27], but less than European dual-
purpose Fleckvieh and Braunvieh breeds [26]. In our
Xinjiang Brown population, mean milk fat percentage
(FP) was 3.93%, similar to Fleckvieh and Braunvieh;
mean milk protein percentage (PP) was 3.37%, higher
than these two breeds [28]. The population’s mean milk
fat yield (FY) and protein yield (PY) were 168.53 kg and
143.79 kg, respectively, which are both less than Fleck-
vieh and Braunvieh [28].
Somatic cell score (SCS) was used as an indicator trait for

udder health; the smaller the SCS, the lower the risk for
mastitis [29]. SCS is not only important in dairy cattle, but is
also crucial in dual-purpose breeds. In the study population,
mean SCS was moderate, 4.98, with a heritability of 0.08.
Most reproductive traits are difficult to measure and vary

across environmental conditions [30]. We selected age at
first service (AFS), age at first calving (AFC), gestation
length (GL), and calving interval (CI) because they are rela-
tively easy to record and analyze. The averages were 571.89
days, 877.65 days, 437.51 days, and 284.56 days for AFS,
AFC, GL, and CI, respectively. Heritabilities were low for
all four traits, ranging from 0.01 to 0.08, which is consistent
with findings from other studies on dairy and beef cattle
[31, 32]. Together, these traits can reflect a cow’s produc-
tion efficiency and body condition and are also important
breeding objectives for the Xinjiang Brown.

Phenotypic, genetic and residual correlation
The correlations and distributions of phenotypes, esti-
mated breeding values (EBV), and residuals for each of
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the 10 study traits are shown in Additional file 1: Figure
S1. The EBVs of all traits followed a normal distribution.
We found strong correlations among MY, FY, and PY
phenotypes, with correlation coefficients ranging from
0.78 to 0.92. The genetic correlation coefficients among
EBVs were medium to high, ranging from 0.54 to 0.70.
The correlation between MY and both FP and PP were
negative and weak (genetic and phenotypic), which have
also been reported in other studies [33]. Among the re-
productive traits, the strongest phenotypic and genetic
correlations were found between AFS and AFC, with cor-
relation coefficients of 0.94 and 0.92, respectively. The
smaller the AFS, the smaller the AFC. We were particu-
larly interested in traits with high genetic correlations and
focused on whether they shared common markers.

Population stratification
The PCA scatterplots illustrate a clear population structure
for the 396 individuals in the four cattle herds that com-
prised our study population (Fig. 1). In the scatterplot of
PC1 and PC2, the majority of cattle in herd 3 are com-
pletely separated from the majority of individuals in herd 4
(Fig. 1a). Similarly, most individuals from herd 1 and herd 2
split into another two distinct groups. Furthermore, several
clusters of individuals, either from the same or from differ-
ent herds, were observed in the scatterplot of PC1 and PC3
(Fig. 1b). Clusters of the same color represent closely re-
lated individuals from same herd. In contrast, we identified
three distinct clusters of herd 2 (green) and herd 4 (red) in-
dividuals and two clusters of herd 2 (green) and herd 1
(black) individuals. These mixed clusters indicate that, al-
though individuals may come from different herds, they still
retain close genetic relationships. We further explored the
relationships between the first three principal components

(PCs) and the phenotypes of the 10 study traits with add-
itional scatterplots (Additional file 4: Figure S4), but found
no strong correlations.

Genome-wide association studies
The FarmCPU method was used to perform the genome-
wide association analysis. Because population structure can
cause false positive results in GWAS, the first three PCs
were added into our GWAS model. Ultimately, 12 SNPs
passed the 5% threshold after a Bonferroni correction and
were associated with six of the 10 study traits (Fig. 2). For
milk traits, two significant SNPs were detected on Bos
taurus autosome (BTA) 24 (BovineHD2400007916) and
BTA 7 (BTB-01731924) and were associated with FP and
PY, respectively. For the health trait, mastitis resistance,
three significant SNPs were found on BTA 8 (Bovi-
neHD0800007286), BTA 22 (BovineHD2200012261), and
BTA 5 (BovineHD0500013296) and were associated with
SCS. For reproductive traits, three SNPs located on BTA 14
(BovineHD1400016327), BTA 3 (BovineHD0300035237)
and BTA 16 (BovineHD1600006691) were significantly as-
sociated with AFS; two SNPs located on BTA 14 (Bovi-
neHD1400021729) and BTA 17 (ARS-USMARC_528) were
significantly associated with GL; and two SNPs located on
BTA 19 (Bovine HD1900002007) and BTA 25 (Bovi-
neHD2500003462) were significantly associated with CI.
We found no significant markers associated with MY, FY,
PP, or AFC (Additional file 5: Figure S5).
To check for overlaps among the SNPs significantly as-

