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Abstract: Analysis of metabolomics has been suggested as a promising approach for early detection
of colorectal cancer and advanced adenomas. We investigated and compared the metabolomics
profile in blood, stool, and urine samples of screening colonoscopy participants and aimed to evaluate
differences in metabolite concentrations between people with advanced colorectal neoplasms and
those without neoplasms. Various types of bio-samples (plasma, feces, and urine) from 400 partici-
pants of screening colonoscopy were investigated using the MxP® Quant 500 kit (Biocrates, Innsbruck,
Austria). We detected a broad range of metabolites in blood, stool, and urine samples (504, 331, and
131, respectively). Significant correlations were found between concentrations in blood and stool,
blood and urine, and stool and urine for 93, 154, and 102 metabolites, of which 68 (73%), 126 (82%),
and 39 (38%) were positive correlations. We found significant differences between participants with
and without advanced colorectal neoplasms for concentrations of 123, 49, and 28 metabolites in blood,
stool and urine samples, respectively. We detected mostly positive correlations between metabolite
concentrations in blood samples and urine or stool samples, and mostly negative correlations be-
tween urine and stool samples. Differences between subjects with and without advanced colorectal
neoplasms were found for metabolite concentrations in each of the three bio-fluids.

Keywords: metabolomics; liquid biopsy; colorectal neoplasms; urine; feces; plasma

1. Introduction

Colorectal cancer (CRC) is the third most common cancer type worldwide [1]. It
develops over a long period of time through the adenoma-carcinoma sequence in most
cases [2]. Metabolic changes occur early during the course of carcinogenesis [3]. Many
of the dysregulated metabolites can be linked to CRC but it is still not clear to what
extent metabolic perturbation or metabolic alterations are causes, indicators of causes or
consequences of tumor development [4].

As cancer is a very heterogeneous disease it seems to be clear that one altered metabolic
pathway might not be sufficient for characterization of metabolic changes associated with
tumorigenesis [5]. For the assessment of metabolic changes in early detection of adenomas
investigation of tissue samples or tissue biopsies is not the method of choice because of the
invasiveness of such an approach. In addition, early cancer stages might be neither easily
detected nor accessible for biopsies.
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For cancer prevention and early detection, there is a strong need for non-invasive
technologies and easily accessible body-fluids, so called liquid biopsies. Metabolomics
are closely related to the phenotype and therefore of great interest to and in focus of
many researchers investigating biomarkers or biomarker signatures for early detection of
CRC [6–8] or advanced adenomas [9–12]. So far, most research groups have investigated
metabolomics changes only in one body-fluid. However, changes of metabolic pathways
favoring carcinogenesis might go along with changes in metabolomics markers not only in
one but in several body-fluids.

To our knowledge, no study so far has investigated and compared the metabolic profile
of people with and without advanced colorectal neoplasms in three different bio-fluids
(plasma, stool, and urine). In this study, we used the MxP® Quant 500 Kit (Biocrates Life
Sciences AG, Innsbruck, Austria) to measure, in parallel, a broad spectrum of metabolites in
human blood, urine and fecal samples of participants of screening colonoscopy. We thereby
aimed for a comprehensive comparison of metabolic profiles between the various bio-
fluids, and their relationship with questionnaire data and findings at screening colonoscopy.
Objectives of this study were to assess similarities as well as differences in the metabolic
profile of individuals with and without colorectal neoplasms and possible correlations of
the metabolites in the different bio-fluids.

2. Materials and Methods
2.1. Study Design and Population

Participants of screening colonoscopy were recruited in the GEKKO study (Gebt
dem Krebs keine Chance—Onkocheck). In this ongoing multi-center study we aimed to
evaluate novel noninvasive cancer early detection markers, participants are recruited at a
pre-colonoscopy visit to gastroenterological practices in South-West Germany. Participants
30 years or older, speaking and understanding the German language with no previous
colonoscopy in the last 5 years, no personal history of CRC, and no inflammatory bowel
disease are eligible to participate. The study was approved by the ethics committees of
the Medical Faculty Heidelberg and of the physicians’ boards of Baden-Württemberg and
Rhineland Palatinate. The study was performed in accordance with the Declaration of
Helsinki. Written informed consent is received from all participants.

