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Background: Investigations into the function of non-promoter DNA methylation have yielded new insights into
the epigenetic regulation of gene expression. However, integrated genome-wide non-promoter DNA methyla-
tion and gene expression analyses across a wide number of tumour types and corresponding normal tissues
have not been performed.
Methods: To investigate the impact of non-promoter DNA methylation on cancer pathogenesis, we performed a
large-scale analysis of gene expression and DNA methylation profiles, finding enrichment in the 3’UTR DNA
methylation positively correlated with gene expression. Filtering for genes in which 3’UTR DNA methylation
strongly correlatedwith gene expression yielded a list of genes enriched for functions involving T cell activation.
Findings: The important immune checkpoint gene Havcr2 showed a substantial increase in 3’UTR DNAmethyla-
tion upon T cell activation and subsequent upregulation of gene expression inmice. Furthermore, this increase in
Havcr2 gene expression was abrogated by treatment with decitabine.
Interpretation: These findings indicate that the 3’UTR is a functionally relevant DNA methylation site. Addition-
ally, we show a potential novel mechanism of HAVCR2 regulation in T cells, providing new insights for modulat-
ing immune checkpoint blockade.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

DNAmethylation is found at nearly every region of the genome,with
methylation at the gene promoter region being the most comprehen-
sively understood. Promoter DNA methylation, typically occurring
within CpG islands, results in powerful repression of transcription, pri-
marily by recruiting repressor proteins or chromatin modifiers that en-
hance the binding of DNA to histones [1,2]. The interplay between
epigenetic modifications on DNA and histones allows for remarkable
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plasticity among cells that share identical genomes by providing a
means of activating or silencing genes whose expression affects the de-
velopmental state of specific cell types [3]. However, promoter DNA
methylation accounts for only a small portion of the overall DNAmeth-
ylation of the genome [4]. Much remains to be understood about the di-
verse functions of site-specific non-promoter DNAmethylation on gene
regulation.

Recent studies have explored the connection between non-promoter
DNA methylation and the regulation of gene expression. Enhancer DNA
methylation has emerged as a robust predictor of gene expression,
with a fraction of genes showing a stronger link between gene expres-
sion and enhancer DNA methylation relative to promoter methylation
[5,6]. Gene body DNA methylation, like promoter methylation, can
repress gene expression through altered binding of regulatory proteins
[7], but it is frequently associated with increased gene expression,
which runs counter to its role in promoter DNAmethylation [8].Multiple
mechanisms to explain this relationship have been uncovered, such as
promoting genomic stability by suppressing mobile DNA elements
[9,10], modulating patterns of histone methylation that stabilize
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

DNA methylation allows for differential expression of a single
gene without requiring modification to the DNA sequence. This
plays a critical role in both normal cellular processes, as well as
in disease. Cancer cells are well known to have radically altered
DNA methylation profiles. However, these changes are not iso-
lated to the cancer cells themselves, but rather occur in various
cell types within the tumour microenvironment. In particular,
DNA methylation has been revealed as a major driver in why T
cells become “exhausted” and no longer target cancer cells. Ex-
pression of factors that dampen T cell activity has been implicated
in this phenotype, and as such, combining demethylating agents
with immunotherapy has been shown to increase efficacy.
HAVCR2 (TIM-3) is a critical immunoregulatory gene in which ex-
pression, especially in conjunctionwith PDCD1 (PD-1), induces an
exhausted T cell state. Much of how DNA methylation functions
in regulating HAVCR2 remains to be understood.

Added value of this study

Understanding how site-specific DNA methylation impacts ex-
pression is critical for gaining amore complete control over cellular
processes, particularly in the context of cancer. T cells represent a
potent tool for eliminating tumour cells, and DNAmethylation is a
major determinant of T cell function. This study investigates how
intragenic site-specific DNA methylation across genes involved in
T cell function changes based on T cell activation state.

Implications of all the available evidence

In this study, we have uncovered a strong positive correlation be-
tween 3’UTR DNA methylation of specific genes, and increased
gene expression. Genes that play a role in T cell activation are
enriched among those exhibiting the most robust correlations.
Furthermore, 3’UTR methylation and gene expression of the im-
mune checkpoint gene HAVCR2 increases significantly after T
cell activation. Treating activated T cells with the demethylating
agent decitabine, or knocking out the DNA methylating enzyme
Dnmt3a in mice results in decreased 3’UTR methylation and
gene expression of Havcr2. Therefore, the 3’UTR may serve as a
functionally relevant site of DNA methylation. Moreover, alter-
ations in the methylation of this region may be involved in acti-
vated and exhausted T cell phenotypes. Modulating this region
may grant additional control over harnessing the immune system.

128 M.H. McGuire et al. / EBioMedicine 43 (2019) 127–137
transcriptional elongation [11], and regulating alternative splicing
[12,13]. Importantly, a direct link between gene body DNA methylation
and high expression of oncogenes has been demonstrated in colorectal
cancer [14], highlighting the functional relevance of this mode of epige-
netic modification in both normal and pathogenic processes.