sociated with milk, reproductive, or health traits, we cre-
ated a heat map using different bin sizes and several
significant p thresholds (Additional file 3: Figure S3). The
visual effect of Additional file 3: Figure S3 is a combin-
ation of both the strength of signals and the bandwidth.

Table 1 Statistical description of study traitsa

Traits Mean SD Min Max h2 SE (h2) Phenotypic Variance Additive Variance Residual Variance

Milk Traits

MY (kg) 4126.49 1405.71 814 8444 0.40 0.017 17,027,917 6,811,167 10,216,750

FY (kg) 168.53 64.29 21.60 431.54 0.30 0.013 3123.71 937.11 2186.60

PY (kg) 143.70 51.42 24.23 302.72 0.20 0.011 1824.40 364.88 1459.52

FP (%) 3.93 0.83 2.04 7.00 0.08 0.009 0.68 0.05 0.63

PP (%) 3.37 0.38 2.16 6.13 0.30 0.014 0.14 0.04 0.10

Health Trait

SCS 4.98 2.16 −2.05 10.95 0.08 0.008 4.29 0.34 3.95

Reproductive Traits

AFS (days) 571.89 84.82 420.00 759.00 0.01 0.006 6814.98 68.15 6746.83

AFC (days) 877.65 87.85 616.00 1066.00 0.01 0.005 7400.67 66.79 7333.88

CI (days) 437.51 77.97 320.00 617.00 0.08 0.009 5615.80 449.26 5166.54

GL (days) 284.56 15.52 195.00 339.00 0.07 0.007 238.73 16.73 222.00
aSD Standard deviation, h2 Heritability of traits, SE Standard error. Ten traits in the study are MY Milk yield, FY Fat yield, PY Protein yield, FP Fat percentage, PP
Protein percentage, SCS Somatic cell score, AFS Age at first service, AFC Age at first calving, CI Calving interval, and GL Gestation length
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For a small bin, the band is visible only when the signal is
strong. For the same level of signals, a band becomes vis-
ible when it is wide enough. We found one overlapping
SNP (BovineHD1600006691) at 24.2Mb on BTA 16 that
associated with both AFS and AFC. This SNP has also
been reported in a QTL region associated with calving
ease [34]. Additionally, most of the SNPs we identified
have been previously located in QTL regions that are asso-
ciated with traits related to our study traits. We mapped
12 candidate genes on 11 autosomes, based on the phys-
ical position of the significant SNPs (Fig. 2, Table 2). Four
SNPs are within genes, including CDH2, which is linked
to FP, and GABRG2, which is associated with PY. The
other SNPs are within 156 kb or less of a gene.

Discussion
Population stratification
Population stratification is an important issue in population-
based association studies [35, 36]. Because allele frequency
may differ in sample individuals due to systematic ancestry
differences [37], hidden population structure may cause
spurious results and reduce the statistical power in GWAS.

Consequently, stratification in the experimental popula-
tion must be corrected [38–40]. In this study, our Xinjiang
Brown experimental cattle were selected from four differ-
ent commercial herds. Each year, foreign blood was intro-
duced into each herd to improve population productivity,
and sometimes cattle were transferred among herds. Thus,
we hypothesized that some hidden structure should be in-
herent in our experimental population. Population struc-
ture is one of the major cause spurious association and
must be accounted through stratified analyses such as
genomic control, structured associations, and PCA [41].
We used PCA to detect the stratification and found a clear
subpopulation structure (Fig. 1). For example, herd 3 and
herd 4 exhibited an obvious clustering pattern and were
completely separated by the first PC. Herd 2 and herd 4
exhibited an overlapping pattern, indicating that individ-
uals from these two herds have a closer genetic relation-
ship than individuals from other herds.
Cryptic relationships among individuals is another major

source of spurious associations. Several methods have been
developed to correct both population stratification and cryp-
tic relationships to screen markers across genomes. Ideally, a