Upon receipt of written informed consent, participants are asked to fill in a question-
naire regarding lifestyle and demographic data and to provide blood, stool, saliva, and
urine samples for biomarker analyses prior to colonoscopy. Findings at colonoscopy are
abstracted from colonoscopy and histology reports independently by two trained investiga-
tors who are blinded with respect to questionnaire data and results of biomarker analyses.
Participants are classified according to the most advanced finding at colonoscopy: CRC,
advanced adenoma (defined by either adenoma >1 cm in size or tubulovillous or villous
components or high-grade dysplasia), non-advanced adenoma, hyperplastic polyp, or
none of these findings [13].

Among 2416 GEKKO participants recruited between January 2016 and August 2019, a
total of 400 participants aged 50–79 years were selected as outlined in Figure 1. We selected
all eligible participants with either advanced adenoma (n = 159) or CRC (n = 12), as well as
a random sample of 229 participants free of neoplasms or hyperplastic polyps for whom
all three types of biospecimen (blood, stool, and urine) as well as questionnaire data were
available. For the control group free of neoplasms or hyperplastic polyps, incomplete
colonoscopy and inadequate bowel preparation were additional exclusion criteria in order
to minimize the risk of false negative colonoscopy results.

2.2. Sample Collection and Handling

All bio-samples were collected prior to colonoscopy. Blood and urine samples were
processed within 4 h according to standard operating procedures (SOPs) and immediately
stored at −80 ◦C.
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Figure 1. Flow diagram with inclusion and exclusion criteria.

Native stool samples were collected by the participants at home from a normal bowel
movement prior to bowel preparation for colonoscopy with standard stool collection tubes
including a small spoon. The stool samples were frozen by the participants at −20 ◦C
at home. Participants were asked to document the time of sampling and the storage
temperature. The stool samples were taken by the participant in a freeze-cool transport
container and in an isolated envelope to the gastroenterologists’ practices, where they
were immediately frozen again at −20 ◦C. The samples were delivered within the week of
receipt by a transport service on dry ice to the GEKKO study laboratory at the National
Center for Tumor Diseases (NCT) in Heidelberg where they were frozen at −80 ◦C.

2.3. Processing of the Samples

In total, 630 metabolites covering 14 small molecule and 12 different lipid classes were
analyzed using the MxP® Quant 500 kit (Biocrates Life Sciences AG, Innsbruck, Austria)
following the manufacturer’s protocol.

In brief, 10 µL human plasma were pipetted on a 96-well-plate containing internal
standards, dried under a nitrogen stream using a positive pressure manifold (Waters,
Milford, MA, USA) and 50 µL 5% phenyl isothiocyanate (PITC) solutionwere added to
each well to derivatize amino acids and biogenic amines. After 1h incubation time at room
temperature, the plate was dried again. To extract the metabolites 300 µL 5 mM ammonium
acetate in methanol were pipetted to each filter and incubated for 30 min. The extract was
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eluted into a new 96-well-plate using positive pressure. For further LC-MS/MS analyses
150 µL of the extract was diluted with an equal volume of water. For FIA-MS/MS analyses
10 µL extract was diluted with 490 µL FIA solvent (provided by Biocrates, Innsbruck,
Austria). After dilution, LC-MS/MS and FIA-MS/MS measurements were performed. For
chromatographical separation an UPLC I-class PLUS (Waters, Milford, MA, USA) system
was used coupled to a SCIEX QTRAP 6500+ mass spectrometry system in electrospray
ionization (ESI) mode. Data was generated using the Analyst (Sciex) software suite and
transferred to the MetIDQ software (version Oxygen; Biocrates Life Sciences AG, Innsbruck,
Austria) which was used for further data processing and analysis. All metabolites were
identified using isotopically-labeled internal standards and multiple reaction monitoring
(MRM) using optimized MS conditions as provided by Biocrates (Innsbruck, Austria). For
quantification either a seven point calibration curve or one point calibration was used
depending on the metabolite class.

Urine samples were processed similar to the blood samples with no prior preparation.
Additionally, in every well (except for the blank) an internal standard (creatinine) was
added before urine or the standards were pipetted onto the plate. Metabolite concentrations
were normalized to the creatinine content.