Non-promoter DNA methylation undergoes extensive changes
in disease, most strikingly in cancer [15]. The DNA methylation of
enhancer regions of clinically relevant genes, particularly within
super-enhancers, were drastically altered, resulting in pathogenic tran-
scriptional output [16–18]. Global changes to gene body DNAmethyla-
tion in Burkitt and follicular lymphoma have been observed [19].
Methylation of the ITPKA gene body is associatedwith increased expres-
sion in lung cancer, and the extent of gene bodymethylation serves as a
biomarker for lung cancer progression [20]. In colon cancer, increased
gene expression through gene body DNA methylation is enriched for
genes activated by c-Myc, and demethylating these regions impairs
the ability of tumour cells to survive and proliferate [14].

Modulating the epigenetic profiles of tumours has become a promis-
ing new route for treating cancer [21].Recent therapeutic endeavors
have focused primarily on re-activation of the genes suppressed by pro-
motermethylation; therefore, cataloging the functions of non-promoter
DNA methylation may broaden our understanding of tumourigenesis
and tumour progression, while offering new opportunities for clinical
intervention. To address this gap in knowledge, a comprehensive anal-
ysis of how DNA methylation of regions outside the promoter region
may impact cancer pathogenesis was conducted. Here, for the first
time, we uncovered a relationship between 3’UTR DNA methylation
and gene expression across 10 tumour types, revealing a unique associ-
ation between these two phenomena that has implications for our
understanding of the role of DNA methylation in normal cellular pro-
cesses and disease.
2. Materials and methods

2.1. Study design

Sample size: We used all of the tumour and normal tissue samples
available in the TCGA database, which includes data on 11,000 US can-
cer patients. There are no publication restrictions on these data accord-
ing to the TCGA data policy (http://cancergenome.nih.gov/publications/
publicationguidelines).

Rules for stopping data collection: N/A.
Data inclusion and exclusion criteria: Three cut-offs for the correlation

coefficientwere originally set: 0∙7, 0∙5, and 0∙3. Theminimumwas set at
0∙3. However, because this yielded a very large number of genes, greater
specificity was sought. Therefore, 0∙5 was used as the final cut-off.

Outliers: No outliers were excluded from this analysis.
Selection of endpoints: N/A.
Replicates: For in-house experiments, each assay was conducted in

triplicate, on the basis of previously designed methods. Each experi-
ment was conducted at least twice, with similar results being achieved
each time.
2.2. TCGA tissue selection

For this analysis, we used tumour and normal tissue samples from
10 tumour types; Illumina HiSeq RNASeqV2 and Illumina HumanMe-
thylation 450 k data were available at the time of our initial download
on March 26, 2013. The tumour types included bladder carcinoma,
breast carcinoma, colon and rectal carcinoma, head and neck squamous
cell carcinoma, kidney renal cell carcinoma, liver carcinoma, lung ade-
nocarcinoma, lung squamous cell carcinoma, prostate adenocarcinoma,
thyroid carcinoma, and uterine carcinoma. The corresponding clinical
data used for the survival analysis were downloaded from the TCGA
data portal and were current as of January 8, 2014.
2.3. Methylation and gene expression data

According to the TCGA description file associated with the Illumina
Human Methylation 450 K array data, probes with a SNP within 10 nu-
cleotide base pairs (bp) of the interrogated CpG site or those in which
15 bp of the interrogated CpG site are overlapped with a REPEAT ele-
ment are masked as NA across all samples. There are 88,058 probes
that interrogate such sites (18.3% of all probes). While these beta values
are not reported at level 3, the methylated and un-methylated intensity
values for these probes are recorded in the level 2 data. Therefore, we
used the level 2 data to reconstruct the beta values for all probes as
methylated/(methylated+unmethylated); these data are also used by
the TCGA.

http://cancergenome.nih.gov/publications/publicationguidelines
http://cancergenome.nih.gov/publications/publicationguidelines
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We used the log2-transformed level 3 RNASeqV2 data to analyse
gene expression. To avoid errors for RNASeq raw counts of 0, all values
were offset by 1 prior to obtaining logs.

2.4. Gene methylation-expression correlation

All analyses were performed using R software, version 2∙15∙1.
Using the complete set of probes targeting CpG dinucleotides, we per-
formed a genome-wide analysis exploring the relationship between
the proportion of methylation at various locations within and up to
1500 bp upstream of a gene and the corresponding log-transformed
gene expression. We used the Spearman rank statistic to quantify
the correlation for each pair. Because we expected these patterns to
vary by the tissue source site, we calculated coefficients individually
using each of the 10 tissue types for which we had data from both
the 450 k methylation and RNASeq arrays.