Fig. 1 Population structure from the principal component analysis. A total of 11,8796 SNPs and 396 cattle were used to perform the principal
component analysis. Population structure is shown as pairwise scatter plots (a, b, and c) and a 3D plot (d) of the first three principal components
(PC) with colored circles that define the four herds. There are 173, 127, 48, and 48 cattle in herd 1, 2, 3, and 4, respectively
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one-step approach would perform the best by optimization
over population structure, cryptic relationships, and genetic
markers simultaneously; however, the associated computa-
tional burden prevents full optimization for practical uses.
Furthermore, robust approximation was achieved with a dra-
matic reduction in computing time. For example, the
EMMAx and P3D algorithms deliver almost identical results
for full optimization of genetic and residual variance esti-
mates for every testing marker, using the fixed and random
effects mixed linear model (MLM).
The computing time of the MLM was further im-

proved by splitting the model into a fixed effect model
and a random effect model. The fixed effect model is
used for testing markers, one at a time. The random

effect model is used to select markers that are used as
covariates in the fixed effect model. The fixed effect
model and the random effect model are used iteratively
until no change occurs in the covariates. Compared to
the kinship based on all the available markers, the kin-
ship based on the selected markers has the best likeli-
hood for the specific trait of interest. This method was
named the Fixed and random model Circulating Prob-
ability Unification (FarmCPU). Both simulation and ana-
lyses on real traits demonstrated that FarmCPU has
higher statistical power than the regular mixed method
using all available markers to build kinship.
Given this population stratification, we used two models

to perform GWAS using FarmCPU, with and without the

Fig. 2 Manhattan and Q-Q plots of milk, reproductive, and health traits. FP = fat percentage, PY = protein yield, SCS = somatic cell score, AFS =
age at first service, GL = gestation length, and CI = calving interval. The genome-wide association study was performed by FarmCPU software,
with a significant p-value threshold set at P = 10–7. We identified the 12 nearest genes to each significant SNPs, which are labeled at the top of
the Manhattan plot (left). Q-Q plots are displayed as scatter plots of observed and expected log p-values (right)
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first three PCs as covariates. Without including the PCs,
we found 20 significant markers associated with eight of
the 10 traits (Additional file 6: Figure S6). After including
the PCs, 18 of these 20 significant markers disappeared
and 10 new SNPs surfaced. We calculated the inflation
factor to check whether significant population structure
remained (Additional file 7: Table S1). The result showed
minimal inflation using FarmCPU. Both quantile-quantile
plots (Q-Q plot) and the inflation factor exhibited the
same trend. In fact, FarmCPU is conservative, which even
led to minor deflation. Because the previous study [42]
suggested including PCs to ensure population structure is
incorporated when performing FarmCPU, we used the
model with PCs fitted as covariates. In total, the combined
SNP-PCA model identified 12 significant markers associ-
ated with six of the 10 traits (Fig. 2).

Comparison of GWAS results
We found 12 significant markers associated with six im-
portant, complex traits in Xinjiang Brown cattle, based on a
high-density SNP chip. Among them, two SNPs overlapped
in both the SNP model and the combined SNP-PCA
model. One SNP is seated on BTA 8 and significantly asso-
ciated with SCS; the other SNP is on BTA 16 and
significantly associated with AFS. Four SNPs were signifi-
cantly associated with MY, FY, PP, and AFC when we used
the SNP model, but these SNPs failed to pass the 5%
threshold after a Bonferroni correction in the combined
SNP-PCA model. Still, SNPs associated with FY (Bovine
HD1600007977), PP (Bovine HD2300015096), and AFC
(Bovine HD1600006691) are the most significant SNPs in
both models. Our study is the first GWAS on milk,

reproductive, and mastitis resistance traits in the Xinjiang
Brown dual-purpose cattle breed. Only a limited number of
studies have reported on similar traits in other dual-
purpose breeds [20–26]; therefore, we compared our results
with studies of single-purpose dairy and beef cattle breeds.
Milk composition traits are important breeding traits in