In a pilot study including 3 stool samples from different people, 8 different protocols
for sample preparation were evaluated. The protocol with a stable high number of detected
metabolites was finally chosen for the 400 stool samples of the GEKKO study. In brief, 50 mg
native stool samples were mixed with 200 µL iced ethanol (75%) and vortexed for 2 min.
The mixture was then sonicated in an ultrasonic bath on ice-cooled water. Afterwards,
500 µL methyl tert-butyl ether (MTBE) were added and the mixture was shaken at room
temperature for 1 h (800–900 rpm). For phase separation, 125 µL water was added to the
mixture, vortexed for 2 min and incubated for 10 min at room temperature. The mixture was
centrifuged for 15 min at 4 ◦C at full speed (21,000× g) and the supernatant (both phases)
then transferred to another tube. The supernatant was then completely dried in a vacuum
concentrator (SpeedVac, Concentrator plus, Eppendorf, Hamburg, Germany) without any
temperature manipulation (max. 30 ◦C) and stored at −80 ◦C until measurement with the
Mxp® Quant 500 kit (Biocrates, Innsbruck, Austria). The dried samples had to be resolved
before measurements. Therefore, 50 µL 100% isopropanol were added into the vial and the
mixture was vortexed for 3 min at room temperature. Additionally, 50 µL 30% isopropanol
were added and again vortexed for 3 min at room temperature. A short centrifugation
(5 sec) separated the solid substances from the liquid phase which was used for further
analysis. Data were normalized with a tissue factor assuming that 1 mg tissue equals 1 µL
tissue or stool.

2.4. Statistical Analyses

Demographic characteristics of the study population were described. A dietary quality
score and a healthy lifestyle score reflecting smoking status, alcohol intake, diet, physical
activity, and BMI was calculated from questionnaire data as previously described [14,15]
and outlined in Table S1. Differences between participants with and without advanced
neoplasms were tested for statistical significance using chi-square test (categorical variables)
or Mann–Whitney U test (continuous variables).

Metabolite concentrations in urine, blood, and stool were calculated. We investigated
the number and classes of metabolites in blood, urine, and stool samples for which the
mean concentrations of the metabolite were above the limit of detection (LOD) among
participants without advanced neoplasms. We defined those metabolites as detectable in
the respective sample type and assessed how many metabolites were detectable in more
than one of the tested bio-fluids.

Moreover, we assessed the correlation of the metabolites between the different bio-
fluids using Spearman rank correlation coefficients, both for the total study population as
well as separately for the subgroups of participants with and without advanced neoplasms.
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Differences in metabolite concentrations in each type of biospecimen between par-
ticipants with and without advanced colorectal neoplasms were evaluated for statistical
significance using Mann–Whitney U test.

A p-value < 0.05 (two-sided testing) was considered to indicate statistical significance
in any of the analyses. Analyses were conducted with SAS Enterprise Guide 7.1 (SAS
Institute Inc., Cary, NC, USA).

3. Results
3.1. Study Population

The selection of the 171 and 229 study participants with and without advanced colorec-
tal neoplasms is shown in Figure 1. Only those participants with available questionnaire
data, plasma, urine and native stool samples were included.

Among the participants with advanced colorectal neoplasms, 60% were male and
mean age was 64.1 years and among those with no finding at colonoscopy 54% were
male and mean age was 60.9 years (Table 1.). The majority of the participants were
never smokers. More participants with advanced neoplasms (19%) were current smokers
compared to participants with no finding at colonoscopy (10%). Study participants with
no finding at colonoscopy had a more favorable lifestyle compared to those with advanced
colorectal neoplasms.

Table 1. Characteristics of the study participants.

