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Diffusion Tensor-Derived Properties of Benign Oligemia, 
True “at Risk” Penumbra, and Infarct Core during  
the First Three Hours of Stroke Onset: A Rat Model
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Objective: The aim of this study was to investigate diffusion tensor (DT) imaging-derived properties of benign oligemia, 
true “at risk” penumbra (TP), and the infarct core (IC) during the first 3 hours of stroke onset.
Materials and Methods: The study was approved by the local animal care and use committee. DT imaging data were 
obtained from 14 rats after permanent middle cerebral artery occlusion (pMCAO) using a 7T magnetic resonance scanner 
(Bruker) in room air. Relative cerebral blood flow and apparent diffusion coefficient (ADC) maps were generated to define 
oligemia, TP, IC, and normal tissue (NT) every 30 minutes up to 3 hours. Relative fractional anisotropy (rFA), pure anisotropy 
(rq), diffusion magnitude (rL), ADC (rADC), axial diffusivity (rAD), and radial diffusivity (rRD) values were derived by 
comparison with the contralateral normal brain. 
Results: The mean volume of oligemia was 24.7 ± 14.1 mm3, that of TP was 81.3 ± 62.6 mm3, and that of IC was 123.0 ± 85.2 
mm3 at 30 minutes after pMCAO. rFA showed an initial paradoxical 10% increase in IC and TP, and declined afterward. The 
rq, rL, rADC, rAD, and rRD showed an initial discrepant decrease in IC (from -24% to -36%) as compared with TP (from -7% 
to -13%). Significant differences (p < 0.05) in metrics, except rFA, were found between tissue subtypes in the first 2.5 hours. 
The rq demonstrated the best overall performance in discriminating TP from IC (accuracy = 92.6%, area under curve = 0.93) 
and the optimal cutoff value was -33.90%. The metric values for oligemia and NT remained similar at all time points. 
Conclusion: Benign oligemia is small and remains microstructurally normal under pMCAO. TP and IC show a distinct 
evolution of DT-derived properties within the first 3 hours of stroke onset, and are thus potentially useful in predicting the 
fate of ischemic brain.
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INTRODUCTION

Ischemic penumbra (IP) is defined as non-functional but 
living brain tissue at risk of infarct following large vessel 
occlusion (1). This critical area of the ischemic zone, as 
opposed to the dead infarct core (IC), has long been the 
therapeutic target since the early trials with intravenous 
thrombolytic therapies (2, 3). It remains controversial 
whether imaging-defined IP should also include benign 
oligemia-which is hypoperfused, functionally normal, 
and not at risk of infarct-as the target of intervention 
(4). In the era of intra-arterial thrombectomy with a 
longer therapeutic time window, the need for improved 
discrimination of oligemia from true “at-risk” penumbra 
(TP) by non-invasive imaging methods has increased as 
the outcome of clinical stroke trials can be quantitatively 
measured (5).

With non-invasive magnetic resonance imaging (MRI), IP 
can be assessed by the mismatch between the diffusion-
weighted imaging hyperintensity (IC) and the perfusion-
weighted imaging (PWI) deficit (reduced cerebral blood 
flow) (6). While this method is clinically practical, there 
are inherent conceptual and technical flaws in perfusion 
measures (7). First, perfusion imaging does not reflect 
metabolic states of IP, which evolve dynamically. Second, 
the technical assumption for perfusion imaging, particularly 
deconvolution-based approaches, requires correct arterial 
input function and flows, without significant delay or 
dispersion. Furthermore, perfusion measures such as mean 
transit time and time to peak have not been standardized, 
and can easily be affected by delayed collaterals and flow 
dispersion. Therefore, rather than pursuing a mismatch 
concept, a direct measurement of microstructure injury 
of the brain to differentiate ischemic tissue such as IC, 
penumbra at risk, and benign oligemia is desirable.