both dairy and dual-purpose cattle breeds, especially in
modern animal husbandry environments. We found two
highly significant SNPs associated with milk composition
traits. One SNP is associated with FP and is positioned
within the cadherin-2 (CDH2) gene at 29.1 Mbp on BTA
24. CDH2 is a protein encoding gene and participates in
adipogenesis [43]. Knocking down CDH2 to block the
epithelial-mesenchymal transition-like response could
weaken adipocyte lineage commitment [44]. Several previ-
ous studies have reported QTL near this SNP. For ex-
ample, one study found a QTL region spanning 18.1–21.8
Mbp on BTA 24 that was associated with FP in a Danish
Holstein population [45]. Another study mapped a QTL
at 33.4 Mbp on BTA 24 that was associated with FP in an-
other Holstein cattle population [46]. Furthermore, the
cattle QTL database [7] reports an additional 14 QTL on
either side of the FP-associated SNP we identified. These
14 QTL are associated with health, production, reproduct-
ive, and meat and carcass traits. One of the QTL that
spans 21.8–31.0 Mbp on BTA 24 is significantly associated
with SCS in Danish Holstein [47].
The other milk-related SNP we identified was significantly

associated with PY and mapped at 75.8 Mbp on BTA 7,
which is within a gene named Gamma-aminobutyric Acid
Type A Receptor Gamma2 Subunit (GABRG2). GABRG2
primarily contributes to gamma-aminobutyric acid (GABA)-

Table 2 GWAS-identified significant SNPs, associated traits, and nearest candidate genesa

Trait SNP Chr. Position (bp) MAF Nearest Gene Distance (kb) P-value

Milk Traits

FP BovineHD2400007916 24 29,095,464 0.370 CDH2 Within 1.19E-07

PY BTB-01731924 7 75,830,763 0.140 GABRG2 Within 2.98E-10

Health Trait

SCS BovineHD0800007286 8 24,250,348 0.484 LOC104969301 121 1.13E-09

SCS BovineHD2200012261 22 42,292,699 0.249 FHIT 159 2.61E-08

SCS BovineHD0500013296 5 46,291,333 0.460 DYRK2 29 1.04E-07

Reproductive Traits

AFS BovineHD1400016327 14 58,781,799 0.378 LOC511981 69 1.32E-09

AFS BovineHD0300035237 3 120,496,661 0.196 KIF1A 4 3.69E-08

AFS BovineHD1600006691 16 24,235,446 0.063 EPRS Within 6.76E-08

GL BovineHD1400021729 14 77,464,140 0.370 LOC786994 77 5.15E-10

GL ARS-USMARC-528 17 34,752,485 0.424 SPRY1 Within 4.99E-08

CI BovineHD1900002007 19 7,557,250 0.278 ANKFN1 34 1.09E-10

CI BovineHD2500003462 25 12,378,774 0.472 SHISA9 146 8.29E-08
aSNP Single nucleotide polymorphism, MAF Minor allele frequency, Chr. Chromosome, FP Fat percentage, PY Protein yield, SCS Somatic cell score, AFS Age at first
service, GL Gestation length, CI Calving interval
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gated chloride ion channel activity and participates in
GABA-A receptor activity [48] and has been studied mostly
in association with human idiopathic epilepsy [49, 50].
Among cattle genomic studies, a potential supporting
study reported a nearby QTL region spanning 71.9–73.8
Mbp on BTA7 that was associated with PY in a US Hol-
stein population [51]. Additionally, we found six other
QTL in the cattle QTL database [7] that contained the
PY-associated SNP we identified. Three of these QTLs are
associated with milk FY in Holstein and Jersey cow popu-
lations [52]. One QTL is significantly associated with meat
fat content in Nellore beef cattle [53]. Another QTL is
linked to cold tolerance in a crossed beef cattle population
[54]. And, the sixth one is linked to meat tenderness traits
in five taurine cattle breeds [55].
SCS is highly correlated with mastitis in cattle popula-