Characteristics
No Neoplasms AA/CRC

p Value 1

n = 229 n = 159/12

Sex, n (%)
Female 106 (46%) 68 (40%) 0.19
Male 123 (54%) 103 (60%)

Age, n (%)
50–59 years 122 (53%) 61 (36%) 0.0006
60–69 years 65 (28%) 55 (32%)
70–79 years 42 (18%) 55 (32%)
Mean, (SD) 60.9 (±8.0) 64.1 (±8.6) 0.0002

Smoking status, n (%)
Current 23 (10%) 32 (19%) 0.0031
Former 79 (34%) 71 (42%)
Never 127 (55%) 68 (40%)

BMI (kg/m2), mean 26.1 (±4.2) 26.9 (±4.6) 0.06
Alcohol consumption (g/day), mean

Women 6.1 (±10.2) 8.8 (±34.7) 0.17
Men 9.0 (±12.1) 13.9 (±14.5) 0.007

Leisure time physical activity
MET-h/week, mean (SD) 42.7 (±57.6) 37.3 (±41.4) 0.08

Dietary quality score, mean 2 31.0 (±6.7) 28.7 (±6.7) 0.0005
Healthy Lifestyle score 2

4 or 5 points 99 (43%) 50 (29%) 0.0005
3 points 96 (41%) 66 (39%)

0 or 1 or 2 points 34 (15%) 55 (32%)
Abbreviations: AA, advanced adenomas; BMI, body mass index; CRC, colorectal cancer; MET, metabolic equiv-
alent of task; SD, standard deviance; 1 p-values were calculated with Chi-square test (categorical variables) or
Mann–Whitney U test (continuous variables); 2 BMI n = 11 are missing, Dietary quality score n = 3 are missing.
Missing values are ranked 0 points for the Healthy Lifestyle score.

3.2. Metabolite Profiles in Various Human Bio-Samples

We were able to detect a broad range of different metabolites in each bio-fluid. The
metabolites with the mean greater than the LOD among the participants without advanced
neoplasms were regarded as present in the specific bio-fluid (before normalization to the
tissue factor in stool and to creatinine in urine). We detected 504 metabolites in plasma,
331 in stool and 131 in urinary samples (Table S2). Amino acids were present in all the
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investigated biosamples. In total, 93 metabolites were present in all three bio-fluids (many
amino acids and amino acid related metabolites), 210 were present in plasma and stool
only, 15 in plasma and urine only and 6 in stool and urine only (Figure 2.). Some other
metabolites were only present in one of the investigated bio-fluids (186 in plasma, 22 in
stool and 17 in urine). For 81 metabolites the mean concentrations were below the LOD in
any of the bio-fluids, such as some of the acylcarnitines, diacylglycerols, or nitro-tyrosine.
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Figure 2. Venn diagram of metabolites measurable in plasma, feces, and urine.

3.3. Correlation of Metabolites in Liquid Biopsies

We calculated the Spearman rank correlation coefficient to assess correlations of the
metabolites in the respective bio-fluids (Table 2). We found fecal and urinary metabolites to
be more frequently negatively correlated, whereas urinary and blood as well as stool and
blood metabolites were more frequently positively correlated. A total of 68 metabolites
were significantly positively correlated between blood and stool samples, 126 metabolites
were positively correlated between blood and urine samples, and 63 metabolites were
negatively correlated between stool and urine samples. A similar picture was seen for
the subgroups of individuals with and without advanced colorectal neoplasms (Figure 3).
We assessed for the total study population the chemical subclasses of the metabolites that
were significantly correlated. Most positive correlations were seen in the blood vs. stool
comparisons for acylcarnitines and amino acid related metabolites and in the blood vs.
urine comparisons for amino acids and amino acid related metabolites as well as bile acids,
acylcarnitines and glycerophospholipids. Most negative correlations for the stool vs. urine
comparisons were seen for acylcarnitines, cholesteryl esters and triglycerides.

3.4. Differences in Metabolite Concentrations between Participants with and without Advanced
Colorectal Neoplasms

We found significant differences in metabolite concentration in the different bio-fluids
when participants with advanced colorectal neoplasms were compared to those without
any finding at colonoscopy (Table S3). No metabolite showed significantly different levels
in all investigated bio-fluids. We found 133, 98, and 80 metabolites in plasma, stool and
urine, respectively, which were significantly different between participants with advanced
colorectal neoplasms and individuals without any finding at colonoscopy. Most prominent
changes were diacylglycerols and triacalglycerols in stool samples, glycerophospholipids,
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and nucleobase related metabolites in blood and amino acids (especially Ala) and hexoses
in urine samples.