Diffusion tensor imaging (DTI) is a relatively new 
technique for non-invasive delineation of cerebral micro-
structural changes. It measures tensor metrics, including 
eigenvalue magnitudes and anisotropy (8). Recent 
investigations have shown the feasibility of DTI in assessing 
the microstructure of the ischemic brain tissue (9, 10). 
DTI metrics, such as fractional anisotropy (FA), can be 
employed as surrogate markers in studying cell membrane 
integrity over time after injuries (7). Furthermore, a recent 
study reported the utility of DTI in determining the onset 
time of ischemic stroke by hours in a rat model with 
hyperoxygenation treatment (11). The purpose of this study 

was to investigate diffusion tensor (DT)-derived properties 
of benign oligemia, TP, and the IC during the first 3 hours 
of stroke onset under room air.

MATERIALS AND METHODS

Animal Preparations
This study was approved by the local institutional animal 

care and use committee. Fourteen male Sprague-Dawley 
rats (weight, 270–350 g; Taipei Medical University Animal 
Center, Taiwan) were used in this study. They were housed 
in a humidity- and temperature-controlled environment and 
placed under a 12:12-hour light:dark cycle, with free access 
to sterile food and water. All rats underwent permanent left 
middle cerebral artery occlusion (pMCAO) via an intra-luminal 
suture method based on the modified Zea Longa approach.

MRI
All animal imaging sessions were performed using a 7T 

scanner (PharmaScan 70/16; Bruker Biospin, Ettlingen, 
Germany). The rats were maintained under anesthesia using 
1.5–2% isoflurane and kept under regular room air during 
image acquisition. Rectal temperature was maintained at 
37°C using a warm water bath with continuous circulation 
through a water-bath temperature controller set outside the 
magnet. DTI was performed with six non-collinear diffusion-
encoding gradients with a b factor of 1200 s/mm2 plus one 
b = 0 s/mm2. Multi-shot echo-planar imaging (repetition 
time [TR] = 3000 ms, echo time [TE] = 37 ms, number of 
excitations = 6) with navigator-echo correction technique 
was used as the signal readout module. The longitudinal 
evolutions of DTI metrics of the rat brain were obtained 
by performing six sequential DTI scans for every rat, with 
the first scan performed at 30 minutes post-pMCAO, and 
then every 30 minutes up to 3 hours. PWI was performed 
at 30 minutes post-pMCAO using a dynamic susceptibility 
contrast (DSC) technique. A series of gradient-echo echo-
planar, coronal images with TR/TE of 1000/20 ms and 300 
repetitions were acquired. A bolus of the susceptibility 
contrast agent gadolinium-diethylenetriamine penta-acetic 
acid (0.25 mmol/kg; Magnevist, Bayer Schering Pharma, 
Berlin, Germany) was injected manually via the rat tail vein 
about 30 seconds after the start of image acquisition. The 
perfusion deficits were measured only once to calculate the 
perfusion/diffusion mismatch at 30 minutes and at the five 
follow-up time points. All image matrices were zero-filled to 
128 x 128 for further analyses.
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Data Analysis

Calculation of Relative Cerebral Blood Flow (rCBF) and 
DTI Metrics

The rCBF and DTI metrics were calculated and compared 
with those of the contralateral normal brain using in-house 
algorithms in MATLAB (MathWorks, Natick, MA, USA). For 
rCBF, the concentration-time curves were first obtained 
from signal-time curves of DSC perfusion imaging, with the 
recirculation effect being minimized via gamma-variate 
fitting (12, 13). The relative cerebral blood volume (rCBV) 
and relative mean transit time (rMTT) were then determined 
by the integral and the normalized first moment of the 
gamma variate fitting, respectively, as follows (14, 15):

where ΔR2 is the change in transverse relaxation rate and 
t is the time after bolus arrival. Using the central volume 
principle, rCBF is derived as the quotient of CBV divided 
by MTT (16). For DTI metrics, the eigenvalues (λ1, λ2, λ3) 
of each image voxel were computed, and then applied to 

derive the mean diffusivity (MD), FA, pure anisotropy (q), 
diffusion magnitude (L), axial diffusivity (AD), and radial 
diffusivity (RD) (10, 17-20) (Fig. 1). The equations are 
illustrated as follows: 