2.5. Survival analysis

Tests for differences in survival were performed by comparing the
overall survival of patients in the top and bottom quartiles of 3’UTR
methylation using the “survival” package in R software for all genes;
correlations of N0∙5 between gene expression and methylation were
used for each tissue type.

2.6. Pathway analysis

The pathway enrichment analysis was performed using Netwalker
(http://www.netwalkersuite.org) on all genes with correlations
of N 0∙5 between gene expression and methylation at the 3’UTR
and b 0∙5 between gene body methylation and gene expression for
each tissue type. An additional pathway analysis was run using Ingenu-
ity Pathway Analysis (http://qiagenbioinformatics.com/products/
ingenuity-pathway-analysis.com), which yielded similar results.

2.7. Network identification and construction

The network nodes were obtained using Netwalker to deter-
mine how many nodes exist and how the genes interact with one
another. A singular network node was identified using this
method; we also isolated genes that have been shown to be associ-
ated with one another but were not identified in the Netwalker da-
tabase. The node and other genes that were associated with it were
exported to Cytoscape (https://www.cytoscape.org/). Connections
were then manually included in Cytoscape on the basis of results
in the published literature [22].

2.8. T cell isolation, activation, and de-methylation

The spleens of 4 healthy female C57Bl/6micewere excised after cer-
vical dislocation and then ground on a 40-μm filter while being repeat-
edly washed with RPMI (Sigma-Aldrich) + 10% heat-inactivated FBS
(Thermo Fisher Scientific) + 1% PenStrep (Thermo Fisher Scientific)
+ 0∙01% β-mercaptoethanol (Sigma-Aldrich). The resulting slurry was
spun down at 4 °C at 450 ×g for 5 min, the supernatant was removed,
and the pellet was washed with 50 mL of PBS (HyClone). The pellet
was incubated at ambient temperature for 5 min using 4 mL of ACK
lysis buffer (Gibco), washed with 50 mL of PBS, and spun down at 4 °C
at 450 ×g. The pellet was then resuspended in the media.

To obtain naïve T cells, cells were sent immediately for flow cytom-
etry cell sorting. To activate the T cells, 2 μL/mL of mouse CD3e (BD Bio-
sciences, RRID: AB_2259894) and 3.5 μL/10 mL of mouse CD28
(BioXCell, RRID: AB_1107624) activating antibodies were added to the
media, along with 1:10000 ng/μL mouse recombinant IL-2 (R&D Sys-
tems). To induce demethylation, activated T cells were treated with
500 nM decitabine (Sigma-Aldrich) for 72 h or vehicle DMSO control.
2.9. Flow cytometry analysis

Mouse splenocytes were grown in the conditions outlined above
and spun down at 450 ×g at 4 °C for 5 min to pellet the cells. The super-
natant was removed and the cells were re-suspended in 2 mL of FACS
buffer (PBS + 2% FBS). Cells were then spun at 450 ×g at 4 °C for
5 min. The supernatant was again removed, and the cells were re-
suspended in 200 μL of FACS buffer+2 μL ofmouse CD16/CD32 blocking
antibody (BD Biosciences, RRID: AB_2740348) and incubated on ice for
10 min. After incubation, 2 μL each of mouse CD45-PE, CD4-eFluor 450,
and CD8-APC-eFluor 780 (eBiosciences, RRID: AB_469717, AB_467067,
AB_11180008) were added, and the cells were incubated on ice for
30 min. All cells that were CD45+ and CD4+ or CD45+ and CD8+
were sorted by flow cytometry analysis and collected for molecular
analysis.

2.10. Quantitative polymerase chain reaction

Specimens were collected from the flow cytometry analysis, spun
down at 450 ×g for 5 min at 4 °C, and then re-suspended in 350 μL of
TRIzol (Thermo Fisher). RNA was isolated from specimens using the
Direct-zol RNA isolation kit (Zymo) and quantified by NanoDrop. We
used 100 ng of RNA for a cDNA template. cDNA was created using the
Verso cDNA synthesis kit (Invitrogen). We combined 5 μg of cDNA
with 1 μL of 100 μM forward and reverse primers and 5 μL of SYBR
Green PCRMaster Mix (Thermo Fisher) in each well. The resultingmix-
ture was then run in a real-time PCR machine (Applied Biosystems)
using the following program: 50 °C for 2 min, 95 °C for 10 min, 95 °C
for 15 s, and 60 °C for 1 min × 40 cycles. The resulting Ct values were
compared, and the ΔΔCt was obtained. This was used to quantify the
relative change in mRNA across samples.

2.11. Primers

Please see Supplementary Table 3 for primer sequences.

2.12. Methylation analysis

One microgram of genomic DNA was treated with sodium bisulfite
using the EZ DNAMethylation-Gold Kit (Zymo Research, Irvine, CA) ac-
cording to the manufacturer's protocol. The samples were eluted in 40
μL of M-elution buffer, and 2 μL were used for each PCR reaction. Both
bisulfite conversion and a subsequent pyrosequencing analysis were
performed at the DNA Methylation Analysis Core at The University of
Texas MD Anderson Cancer Center (Houston, Texas).