Table 2. Spearman Correlation Coefficients between metabolites in different bio-fluids.

Total
Blood vs. Stool Blood vs. Urine Stool vs. Urine

Pos.
n (%)

Neg.
n (%)

Pos.
n (%)

Neg.
n (%)

Pos.
n (%)

Neg.
n (%)

Correlation −0.5 to ≤−0.4 1 (0.16) 0 0
Correlation −0.4 to ≤−0.3 1 (0.16) 2 (0.32) 1 (0.16)
Correlation −0.3 to ≤−0.2 8 (1.27) 11 (1.77) 11 (1.77)
Correlation −0.2 to ≤−0.1 38 (6.04) 52 (8.36) 88 (14.13)
Correlation −0.1 to ≤0.0 201 (31.96) 183 (29.42) 266 (42.70)
Correlation 0.0 to ≤0.1 268 (42.61) 233 (37.46) 188 (30.18)
Correlation 0.1 to ≤0.2 80 (12.72) 82 (13.18) 59 (9.47)
Correlation 0.2 to ≤0.3 21 (3.34) 20 (3.22) 9 (1.44)
Correlation 0.3 to ≤0.4 2 (0.32) 10 (1.61) 0
Correlation 0.4 to ≤0.5 3 (0.48) 10 (1.61) 1 (0.16)
Correlation 0.5 to ≤0.6 4 (0.64) 5 (0.80) 0
Correlation 0.6 to ≤0.7 1 (0.16) 4 (0.64) 0
Correlation 0.7 to ≤0.8 1 (0.16) 4 (0.64) 0
Correlation 0.8 to ≤0.9 0 5 (0.80) 0

Correlation 0.9 to ≤1.00 0 1 (0.16) 0

Significant correlations

Total study population 630 68 25 126 28 39 63
Participants without

neoplasms 630 59 25 114 28 20 49

Participants with advanced
colorectal neoplasms 630 54 20 88 34 27 42

Total study population, significant correlations

Alkaloids 1 1 0 1 0 1 0
Amine Oxides 1 0 0 1 0 1 0
Amino Acids 20 1 0 17 0 5 0

Amino acid related 30 11 1 26 1 10 3
Bile Acids 14 3 1 13 0 2 1

Biogenic Amines 9 1 0 3 0 1 1
Carbohydrates and related 1 0 0 0 0 0 0

Carboxylic Acids 7 1 0 3 0 0 0
Cresols 1 0 0 1 0 0 0

Fatty Acids 12 6 2 1 5 0 2
Hormones and related 4 2 0 4 0 0 0

Indoles and Derivatives 4 2 0 3 0 1 0
Nucleobases and related 2 0 0 2 0 0 0
Vitamins and Cofactors 1 0 0 1 0 0 0

Acylcarnitines 40 17 6 15 8 4 19
Glycerophospholipids

(Lysophosphatidylcholines
and Phosphatidylcholines)

90 5 3 18 3 1 2

Sphingomyelins 15 0 1 0 1 0 0
Cholesteryl Esters 22 3 1 2 2 0 11

Ceramides 28 5 1 2 1 1 0
Dihydroceramides 8 0 0 1 1 0 1

Glycosylceramides (Mono-,
Di-, and Trihexosylceramides) 34 0 0 0 0 1 0

Diglycerides 44 3 5 7 2 0 9
Triglycerides 242 7 4 5 4 11 14
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4. Discussion

A variety of metabolites could be measured in human different human bio-fluids
(blood, stool, and urine) from participants of screening colonoscopy with the MxP® Quant
500 kit (Biocrates, Innsbruck, Austria). Metabolite concentrations vary between different
human bio-fluids and between study participants with advanced colorectal neoplasms and
without neoplasms or hyperplastic polyps. We found predominantly positive correlations
when comparing blood and urine as well as blood and stool metabolite concentrations and
predominantly negative correlations for stool vs. urine comparisons.