Delineation of TP, IC, and Oligemia
Infarct core was defined as a hypodense area in the 

apparent diffusion coefficient (ADC) map at 30 minutes 
post-pMCAO (Fig. 2A) while IC3h was the same growing 
hypodense area at 3 hours (Fig. 2B). Perfusion deficit 
was first defined at 30 minutes post-pMCAO (Fig. 2C). 
Regions ipsilateral to pMCAO with reduction in rCBF 
below 63% of the contralateral homologous brain were 
considered as CBF deficits (21). The rCBF map was then 
co-registered to the ADC maps of each follow-up time 
point to delineate the perfusion-diffusion mismatch, with 
the threshold of abnormal ADC change set at 70% of the 
normal contralateral cerebral hemisphere (19, 22). Based 
on the results, IC was defined as regions showing rCBF 

Fig. 1. Maps of DTI metrics measured at 30 minutes post pMCAO. 
Note relative hypointensity changes within hemisphere ipsilateral to pMCAO on maps of q (B), L (C), MD (D), AD (E), and RD (F), with 
exception of FA (A) which shows symmetrical signal intensity. AD = axial diffusivity, DTI = diffusion tensor imaging, FA = fractional anisotropy, 
L = diffusion magnitude, MD = mean diffusivity, pMCAO = permanent middle cerebral artery occlusion, q = pure anisotropy, RD = radial diffusivity 

A B C D E F

Fig. 2. Definitions of oligemia, TP, IC, and final infarct (IC3h) in pMCAO rat. 
IC was defined as hypodense area in apparent diffusion coefficient map at 30 minutes post pMCAO (A) while IC3h was same growing hypodense 
area at 3 hours (B). Perfusion deficit at 30 minutes post pMCAO is shown in (C). Perfusion-diffusion mismatch is illustrated in (D) where red 
indicates IC and white perfusion deficit (including oligemia and TP) at 30 minutes post pMCAO. Oligemia (green in E, F) was defined as CBF0.5h 
- IC3h mismatch. TP (orange in F) was difference between IC3h and IC at 30 minutes. CBF = cerebral blood flow, IC = infarct core, TP = true 
penumbra 

A B C D E F
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values < 63% and ADC < 70%, while TP and oligemic tissues 
were delineated together as regions showing rCBF values 
< 63% and ADC > 70% (Fig. 2D). Regions without CBF 
deficit within the ipsilateral brain were defined as normal 
tissue (NT). To differentiate benign oligemia from TP, we 
compared the initial extent of CBF deficit at 30 minutes 
post-pMCAO (CBF0.5h) with the region of IC at 3 hours (IC3h) 
(Fig. 2E), which was previously shown to be equivalent to 
the final infarct area at 24 hours post-pMCAO (23) (Fig. 
2D). Based on the notion that TP will irreversibly progress 
to IC in the absence of timely reperfusion while oligemic 
tissue will not, the region of oligemia was hence extracted 
by excluding the region of IC3h from that of CBF0.5h after 

image co-registration, i.e., CBF0.5h–IC3h mismatch (Fig. 2F). 
This method was repeated at each following time point to 
obtain the respective regions of IC, TP, and oligemic tissue 
in all rats. Finally, once the regions of interest (ROIs) of 
TP, IC, NT, and oligemia were depicted by the mismatches, 
the relative DTI metrics, including relative MD (rMD), rAD, 
rRD, rFA, rL, and rq values, were derived and expressed as 
percentages of the corresponding values in the homologous 
contralateral brain as follows: rX = (Xipsilateral - Xcontralateral) 
/ Xcontralateral, where X indicates the value of the particular 
index. In addition, all ROIs were transposed onto DT maps 
at each time point for testing regional differences and time-
courses analyses.