tions [56, 57] and is usually selected as an indicator trait
to reflect udder health status and mastitis resistance
[58]. In this study, we mapped three highly significant,
SCS-associated SNPs on BTA 5 (46.3 Mbp), BTA 22
(42.3 Mbp), and BTA 8 (24.2 Mbp). Three candidate
genes were found nearby these three SNPs. One of the
genes, named Dual Specificity Tyrosine Phosphorylation
Regulated Kinase 2 (DYRK2), was reported to be related
to udder support score trait in crossbred Bos indicus-
Bos taurus cows [59]. Many QTL been reported for SCS.
For example, a peak QTL region was found at 28.2–44.5
Mbp on BTA 5 in one Holstein population [60]. And, in
another Holstein population, several QTL were found
on BTA 22 within 1 Mbp of our identified SNP [51].
Two separate studies, performed in different years, re-
ported the same QTL at 24.8 Mbp on BTA 8 that was
related to SCS in Norwegian Red [61] and Red Pied
dairy cattle [62]. The position of this QTL is close to the
SNP we found on the same chromosome. We also found
other studies that identified QTL regions associated with
traits related to SCS and also contained the SCS-
associated SNPs we identified in this study.
Before reproductive traits became important breeding

objectives, most breeders focused on production traits
[26]. However, to maintain balanced breeding, fertility
traits have gained more and more attention in breeding
schemes. Understanding the genetic architecture of low
heritability traits, such as fertility traits, helps improve
selection; thus, many GWAS on fertility traits have been
performed [63–67]. In our GWAS, we found three
highly significant SNPs associated with AFS. The first
SNP is mapped at 120.4 Mbp on BTA 3; the nearby gene
is Kinesin Family Member 1A (KFM1A). The second
SNP is seated at 58.7 Mbp on BTA 14; the closest gene
is a pseudo gene LOC511981. The third SNP is located
at 24.2 Mbp on BTA 16 and within the Glutamyl-prolyl-
tRNA Synthetase (EPRS) gene. Several QTL on BTA 16
contain the AFS-associated SNP we found. One of these

QTL was previously reported to be related to calving
ease in US Holstein cattle [51]; the other QTLs were re-
lated to weaning weight in Blonde d’Aquitaine beef cat-
tle [68], birth weight in Angus beef cattle [69], and hip
height in Qinchuan and Jiaxian Red beef cattle [70].
Both calving ease and body size traits are highly corre-
lated with AFS.
For GL, we found two significant SNPs, one mapped at

77.5 Mbp on BTA 14 and the other mapped at 34.8 Mbp
within the Sprouty RTK Signaling Antagonist 1(SPRY1)
gene on BTA 17. The two SNPs we found significantly as-
sociated with CI were located at 7.6 Mbp on BTA 19 and
at 12.4 Mbp on BTA 25. The nearest genes to these SNPs
are Ankyrin-repeat and Fibronectin Type III Domain
Containing 1 (ANKFN1) on BTA 19 and Shisa Family
Member 9 (SHISA9) on BTA 25. A previously reported
QTL region at 6.3–13.8 Mbp on BTA 25 was found to
affect dystocia in a dairy population [65]. Another study
reported a QTL at 6.3–17.7 Mbp on BTA 25 linked to no-
return rate in Danish and Sweden Holstein cattle [66].
Both dystocia and no-return rate are fertility traits and,
thus, related to the reproductive traits we studied.

Conclusion
This study used a high-density SNP chip to perform
GWAS with milk, reproductive, and mastitis traits in the
Chinese dual-purpose cattle breed, Xinjiang Brown. We
found 12 significant SNPs associated with six of the 10
traits studied. Seven of these SNPs overlap with QTL re-
gions previously reported in studies of other cattle popu-
lations. The candidate gene, CDH2, participates in
adipogenesis and may affect milk fat production. These
results enhance our understanding of important, com-
plex traits in the dual-purpose Xinjiang Brown cattle
breed and contribute to further studies on validation of
gene function and genomic selection.