Metabolomics studies on different samples types or different liquid biopsies in early
detection of CRC are sparse. A study from Lin et al. investigated CRC tissue and fecal
samples and found different metabolic changes between CRC tissues and corresponding
fecal samples. The fecal metabolite profile might reflect the tumor microenvironment in
the gut [16]. Another study from the USA had similar findings and showed overlapping
but as well a range of distinct metabolites from CRC tissue and feces concluding that these
metabolites are not directly associated [17]. Similarly, studies on various cancer types did
not find clear associations of the cell metabolome with metabolomics findings in urine or
blood samples [18]. A German study investigating adipose tissue and blood samples from
CRC patients found only low correlations between serum and adipose tissue metabolites,
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however moderate correlations for triglycerides of adipose tissue and sphingomyelins of
serum were detected [19]. To our knowledge, ours is the first study to directly compare
different liquid biopsies taken from the same participant at one timepoint and to get a
broad look on the metabolic profile in different human bio-fluids within and amongst
participants of a study conducted in a real life screening setting.

The approach of combining the analysis of different bio-fluids for metabolomics
research in order to provide a broad look at the metabolic profile specific for a disease has
already been proposed a few years ago [20], but, to our knowledge, has not been performed
systematically so far. The combination of different bio-fluids or other -omics approaches
might improve diagnostic performance and should come into focus in future research.

Additionally, we found significant differences in metabolite concentrations between
the three bio-fluids. A look at the role of each of these fluids in the human body might
explain some of the observed differences. Blood passes every part in the body, is transport
medium of various molecules, and metabolite concentrations are tightly regulated while
giving important information on the physiological status [18]. In contrary, urine and stool
are excreted from the body, yet they cannot be regarded as simple “waste products” as it
was done earlier. Urine contains a lot of water-soluble and metabolic by-products which
can be used for diagnostic or prognostic purposes [21,22]. In human feces small compounds
and metabolites can be found in the dry mass that can be used for metabolomics studies.
Stool may directly reflect the tumor microenvironment through its transit in the gut and
the direct contact to the tumor and might therefore be a potential source for biomarkers
for early detection [23]. A study investigating the metabolome of stool and tissue found
that a biomarker combination for stool and as well for tissue was able to differentiate
between CRC cases and healthy controls. The authors concluded from the overlapping
markers metabolic pathways perturbations that are characteristic for CRC such as glucose
and glycolytic activity, tricarboxylic acid cycle, glutaminolysis, and metabolism of short
chain fatty acids [16]. Another study showed differences of metabolisms of short chain
fatty acids and the glycolytic/gluconeogenic pathway when investigating tissue and fecal
samples [17].

We found predominantly positive correlations for blood vs. stool and vs. urine
and predominantly negative correlations for urine vs. stool. Blood is an extra-cellular
fluid that passes every organ in the body and reflects the metabolic phenotype of the
organism [18]. Water-soluble compounds are filtered in the kidneys and excreted with
the urine. Human feces in contrast contains endogenous and exogenous components and,
besides variable amounts of water, solid material from bacteria or undigested food and
many other components contributing to the stool metabolome [24]. The predominantly
positive correlations between blood and stool and blood and urine concentrations appear
plausible given that specific metabolites from blood are either excreted via urine or stool.
The predominantly negative correlations between urine and stool concentrations on the
other hand may reflect the fact that specific metabolites are either excreted in urine or in
stool and might therefore not be present in both body excretions.

Moreover, we detected significant differences in metabolite concentrations between
study participants with advanced colorectal neoplasms and individuals with no neoplasms
in each of the different bio-fluids. Most significant differences were seen among the
metabolite concentrations in blood. There exist already a range of metabolomics studies in
different liquid biopsies for CRC detection, diagnosis, and prognosis but, to our knowledge,
no study so far has investigated all three bio-fluids (blood, urine, stool) in a prospective
screening study. Metabolites are useful for distinguishing CRC cases from people without
advanced neoplasms in various bio-fluids but there is no consensus which metabolite or
metabolite panels are the most suitable biomarkers [7].