Fig. 3. Temporal evolution of DTI metrics within 3 hours post-pMCAO in oligemia, TP, and IC. 
In particular, significant differences (p < 0.05) in DTI metrics between oligemia, TP, and IC, including rFA (A), rq (B), rL (C), rMD (D), rAD (E), 
and rRD (F) are highlighted across time points. *TP vs. oligemia, †TP vs. IC. rAD = relative AD, rFA = relative FA, rL = relative L, rMD = relative 
MD, rq = relative q, rRD = relative RD
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Statistical Analysis 
Statistical tests were performed using SPSS® for Windows 

software (Version 18.0; SPSS Inc., Chicago, IL, USA) to 
determine whether the pMCAO DTI metrics can be used to 
discriminate TP from IC, oligemia, and NT, regardless of the 
time effect. ANOVA with post hoc analysis was employed 
to evaluate whether the means of DTI metrics were 
significantly different between the TP, IC, oligemia, and 
NT regions at each imaging time point. Receiver operating 
characteristic (ROC) curve analyses were performed to 
determine the discriminative capability of the diffusion 
metrics to differentiate NT, oligemia, TP, and IC at each 
time point. A p value < 0.05 was considered statistically 
significant. 

RESULTS

Temporal Evolutions of DTI Metrics among Tissue Types 
Figure 1 illustrates the maps of DTI metrics at 30 minutes 

post-pMCAO. The q, L, MD, AD, and RD maps demonstrate 
initial hypointensity changes in the ischemic areas while 
the FA map exhibits symmetrical signal intensity. Figure 
3 shows the temporal evolutions of DTI metrics in IC, TP, 
and oligemia from 30 minutes post pMCAO to 3 hours. All 
the metrics among different tissue types showed a trend 
of decline with time, with the exception of rFA, which 
displayed a paradoxical 10% increase in IC and TP in the 
first 60 minutes, followed by a subtle steady decrease to 
close to zero (i.e., nearly identical to the contralateral 

Table 1. Measurements of Relative DTI Metrics in IC, TP, Oligemia and NT as Compared to Contralateral Homologous Normal Brain 
at Each Time Point (All Numbers in Percentages)

DTI metrics* 30 Min 60 Min 90 Min 120 Min 150 Min 180 Min
IC

rFA 14.17 ± 1.49 13.40 ± 2.19 8.66 ± 2.23 5.04 ± 2.15 1.62 ± 2.16 -0.90 ± 1.92
rq -24.08 ± 1.14 -30.46 ± 1.44 -37.03 ± 1.20 -40.41 ± 1.60 -43.64 ± 1.72 -45.35 ± 1.51
rL -33.21 ± 0.72 -38.45 ± 1.15 -41.44 ± 1.38 -42.66 ± 1.32 -43.78 ± 1.40 -44.44 ± 1.17
rMD -33.97 ± 0.73 -39.20 ± 1.20 -41.88 ± 1.44 -42.93 ± 1.36 -43.94 ± 1.43 -44.46 ± 1.19
rAD -31.68 ± 0.73 -37.10 ± 1.11 -40.76 ± 1.27 -42.41 ± 1.29 -43.88 ± 1.39 -44.82 ± 1.15
rRD -35.80 ± 0.80 -40.88 ± 1.34 -42.78 ± 1.62 -43.34 ± 1.50 -44.01 ± 1.56 -44.17 ± 1.32

TP
rFA 4.58 ± 1.28 10.24 ± 1.90 12.32 ± 1.74 8.77 ± 1.42 6.72 ± 1.49 4.73 ± 1.64
rq -6.94 ± 1.39 -14.20 ± 1.73 -19.33 ± 2.10 -26.35 ± 2.03 -30.60 ± 2.83 -36.98 ± 2.72
rL -11.37 ± 1.24 -22.36 ± 1.50 -28.43 ± 2.04 -33.00 ± 1.97 -36.26 ± 2.24 -40.79 ± 1.83
rMD -11.88 ± 1.31 -23.17 ± 1.54 -29.45 ± 2.02 -33.71 ± 1.96 -36.95 ± 2.18 -41.37 ± 1.71
rAD -10.69 ± 1.18 -20.95 ± 1.45 -26.82 ± 2.01 -31.81 ± 1.99 -35.25 ± 2.35 -40.20 ± 1.97
rRD -12.88 ± 1.47 -24.97 ± 1.72 -31.68 ± 2.07 -35.34 ± 1.95 -38.40 ± 2.06 -42.42 ± 1.50