PCR primers for the pyrosequencing methylation analysis of Havcr2,
Itk, and Vav1were designed using Pyromark Assay Design SW 1∙0 soft-
ware (Qiagen, Germany). In brief, a sequencing primer was identified
within 1 to 5 base pairs near the CpG sites of interest, with an annealing
temperature of 40± 5 °C. Forward and reverse primers were identified
upstream and downstream of the sequencing primer. The optimal an-
nealing temperatures for each of these primers were tested using gradi-
ent PCR. Controls for high methylation (SssI-treated DNA), low
methylation (WGA-amplified DNA), and no-DNA template were in-
cluded in each reaction. PCR reactionswere performed in a total volume
of 20 μL, and the entire volumewas used for each pyrosequencing reac-
tion, as previously described [23]. In brief, PCR product purification was
performed using streptavidin-sepharose high-performance beads (GE
Healthcare Life Sciences, Piscataway, NJ), and co-denaturation of the bi-
otinylated PCR products and sequencing primer (3∙6 pmol/reaction)
was conducted following the PSQ96 sample preparation guide. Se-
quencing was performed on a PyroMark Q96 ID instrument with
PyroMark Gold Q96 Reagents (Qiagen, Germany), according to the
manufacturer's instructions. The degree ofmethylation for each individ-
ual CpG site was calculated using PyroMark Q96 software. The average
methylation of all sites and duplicates was reported for each sample.

http://www.netwalkersuite.org
http://qiagenbioinformatics.com/products/ingenuity-pathway-analysis.com
http://qiagenbioinformatics.com/products/ingenuity-pathway-analysis.com
https://www.cytoscape.org/
nif-antibody:AB_2259894
nif-antibody:AB_1107624
nif-antibody:AB_2740348
nif-antibody:AB_469717
nif-antibody:AB_467067
nif-antibody:AB_11180008
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2.13. Statistical analysis

Statistical analyses were performed using unpaired t-tests for com-
parisons between 2 groups and one-way ANOVA with Tukey's posttest
for multiple comparisons for N2 groups (Graphpad Prism).

2.14. Sample size estimation

Three replicates for each experimentwere prepared in order to iden-
tify and exclude any potential outliers; however, there were no outliers
excluded from the in vitro experiments.

2.15. Randomization

No specific randomization procedure was employed in the in vitro
experiments.

2.16. Blinding

For all conducted experiments, the experimenter that submitted the
samples for methylation analysis was not blinded, but the investigator
that carried out the methylation analysis was blinded to the groups,
and therefore the submitter had no control or input over the results of
the analysis. All other data was generated using in silico approaches.

3. Results

3.1. DNA methylation probes positively correlated with increased gene
expression are enriched in 3’UTRs

To explore the relationship between poorly understood sites of DNA
methylation and gene expression, we used genome-wide RNA-seq and
methylation array datasets from the TCGA platform, which includes
over 11,000 patient tissue samples, providing a unique opportunity to
harness large-scale molecular profiling datasets across numerous tu-
mour types [24].Initially, the proportion of probes achieving Spearman
correlations of b−0∙5 or N 0∙5 between gene expression andDNAmeth-
ylationwere examinedwithin each of the 6 gene regions included in the
Illumina methylation probe annotation after normalizing for the total
number of probes interrogating each region (Supplementary Fig. S1).
The sample sizes associated with TCGA are such that these correlations
were significant (p b 0∙0004, assuming n=50 [Spearman correlation]).
With sample sizes per tissue type in excess of a few hundred, absolute
correlations of b −0∙5 or N 0∙5 were therefore considered highly signif-
icant in this analysis. At the probe level, there were 44,309 negative and
29,043 positive associations; at the gene level, therewere 6287negative
and 3200 positive associations. The majority (N 75%) of the negatively
correlated probes across all 10 tissue types were concentrated within
the first exon, 5’-UTR, and upstream of the transcription start site
(Fig. 1a). However, approximately a third of probes exhibiting these cor-
relation values were positively correlated with gene expression. Based
upon this observation, the specific locations of the positively correlated
probes were examined to determine whether any underlying pattern
exists.