Methods
Animals and phenotyping
Phenotypic data used in this study were collected during
1995–2017 from 2410 Xinjiang Brown cow individuals from
four different breeding herds, they are Tacheng Area
Xinjiang Brown Cattle Breeding Farm, Yili Xinhe Xinjiang
Brown Cattle Breeding Farm, Urumqi Xinjiang Brown Cattle
Breeding Farm, and the Xinjiang Tianshan Animal Hus-
bandry and Bio-engineering Co., Ltd., located in Tacheng
city, Yining city, Urumqi city and Changji city, respectively.
Blood sample were collected from the coccygeal vine of the
tail-head of cows by the Vacuum Blood Collector, cleaned
the area before sampling and pressed the sample wound for
a while to let it recover after extraction. The tail-head blood
collection method we took is very quick, lower stress and al-
most painless for the cattle. We used an additional 445 an-
cestors, for a total of 2855 individuals connected by pedigree,
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to estimate the breeding values of five milk traits, four repro-
ductive traits, and one health trait (Additional file 1: Figure
S1, Additional file 2: Figure S2). Milk traits included milk
yield (MY), fat yield (FY), protein yield (PY), fat percentage
(FP), and protein percentage (PP). Reproductive traits were
age at first service (AFS), age at first calving (AFC), gestation
length (GL) and calving interval (CI). And, the health trait
was somatic cell score (SCS).

Genotyping and quality control
In total, 403 female cattle were selected for genotyping by
using the Illumina 150 K Bovine BeadChip. Quality con-
trol was conducted by using Plink software [71] with cri-
teria as follows: (1) individual call rate > 95%; (2) genotype
call rate > 90%; (3) Hardy-Weinberg equilibrium p-value
>1e-6; and (4) minor allele frequency (MAF) > 0.05. After
quality control, 396 cows and 139,376 markers remained.
The genotypes in A/T/G/C format were converted to nu-
meric genotypes by iPat software [72]. The distribution of
SNPs on each chromosome was relatively uniform, al-
though a few chromosomes contained relatively large
blank areas, especially chromosome X (Fig. 3). Chromo-
some 1 contained the greatest number of SNPs, whereas
chromosome 25 contained the fewest. The distribution of
MAF revealed that the MAF frequency increased with
MAF, suggesting that SNPs on the Illumina 150 K Bovine
BeadChip were selected for common SNPs. Xinjiang

Brown had the same property as other breeds used for de-
veloping the chip. LD decay fell off quickly within 10 kb
physical distance and then decreased slowly afterwards.

Principal component analysis
The experimental Xinjiang Brown population came from
four breeding herds. We used the Prcomp function in R to
perform a principal component analysis (PCA). The PCA
showed a clear population structure (Fig. 1). PC 1 showed
the separation between the individuals of herd 3 (blue) and
4 (red). Some individuals from herd 4 and herd 2 (green)
exhibited close relationships. Most individuals from herd 1
(black) clustered far away from the other herds.

Estimated breeding values
Genetic analysis was carried out using DMU [73] soft-
ware with the animal model as follows:

yijklm ¼ uþ Herdi þ Year j þ Seasonk þ Parityl þ am
þ eijklm;

where yijklm is the phenotype in the jth year, kth season,
and lth parity of the mth individual from ith herd; u is
overall mean of population, Herdi is the herd effect ac-
cording to a cow’s origin from one of the four herds;
Yearj is the j

th year effect, Seasonk is the kth season effect,
and Parity is the effect of lth parity; a is the additive

Fig. 3 Properties of single nucleotide polymorphisms (SNPs). In total, 403 Xinjiang Brown individuals were genotyped by the Illumina GGP 150 k
beadchip; 118,796 SNPs and 396 cattle passed filters and quality control. Marker distributions are displayed as the heatmap on 30 chromosomes
by minor allele frequency (MAF) (a). MAF was re-calculated after quality control. Therefore, some SNPs remain with MAFs larther than 0.05, as
shown by the histogram (b). Marker density is displayed by histogram according to the interval of adjacent SNPs (c). LD decay is shown by
scatter plot according to pairwise distance and trend as a red line (d)
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effect of mth individual and e is the residual in the jth

year, kth season, and lth parity of the mth individual from
ith herd. All effects were treated as random except the
overall mean.