Oligemia
rFA 1.62 ± 1.06 3.77 ± 1.66 4.79 ± 2.05 6.13 ± 1.89 4.47 ± 1.58 7.56 ± 2.39
rq -0.59 ± 1.23 1.31 ± 1.70 0.76 ± 1.80 1.67 ± 1.78 -1.26 ± 1.58 1.50 ± 1.99
rL -1.25 ± 0.63 -1.70 ± 0.66 -3.32 ± 0.81 -3.04 ± 0.84 -4.35 ± 0.86 -4.58 ± 0.86
rMD -1.32 ± 0.62 -2.01 ± 0.70 -3.70 ± 0.90 -3.45 ± 0.90 -4.62 ± 0.89 -5.11 ± 0.94
rAD -1.13 ± 0.68 -1.10 ± 0.62 -2.52 ± 0.68 -2.13 ± 0.84 -3.75 ± 0.92 -3.35 ± 0.84
rRD -1.46 ± 0.67 -2.76 ± 0.96 -4.60 ± 1.20 -4.45 ± 1.11 -5.22 ± 0.99 -6.48 ± 1.24

NT 
rFA 3.81 ± 0.78 4.26 ± 0.87 4.88 ± 1.22 5.47 ± 1.16 4.45 ± 1.03 9.66 ± 0.97
rq -1.37 ± 0.62 -1.57 ± 0.95 -1.59 ± 1.06 -1.91 ± 0.88 -4.20 ± 0.88 2.53 ± 0.74
rL -2.60 ± 0.77 -4.05 ± 0.83 -3.98 ± 0.91 -4.51 ± 0.93 -5.83 ± 1.04 -1.37 ± 1.27
rMD -2.76 ± 0.81 -4.33 ± 0.85 -4.30 ± 0.96 -4.84 ± 1.00 -6.08 ± 1.11 -1.84 ± 1.34
rAD -2.41 ± 0.70 -3.63 ± 0.80 -3.54 ± 0.83 -4.14 ± 0.82 -5.68 ± 0.96 -0.87 ± 1.08
rRD -3.04 ± 0.92 -4.89 ± 0.92 -4.92 ± 1.12 -5.40 ± 1.17 -6.37 ± 1.26 -2.59 ± 1.57

*DTI metrics were defined as rX = (Xipsilateral - Xcontralateral) / Xcontralateral, where X indicates value of indices (mean ± standard error of the mean). 
DTI = diffusion tensor imaging, IC = infarct core, NT = normal tissue, rAD = relative axial diffusivity, rFA = relative fractional anisotropy, 
rL = relative diffusion magnitude, rMD = relative mean diffusivity, rq = relative pure anisotropy, rRD = relative radial diffusivity, TP = true 
penumbra
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normal tissue [NT]). The rL and rq that compose the rFA 
exhibited reductions in both TP and IC during the period 
of pMCAO (Fig. 3A-C, Table 1). The rq showed changes from 
-6.94% at 30 minutes to -36.98% at 3 hours in TP, and 
from -24.08% at 30 minutes to -45.35% at 3 hours in IC 
(Table 1). The rL showed a relatively larger reduction as 
compared to rq in both TP and IC within 3 hours (Table 
1). rMD in TP0.5-3.0h showed a monotonic decrease from a 
reduction of -11.88% at 30 minutes to -41.37% at 3 hours 
(Table 1), while in IC0.5-3.0h, rMD had a reduction of 33.97% 
at 30 minutes and remained steady (Fig. 3D, Table 1). The 
evolutions of rq, rAD, and rRD (Fig. 3E, F) followed the 
profile of rMD. Significant differences (p < 0.05) in all DTI 
metrics except rFA were found between TP and oligemia, 
and between TP and IC before 2.5 hours (Fig. 3). The rFA 
showed significant differences between TP and oligemia 
at 60 minutes (p = 0.016) and 90 minutes (p = 0.010). All 
DTI metrics for oligemia and NT remained steady with no 
significant difference across different time points (NT not 

shown in Fig. 3). 