Upon segregating the positively correlated probes on the basis of re-
gion, we noted that approximately 3% of these probes interrogated the
3’UTR. Gene body DNA methylation is a known feature of highly tran-
scribed genes [25]; however, previous studies have grouped the 3’UTR
with the rest of the gene body rather than investigating it as a distinct
region. To determine whether there is a statistical rationale for separat-
ing the 3’UTR from the gene body, we calculated the proportion of
probes in the 3’UTR that exhibited a positive correlation of N0∙5 between
DNA methylation and gene expression (Fig. 1b). This revealed a sub-
stantial net enrichment in the proportion of positively correlated probes
in the 3’UTR compared to the entire gene region across all 10 tissue
types (Fig. 1c), with up to 590 genes exhibiting a correlation coefficient
of N0∙5 between 3’UTR methylation and gene expression (Supplemen-
tary Table 1). These findings prompted us to evaluate howmethylation
of the 3’UTR relates to gene expression in particular, whether this is a
passive modification and whether its association with gene expression
can be attributed to another variable orwhether levels of 3’UTRmethyl-
ation are the key differentiators of gene expression levels.

3.2. Extent of 3’UTR methylation predicts differential gene expression be-
tween normal and tumour tissues

To determine whether other drivers of gene expression could ex-
plain the differences in gene expression observed in tumour andnormal
tissues, we focused on the HOXC13 gene. We chose this gene because of
its strong positive correlationwith 3’UTRmethylation (N 0∙5 in all 10 ex-
amined tissues), its comprehensive set of probes interrogating each re-
gion of the gene, and its significantly higher expression in tumour
tissues than in corresponding normal tissues (Fig. 2a).

To further understand the nature of this variation, we examined
common processes that are known to account for differential gene ex-
pression, primarily promoter methylation and copy number variation.
First, we addressed possible allelic gain or loss using the TCGA copy
number data for these tissue types (Fig. 2b). There was no significant
HOXC13 gene amplification or deletion in any of the 10 tumour types.
Specifically, b 5% of cases had copy number alterations in the HOXC13
gene region, making it unlikely that copy number drove the observed
variation in expression.

We also considered whether the difference in HOXC13 expression
between normal and tumour tissues could be due to divergent methyl-
ation. Interestingly, HOXC13 exhibited significantly higher levels of
methylation at the 3’UTR (all p-values b0∙001 [unpaired t-tests]) in
tumour tissue than in normal tissue in bladder, breast, colorectal, head
and neck, lung, and uterine tissues, suggesting that 3’UTR methylation
could be a primary driver of this expression (Supplementary Fig. S2).
Bladder cancer was selected as a representative example as it demon-
strated the greatest variation in gene expression between tumour and
normal tissue samples (Fig. 2c). b10% of samples in the lowest quartile
of gene expression had evidence of methylation in the promoter region
of HOXC13, strongly suggesting that differences in promoter methyla-
tion cannot account for the observed differences in expression. To sys-
tematically assess the association of methylation with expression, we
fit a multivariate regression model with the potential non-coding regu-
latory regions; transcriptional start site, 5’UTR, and 3’UTR, as predictors
of gene expressionwithin each tissue type. Across themajority of cancer
types, the 3’UTR was most strongly associated with gene expression
(Fig. 2d).

3.3. Extent of 3’UTR methylation is correlated with overall survival

Considering the genome-wide changes in methylation pattern ex-
hibited by tumours and the clinically actionable nature of these modifi-
cations because of the reversible nature of DNA methylation [15], we
next examined genome-wide differences in 3’UTR methylation be-
tween tumour and normal tissues in genes with a N 0∙5 correlation coef-
ficient between 3’UTR methylation and gene expression.

Because of the observed divergence in 3’UTR methylation between
tumour and normal tissues in certain genes, we hypothesized that
these genes play roles in tumourigenesis and tumour progression and
thus determined whether they were associated with rate of overall sur-
vival. In 5 of the tumour types, including head and neck, lung adeno,
lung squamous cell, bladder, and kidney renal cell carcinomas, survival
was associated with the extent of methylation at the 3’UTR (Supple-
mentary Fig. S3a). In kidney renal cell carcinoma, of the 38 genes with
differential 3’UTR methylation, 22 were significantly associated with
overall survival (p-value = 0∙05 [log-rank tests]). Methylation at the
3’UTR of the myosin 1G (MYO1G) gene was associated with gene ex-
pression (Supplementary Fig. S3b), and patients with methylation