The vast majority of our study participants with advanced colorectal neoplasms had
advanced adenomas but no CRC yet. Even for such a case group mostly consisting of
carriers of cancer precursors, which represents a major target group of CRC screening, we
were able to detect metabolic differences from participants without colorectal neoplasms.
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One could postulate that not only the tumor itself is responsible for metabolic changes, but
that metabolic perturbations might be responsible for carcinogenic growth [25]. This so
called-metabolic reprogramming can be caused by inactivation of tumor-suppressor genes
or activation of proto-oncogenes as a consequence of mutations [26]. One study has found
that this occurs already in the adenoma stage before a tumor is manifested [27]. On the
other hand metabolites can introduce oncogenic effects by themselves [28]. Some metabolic
changes are advantageous for cell proliferation which is one hallmark of cancer such as
providing building blocks [5]. Finally, metabolic changes could simple be markers corre-
lated with cancer promoting dietary risk behaviors without a causal role in oncogenesis in
which case they could still be useful as biomarkers for risk stratification of early detection.

Regarding the heterogeneous result of metabolomics studies, one should think about
pre-analytics and other influencing factors. On the one hand, there exist no standard
operating procedure and uniform protocols for pre-analytics in order to make metabolomics
results from different studies comparable [29]. Storage temperature and processing delay
can effect metabolite concentration in blood samples [30]. Results of different studies are
not conclusive in their findings if metabolites are stable for a specific number of freeze-and-
thaw cycles or if freezing and thawing should be avoided whenever possible. Another
study found that metabolomics analyses are better reproducible when using fasting blood
samples compared to non-fasting samples [31]. Storage time and temperature also have
influence on the urinary metabolome and freeze-and-thaw cycles should be avoided with
regard to metabolite coverage [32]. In both blood and urine samples, amino acids are
one of the most sensitive and least stable classes of metabolites and freezing as soon as
possible is recommended [32,33]. To account for different hydration in urine sample,
various correction methods are available such as normalization to creatinine as we used
it in this analysis [34]. Moreover, stool is very heterogeneous itself and water content
can vary. Therefore, there is urgent need for a uniform sample preparation protocol. We
have shown in previous analysis that metabolite classes and concentrations are highly
dependent on the extraction method used [35]. On the other hand, the metabolome is
highly dependent on other factors such as age, lifestyle, diet, or antibiotics use which
cannot (easily) be standardized.

Our study has several strengths. To our knowledge, it is the first study investigating
three kinds of liquid biopsies (plasma, stool, and urine) from the same study participants
for metabolomics biomarkers under controlled (study standard operating procedures) and
reproducible conditions (MxP Quant 500 kit, Biocrates, Innsbruck Austria). Furthermore,
we included participants of a prospective screening cohort which is more appropriate for
biomarker development for early detection than the widely used case-control setting in
which biospecimen are taken from CRC patients after diagnosis. Samples were processed
according to a standard protocol within 4 h which ensures best possible sample quality. We
avoided freeze–thawing cycles by taking wet stool from the frozen total samples but other
researchers prefer homogenizing or drying the stool samples before doing metabolomics
analysis to decrease variability [36].

This study has also limitations. We used a cross-sectional design and samples were
taken at one time point. Despite the overall large size of the screening population from
which our study sample was drawn, the number of patients with CRC was rather low
(n = 12). While the low prevalence of CRC reflects the situation encountered in true screen-
ing settings, the small number of CRC cases prohibited meaningful separate analyses for
this subgroup of participants with advanced neoplasms. Although we processed samples
according to standardized procedures, urinary samples were taken from “spontaneous”
urine and blood samples were not taken under fasting conditions. In addition, partic-
ipants did not get a standardized diet before sample collection which might introduce
bias. Not only diet but also consumption of beverages or antibiotics can have an influence
on metabolomics.

In conclusion, we have provided a holistic look at the metabolic profile of individ-
uals without neoplasm and those with advanced colorectal neoplasms in a prospective
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screening cohort. We found a great number of metabolites in all investigated bio-fluids.
Metabolites from plasma samples compared with urine or feces were more predominantly
positively correlated whereas metabolites from stool compared to urine were predomi-
nantly negatively correlated. We found a range of metabolites to be differentially expressed
in bio-fluids (plasma, feces, and urine) from participants with advanced colorectal neo-
plasms and participants without neoplasms. Further research should aim for deriving and
validating metabolomic algorithms from various body fluids for risk stratification in CRC
screening and development of biomarkers for noninvasive early detection of advanced
colorectal neoplasia. The results of our study may provide important background data to
inform and design such studies.
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