Topographic Distributions of the IC, TP, and Oligemia as 
Ischemia Progressed in the First 3 Hours 

Figure 4 shows the representative topographic maps of 
the IC, TP, and oligemia in each slice at different time 
points. Both oligemia and TP are small in areas at the 
margin of a larger IC. Oligemia was smaller than TP and 
located at the outermost margin of TP. As time evolved, TP 
showed a progressive decrease in volume within the first 2.5 
hours and ultimately progressed to IC at 3 hours. Infarct 
volumes of all rats (n = 14) at the 30-minute and 3-hour 
time points are plotted in Figure 5 shows the mean volumes 
of IC0.5h (123.0 ± 85.2 mm3), IC3.0h (204.3 ± 104.2 mm3), 
oligemia (24.7 ± 14.1 mm3), and TP (81.3 ± 62.6 mm3).

Discrimination of TP from Oligemia, IC, and NT by DTI 
Metrics 

Significant differences (p < 0.05) in rq, rL, rMD, rAD, 

Fig. 4. Topographic distributions of IC, TP, and oligemia with ischemia progression. NT is displayed in grayscale, core in white, TP in 
red, and oligemia in green. As time evolved, TP gradually merged into IC and disappeared, while oligemia persisted during first 3 hours 
post pMCAO. NT = normal tissue
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and rRD values were found between tissue subtypes at 
time points before 150 minutes (Fig. 3). ROC analysis for 
discriminating between oligemia and TP, as well as between 
TP and IC, showed good performance for all metrics, except 
rFA. Representative ROC curves and the best cutoff values 
for discriminating tissue subtypes at 90 minutes post-
pMCAO are shown in Figure 6 and Table 2, respectively 
(see Appendix for ROC curves at 30, 60, and 90 minutes; 
Supplementary Tables 1-3, Supplementary Figs. 1-3 in the 
online-only Data Supplement), and show that all metrics 
except rFA had excellent performance in discriminating 
TP from IC, as well as in discriminating TP from oligemia 
(average accuracy > 90%). The rq had the best overall 
performance in discriminating TP from IC (accuracy = 

92.6%, area under curve = 0.93) and the optimal cutoff 
value was -33.90% (Table 2). For discrimination of TP from 
oligemia, the rL, rMD, rAD, and rRD values all exhibited 
accuracies larger than 97.8%. Oligemia and NT were 
indiscriminative at all time points. 

DISCUSSION 

In this study, we characterized the temporal evolution 
of DTI metrics within different brain tissue subtypes, such 
as IC, TP, oligemia, and NT during the first 3 hours after 
pMCAO. Our findings were three-fold: First, the volume 
of oligemia was small. Its tensor properties were similar 
to those of normal brain tissue, and completely different 

Fig. 6. Imaging A-C encompasses three different receiver operating characteristic curves but similar comparisons. 
Receiver operating characteristic curves for discriminating NT from oligemia (A), oligemia from TP (B), and TP from IC (C), using diffusion 
metrics at 90 minutes post-pMCAO. 
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from those of TP and IC. Second, rFA, the most frequently 
investigated DTI parameter, exhibited a paradoxical increase 
in TP and IC during the first hour post-pMCAO, and did 
not appear to be useful in discriminating ischemic tissue 
subtypes. Third, the evolution of DTI metrics such as rL, rq, 
rMD, rAD, and rRD in TP was distinct from that in IC and 
oligemia until 2.5 hours post-pMCAO. After 2.5 hours, the 
features became insignificant as the TP progressed to IC. 
These findings are in line with those of a previous study 
that used a histology-validated stroke model (23). 