Fig. 1. 3’UTR is enriched for methylation probes that are positively correlated with gene expression. Proportion heat map representing the distribution of probes in which the correlation
between methylation and gene expression was b−0∙5 (a) or N 0∙5 (b) in each of the 10 tissue types. Areas with high proportions are shaded red, while regions with low proportions are
shaded blue. The color bar depicts the gene structure: purple, promoter region; light green, 5’UTR; dark green, first exon; grey, body; red, 3’UTR. The negatively correlated probes were
concentrated in the first exon, 5’UTR, and were b 200 bp upstream of the transcriptional start site. The positively correlated probes were found predominantly in the gene body and
3’UTR. (c) The arrows represent the directional change of the percentage of probes with negative correlations b −0∙5 compared with the percentage of probes with positive
correlations N0∙5 when evaluating the entire gene. The arrows in the southeast direction indicate an increase in the percentage of positive probes and a simultaneous decrease in the
percentage of negative probes. In the case of LUSC, we observed a 5% increase in the number of positively correlated probes and a 3% decrease in the number of negatively correlated
probes. There was enrichment in the percentage of positively correlated probes in the 3’UTR for all 10 tissue types. BLCA = bladder carcinoma; BRCA = breast carcinoma; CORE =
colon and rectal carcinoma; HNSC = head and neck squamous cell carcinoma; KIRC = kidney renal cell carcinoma; LIHC = liver carcinoma; LUAD = lung adenocarcinoma; LUSC =
lung squamous cell carcinoma; PRAD= prostate adenocarcinoma; THCA= thyroid carcinoma; UCEC = uterine carcinoma.
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levels in the lowest 20% had significantly longer survival (p b 0∙001 [log-
rank tests]) than did those with levels in the highest 20% (Supplemen-
tary Fig. S3c). The 22 genes whose 3’UTR methylation was associated
with survival represent a significantly higher number of genes than
the 2 genes that would have been expected to be associated with sur-
vival had the 38 genes been selected at random. In summary, the extent
of 3’UTR methylation in a significant number of genes was associated
with overall survival in 5 of the 10 tumour types examined.
3.4. Genes with highly correlated expression and 3’UTR methylation are
enriched for T cell activation

Because the majority of genes in this analysis exhibited a positive
correlation between gene body methylation and expression, those
genes in which 3’UTR methylation had a N 0∙5 correlation coefficient
with gene expression and a b 0.5 correlation in the gene body were se-
lected for further analysis.
Filtering using these criteria yielded a list of 156 genes (Supplemen-
tary Table 2). These genes were then subjected to a pathway analysis,
which revealed an enrichment of the genes involved in regulating vari-
ous aspects of T cell activation (Fig. 3a), including T cell receptor signal-
ing (ITK and VAV1) and T cell exhaustion (HAVCR2), as well as antigen
presentation, particularly the MHC class II complex (HLA-DQA1 and
HLA-DOA). These genes were then subjected to a network analysis
using Netwalker, which revealed a single interconnected node of 23
genes (Fig. 3b), 7 ofwhichwere involved in T cell activation. The protein
products of 3 of these genes (ITK,HAVCR2, and VAV1) interact with each
other and are primarily expressed in T cells.

As the samples analysed were tumour tissues that contain immune
cells, we determined whether methylation and expression differences
in T cell-related genes occurred in tumour cells or resident T cells pres-
ent in the tumour samples. We plotted the expression of ITK, VAV1, and
HAVCR2 against the estimated levels of T cells using previously
established methods for ascertaining T cell counts in TCGA samples
[24]. For each gene, a highly significant association was discovered



Fig. 2. Investigation of the drivers of HOXC13 gene expression. (a) Dotplot of log2 RNA-seq expression values across 10 TCGA tissue types; black stars indicate normal tissue samples.
(b) Copy number alterations in HOXC13across 10 TCGA tissue types. (c) Heatmap representing the methylation patterns across HOXC13 in bladder carcinomas. The row color bar
depicts the gene structure: purple, promoter region; light green, 5’UTR; dark green, first exon; grey, body; red, 3’UTR. The column color bar represents the top 25% gene expressers in
pink and the bottom 25% expressers in black. (d) Heatmap summarizing the log10 p-value for each potential regulatory non-coding region ofHOXC13 across all tissue types.BLCA= blad-
der carcinoma; BRCA= breast carcinoma; CORE= colon and rectal carcinoma; HNSC= head and neck squamous cell carcinoma; KIRC = kidney renal cell carcinoma; LIHC= liver car-
cinoma; LUAD= lung adenocarcinoma; LUSC = lung squamous cell carcinoma; PRAD= prostate adenocarcinoma; THCA= thyroid carcinoma; UCEC = uterine carcinoma.
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between gene expression and the T cell count (Fig. 3c). These data sup-
port the conclusion that in these analysed genes, 3’UTRmethylationwas
associated with gene expression in T cells. Additionally, strong correla-
tions between neutrophil and dendritic cell infiltration, and expression
of these genes, were also observed, suggesting the association between
3’UTR methylation and gene expression may be relevant in these cell
types as well (Supplementary Fig. S4).

3.5. T cell activation resulted in increased 3’UTR DNAmethylation and gene
expression of Havcr2

T cells are known to dynamically modulate DNA methylation when
changing activation states [26], and a specific epigenetic profile is essen-
tial for proper function. Therefore, we evaluated the changes to 3’UTR
methylation and the expression of Itk, Vav1, and Havcr2 in ex vivo acti-
vated T cells from c57Bl/6 mice.