Genome-wide association studies
The fixed and random model circulating probability uni-
fication (FarmCPU) method was used to carry out the
genome-wide association analysis in this study [42]. The
method uses a fixed effect model and a random effect
model iteratively. The fixed effect model tests SNPs one
at a time. The significant SNPs are evaluated in the ran-
dom effect model and the validated SNPs are fitted as
covariates in the fixed effect model to control population
structure. These SNPs are selected based on the likeli-
hood of using them to build the cryptic relationships
among individuals. The iteration stops when no vali-
dated SNPs can be added as covariates. Both real data
and simulated data has demonstrated that FarmCPU has
higher statistical power than other methods, including
the random effect model with kinship derived from all
the markers, to conduct association tests [42].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6224-x.

Additional file 1: Figure S1. Correlations and distributions of
phenotypes, EBVs (estimated breeding values), and residuals. The
histograms on the diagonal are the distributions for each trait: MY =milk
yield, FY = fat yield, PY = protein yield, FP = fat percentage, PP = protein
percentage, SCS = somatic cell score, AFS = age at first service, AFC = age
of first calving, GL = gestation length, and CI = calving interval. The upper
triangle is comprised of the correlation coefficients among traits. The
lower triangle is comprised of the pairwise scatter plots. Graphs a, b, c
illustrate milk trait phenotypes, EBVs, and residuals, respectively. Graphs d,
e, f illustrate reproduction trait phenotypes, EBVs, and residuals,
respectively.

Additional file 2: Figure S2. Heatmap of milk and reproductive traits.
Individuals are sorted row wise and traits column wise based on their
similarity. The trait values were standardized and illustrated as heat map
with red indicating highest and yellow the lowest. MY =milk yield, FY =
fat yield, PY = protein yield, FP = the fat percentage, PP = protein
percentage, SCS = somatic cell score, AFS = age at first service, AFC = age
of first calving, GL = gestation length, and CI = calving interval.

Additional file 3: Figure S3. Display of significant markers as visible
bands at different width. The number significant markers were
determined by the P-value cut off with three levels illustrated on the left.
The significant markers are displayed as bands with width indicated on
the top starting from 100 kb to 10,000 kb. More bands are visible with
wider bands than narrow bands. Wide band and less stringent P value
threshold (e.g. to right) demonstrate pleiotropy of significant markers
across traits. These traits include milk yield (MY), fat yield (FY), protein
yield (PY), fat percentage (FP), protein percentage (PP), and somatic cell
score (SCS). Reproductive traits include age at first service (AFS), age at
first calving (AFC), gestation length (GL), and calving interval (CI).

Additional file 4: Figure S4. Scatter plot between principal
components and trait phenotypes. We used these plot to determine
which traits were correlated with population structure, represented by
principal components (PC). Columns represent the first three principal
components, rows represent each trait. Milk traits include milk yield (MY),

fat yield (FY), protein yield (PY), fat percentage (FP), protein percentage
(PP). and somatic cell score (SCS). Reproductive traits include age at first
service (AFS), age at first calving (AFC), gestation length (GL), and calving
interval (CI).

Additional file 5: Figure S5. Manhattan and Q-Q plots of non-
significant GWAS results. GWAS was performed with FarmCPU software
and a significant p-value threshold set at P = 10–7. Four of the 10 traits
studied, milk yield (MY), fat yield (FY), protein percentage (PP), and age at
first calving (AFC), resulted in no SNPs passing the Bonferroni threshold,
as illustrated by the Manhattan plots on the left. On the right, Q-Q plots
are displayed as scatter plots of true and expected log p-values.

Additional file 6: Figure S6. Manhattan and Q-Q plots of GWAS results,
without considering population structure. These Manhattan plots (left)
illustrate results from an association analysis model that did not consider
population structure. GWAS was performed with FarmCPU software and
a significant p-value threshold set at P = 10–7. Q-Q plots (right) are
displayed as scatter plots of true and expected log p-values. Milk traits
include milk yield (MY), fat yield (FY), protein yield (PY), fat percentage
(FP), protein percentage (PP), and somatic cell score (SCS). Reproductive
traits include age at first service (AFS), age at first calving (AFC), gestation
length (GL), and calving interval (CI).

Additional file 7: Table S1. Genomic inflation factor (lambda) of each
trait.
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