Kuo et al. (11) used DTI metrics to characterize IP in 
a normobaric hyperoxygenation stroke model up to 6.5 
hours post-pMCAO. The prolonged IP was successfully 
differentiated from that of IC by the selected tensor 
metrics. In our study, not only was the utility of DTI metrics 
in delineating IP validated, but DTI was also shown to 
further discriminate IP into benign oligemia and TP, thus 
allowing for full visualization and assessment of the four 
tissue subtypes, which is in alignment with the “four tissue 
compartments concept” proposed by Lee et al. (24). Our 
current study was performed in regular room air instead 
of normobaric hyperoxia, and thus allowed us to assess 
the natural time course of penumbra development without 
manual intervention in temporal dynamics. Additionally, 
we adopted the infarct volume at 3 hours post-pMCAO as 

the cut-off point to define the final infarct volume. This 
design was based on an earlier animal study by Meng et 
al. (23), which demonstrated that the infarct volume at 
3 hours post-stroke was highly correlated with that at 24 
hours through histological validation. Thus, we were able 
to investigate the evolution of benign oligemia and true 
at-risk penumbra using DTI metrics every 30 minutes, for 6 
time points, within the first 3 hours after pMCAO. 

Among the various DT parameters, FA has been examined 
extensively in both human stroke studies and animal models 
as a potential imaging biomarker (8, 9, 11, 17, 25-40). 
However, the evolution of FA during hyperacute stroke has 
not yielded consistent results, with studies reporting both 
increases and decreases in FA during the initial hours, as 
well as findings showing no significant changes at all (16, 
25-33). Nevertheless, our results are in agreement with 
those of a recent study by Kuo et al. (11) in that rFA was 
paradoxically elevated in IC during the first hour post-
pMCAO, regardless of its cortical or subcortical involvement. 
As rFA is proportional to the ratio of rq to rL, the increase 
in rFA was due to a larger reduction in rL value relative to 
a smaller reduction in rq. During the first 60 minutes post-
pMCAO, a larger reduction in rL values (from -33.21% to 
-38.45%) relative to a smaller reduction in rq (from -24.08% 
to -30.46%) was observed in the IC (Table 1), resulting in 

Table 2. Discrimination Performance Based on DTI Metrics at 90 Minutes Post Permanent Middle Cerebral Artery Occlusion
DTI metrics Accuracy (%) Best Cut Off (%) Sensitivity Specificity Area Under Curve

NT vs. oligemia
rFA 33.40 18.03 0.08 0.96 0.33
rq 49.40 0.74 0.39 0.74 0.49
rL 62.80 -3.10 0.58 0.70 0.63
rMD 63.50 -2.99 0.55 0.75 0.64
rAD 62.00 -4.31 0.70 0.58 0.62
rRD 62.60 -2.35 0.45 0.81 0.63

Oligemia vs. TP
rFA 21.30 112.43 0.00 1.00 0.21
rq 89.60 -10.39 0.83 0.85 0.90
rL 98.50 -16.92 0.99 0.89 0.99
rMD 98.60 -14.08 0.95 0.93 0.99
rAD 97.80 -14.47 0.96 0.91 0.98
rRD 98.70 -16.57 0.95 0.93 0.99

TP vs. IC
rFA 58.30 6.79 0.71 0.48 0.58
rq 92.60 -33.90 0.94 0.77 0.93
rL 88.80 -37.28 0.81 0.92 0.89
rMD 88.10 -37.06 0.79 0.93 0.88
rAD 90.60 -35.08 0.80 0.93 0.91
rRD 85.90 -39.32 0.80 0.89 0.86
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an approximate 10% increase in rFA. After 60 minutes, the 
reduction of rq became greater with time than rL, leading 
to a slight decrease below the baseline in rFA at 3 hours. 
The subsequent progressive decline in rFA at 3 hours post-
pMCAO was also observed previously in animal studies (30). 
Intriguingly, this overall trend may also be observed in TP 
but not in oligemia, which resembles its NT counterpart. 
Finally, based on our ROC analyses, the discriminative power 
of FA in separating TP from IC and benign oligemia was poor 
overall, unlike the other DTI metrics studied which showed 
high accuracy in the differentiation of tissue subtypes.