Seventy-two hours after stimulation, the expression of Vav1was un-
changed, and Itk expression decreased slightly; however, Havcr2
expression increased by nearly 50-fold (Fig. 4a). Next, we examined 2
CpG sites in the 3’UTR for each gene to determinewhether any changes
to DNA methylation occurred after T cell activation. Similar to gene ex-
pression, Vav1 3’UTRmethylation did not differ between naïve and acti-
vated T cells, whereas Itk 3’UTR methylation had decreased slightly;
however, Havcr2 3’UTR methylation had increased substantially: it
was around 2∙5-fold higher at both sites in activated T cells relative to
naïve T cells (Fig. 4b).

To determine whether the increase in Havcr2 expression was due to
changes in promoter methylation, as is the case for many genes
switched on after T cell activation, we assayed the methylation of the
promoter region. Additionally, a significant decrease was observed in
the methylation of the promoter region after activation; very low pro-
moter methylation was observed in the naïve state, and although the
Havcr2 promoter lacks a CpG island, non-CpG island methylation has
been shown to be involved in gene expression regulation, and therefore
may also be functioning as a regulatory element in this context (Fig. 4c).
Next, we evaluated methylation of the exon and intron immediately



Fig. 3.Geneswith stronger correlation between gene expression and 3’UTRmethylation relative to gene bodymethylationwere enriched for functioning in T cell activation. (a) A pathway
analysis of the 156 genes shows the correlation between gene expression and3’UTRmethylation of N0.5 and genebodymethylation of b0.5. T cell activation and antigen presentationwere
themost overrepresented pathways. (b) A single network nodewith N1 interactionwas identifiedusing aNetwalker analysis. The genes in the red box represent genes that are canonically
expressed in T cells and are known to be integral to T cell activation. (c) The expression of ITK, VAV1, and HAVCR2, genes that are canonically known to regulate T cell activation, was
correlated with T cell counts in tumour samples.
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adjacent to the 3’UTR of Havcr2. Methylation of the intron did not
change upon activation, and methylation of the adjacent exon was
slightly increased; however, this increase was not nearly as substantial
as that of the 3’UTR (Fig. 4c). These data demonstrate the exquisite spec-
ificity with which robust increases in methylation are targeted to the
3’UTR.

3.6. Treatment with decitabine or Dnmt3a knockout resulted in reduced
Havcr2 gene expression

To determine whether increases in DNA methylation are necessary
for increased Havcr2 gene expression, we activated T cells ex vivo and
then treated them with the Dnmt inhibitor decitabine or DMSO vehicle
as a control. After 72 h, the T cells treatedwith decitabine showed a sig-
nificant decrease in 3’UTR methylation and a 4-fold decrease in Havcr2
gene expression relative to the DMSO-treated T cells, indicating that
DNA methylation occurs upstream of upregulated Havcr2 gene expres-
sion after T cell activation (Fig. 5a, b). These data indicate that de novo
DNA methylation is an important component of gene expression mod-
ulation after activation, as observed in a previous study [27].Addition-
ally, these data suggest that any effects of increasing gene expression
by decreasing promoter methylation are outweighed by decrease in
DNA methylation outside the promoter region.

We examined the gene expression profile of exhausted T cells from
Dnmt3a knockout mice using gene array and genome-wide bisulfite se-
quencing data obtained from Ghoneim et al [27]. Havcr2was downreg-
ulated in exhausted CD8+ T cells lacking Dnmt3a relative to wild-type
(Fig. 5c), supporting the conclusion that de novo methylation of
Havcr23’UTR results in increased gene expression.Next, using the bisul-
fite array data generated from this study, we compared the gene body
and 3’UTR methylation of Havcr2 in wild-type and Dnmt3a knockout
CD8+ T cells. A substantial decrease in Havcr2 methylation occurred
in the 3’UTR, whereas most sites in the rest of the gene body remained
relatively unchanged (Fig. 5d, e). Furthermore, methylation in the
promoter region was observed to be completely erased, though this
change did not reach statistical significance due to already-lowmethyl-
ation levels. This finding independently supported the site specificity of
Havcr2 methylation, as well as suggests that promoter methylation is
not the most critical driver of Havcr2 expression.

4. Discussion

Ascertaining the functional and clinical effects of site-specific DNA
methylation remains an important step in unraveling the many layers
of epigenetic regulation. Here, we found that the 3’UTR is a functionally
distinct site for epigenetic modification. DNA methylation of the gene
body is known to be associated with increased gene expression, but
by separately examining the 3’UTR across both normal and tumour tis-
sue samples, we revealed an enrichment of DNA methylation sites in
this region that are uniquely correlated with increased gene expression.
Moreover, we identified several genes that exhibited divergent gene ex-
pression between normal and tumour tissues; they lacked significant al-
terations in copy number or promoter methylation that would explain
the differences in expression independently of changes in 3’UTR meth-
ylation. In 5 of the 10 tumour types examined, 3’UTR methylation of a
substantial number of genes was associated with patient overall
survival.