Pathophysiologically, ischemic stroke is a complex 
neuronal condition that involves transmembrane ionic 
disequilibrium, oxidative stress, axonal disruption, and 
neuronal swelling, ultimately leading to irreversible 
neuronal damage and cell death (34). In particular, 
intracellular glucose and oxygen deprivation because of 
Na+/K+ ATPase ion pump dysfunction may induce osmotic 
shift, thus causing cytotoxic edema and neurite beading-
processes that can be detected and quantitatively measured 
via DTI (25, 35, 36). Previous studies have shown that DTI 
metrics can reflect regional differences in pathophysiologic 
response towards neuronal ischemia during hyperacute 
stroke (11). For example, elevations of FA within the 
region of IC in both grey and white matter have been 
considered early indicators of ischemic microstructural 
injury during hyperacute stroke, including axonal damage, 
disruption of membrane permeability, myelin fiber swelling, 
and cytotoxic edema with increased tortuosity of the 
axoplasmic environment (13, 28, 37-39). The subsequent 
reductions in FA during acute and subacute stages have 
been found to be linked to progressive loss of neuronal 
integrity (39). While the current study demonstrated an 
initial 10% increase in FA within the IC and TP, this was 
actually a result of anisotropy/magnitude ratio dependence 
(40). In our analysis, q and L appear independently to be 
more informative than FA in characterizing tissue diffusion 
changes in hyperacute stroke (11). As to the other DT 
metrics, the monotonic decreases in MD, AD, and RD in TP 
were similar to those of q and L, indicative of continuous 
degradation of cell membrane integrity, leading to loss of 
directional diffusivity. Conversely, as benign oligemia is 
characterized by regional neuronal metabolic and electrical 
disruption in the absence of significant neuron damage, 
the presentation of relatively stable DTI metrics, coupled 
with decreased CBF and sustained ADC value, likely reflects 
protective compensatory neurovascular autoregulation that 

helps maintain ionic homeostasis while ameliorating the 
development of cytotoxic edema (41-44).

There are several limitations in our study. First, our 
methodology for delineating the region of oligemia in 
the rat stroke model was based on a modified perfusion-
diffusion mismatch approach that has inherent limitations 
due to the deconvolution model employed, thus potentially 
leading to over-estimation of the size of IP and oligemia. 
However, CBF values obtained from perfusion MRI have 
previously demonstrated excellent correlation with those 
generated from quantitative positron-emission tomography 
(PET) in terms of penumbra detection in stroke studies (45). 
Thus, MR-derived perfusion parameters remain valuable 
in assessing tissue perfusion. Future studies that involve 
penumbra or oligemia assessment should ideally incorporate 
quantitative metabolic measures that reflect true underlying 
metabolic condition, preferably with PET imaging (21). 
Second, the regions of oligemia we obtained were relatively 
small as compared to the regions of TP and IC (Fig. 5); 
therefore, the limited image pixels may lead to increased 
vulnerability in terms of metric calculation and accuracy 
of analyses. Third, the correlation between microstructural 
injury and DTI metric alternations is still unknown. 
Therefore, region-wise histopathological correlation may be 
a desirable next step to provide further proof of the value 
of DTI as a useful imaging biomarker for stroke studies.

In conclusion, our results suggest that DTI holds 
promise in discriminating oligemia from TP and IC in 
the first 3 hours of stroke through direct assessment of 
the microstructural changes over time. Oligemia is small 
in size in hyperacute stroke, and thus, it could be of 
minimal concern when stroke trials require quantitative 
measurements of IP. 

Supplementary Materials

The online-only Data Supplement is available with this 
article at https://doi.org/10.3348/kjr.2018.19.6.1161.
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