Interestingly, by separating out the 3’UTR as a distinct functional re-
gion for the first time, an unexpected link between DNAmethylation of
this region and T cell regulation was observed. For certain genes in this
category, particularly those related to T cell receptor activation (ITK and
VAV1), the extent of 3’UTR DNA methylation was correlated with both
the presence of T cells in a tumour and with patients' overall survival.
For the progressively important immune checkpoint gene HAVCR2,
DNAmethylation of the 3’UTRmay serve as a means by which T cell ex-
haustion occurs. TIM-3-expressing T cells exhibit a severely exhausted
phenotype [28,29], and this protein is frequently found to be expressed
in tumour-infiltrating lymphocytes [30]. In addition, the expression of



Fig. 4. Activation of T cells is accompanied by increased Havcr2 gene expression and specific 3’UTR methylation. (a) Comparing the gene expression of naïve and ex vivo-activated T cells
isolated from C57Bl/6mice. (b) Comparing the 3’UTR DNAmethylation of naïve and ex vivo-activated T cells isolated from C57Bl/6mice. (c) Difference in DNAmethylation of naïve versus
ex vivo-activated T cells at the promoter region, the 3’UTR, and 3’UTR-adjacent exon and intron. (d) Schematic of theHavcr2 gene,with the location of the interrogated sites in each discrete
region of the gene highlighted. Statistics were performed using unpaired t-tests for comparisons between 2 groups.
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TIM-3 promotes resistance to PD-1/PD-L1 blockade [31], and
demethylating agents enhance sensitivity to PD-1/PD-L1 blockade
when given in combination [27]. Inferring that DNAmethylation inhibi-
tion and the subsequent sustained or increased expression of HAVCR2
may be an underlying reason for this observation.

These data suggest two new avenues of exploration that will
broaden our understanding of this epigenetic modification. The
first is ascertaining how 3’UTR methylation influences gene expres-
sion. It is well established that DNA methylation affects the binding
of regulatory proteins [2]. In the case of proteins with methylation-
binding domains, DNA methylation can increase binding [32,33].
On the other hand, DNA methylation can inhibit protein binding or
mask sequence recognition, as is the case for many transcription fac-
tors [3]. Another potential explanation for the effect of the 3’UTR on
gene expression may be differential alternative splicing and alterna-
tive polyadenylation. Gene body methylation has already been
shown to affect exon inclusion [34]; however, alternative polyade-
nylation has not been linked with DNA methylation, but if different
lengths of the 3’UTR are dependent on methylation, transcripts
with shorter 3’UTRs would have greater mRNA stability and thereby
higher gene expression [35]. However, gene body methylation has
also been observed as a consequence of higher gene expression,
rather than as a cause [36]; therefore, 3’UTR methylation may
occur downstream of higher gene expression. Going forward, IP-
mass spectrometry will be conducted to hone in on the mechanism
of how 3’UTR methylation influences gene expression. Discovering
proteins that exhibit sensitivity to binding methylated versus
unmethylated 3’UTR that also impact gene expression may reveal
how methylation of the 3’UTR results in increased gene expression.
In addition to 3’UTR methylation, HAVCR2 promoter methylation
may also affect gene expression, despite not containing a CpG island.
The methylation of the Havcr2 promoter decreased significantly
after ex vivo mouse T cell activation. However, demethylation using
decitabine or Dnmt3a knockout resulted in decreased Havcr2 gene
expression, which supports the hypothesis that promoter methyla-
tion is not the most potent driver of expression in this context.

The second question arises in regard to how 3’UTR methylation is
regulated. De novo DNA methylation is deposited by the DNMT3 en-
zymes [37], and de novo demethylation is handled by the TET family
of enzymes; therefore, these are likely to play a role in producing the
differential methylation observed in tumour and normal tissues and in
activated versus naïve T cells. Indeed, given the substantial decrease in
Havcr2 gene expression after Dnmt3a knockout, Dnmt3a in particular
seems to be involved. However, the co-factors that position these



Fig. 5. Blocking DNAmethylation results in decreasedHavcr2 expression. (a, b) The impact of treating activated T cellswith the demethylating agent decitabine onHavcr2 gene expression.
(c) Havcr2 expression in wild-type versus Dnmt3a-knockout naïve and chronic exhausted T cells. (d) Levels of Havcr2 DNA methylation in wild-type versus Dnmt3a-knockout T cells
mapped to location on the gene. (e) Closer view of the specific loci in which Havcr2 3’UTR experienced decreased 3’UTR methylation in Dnmt3a-knockout T cells relative to wild-type
T cells. Statistics were performed using unpaired t-tests for comparisons between 2 groups and one-way ANOVA with Tukey's posttest for multiple comparisons for N2 groups.
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enzymes in a tightly controlled spatial and temporal context are cur-
rently unknown.

These data have multiple implications. First, these genes may play a
previously unidentified role in cancer pathogenesis. Second, 3’UTR
methylation of these genes may serve as a biomarker for disease pres-
ence and progression. Finally, demethylating this region may serve as
a novel target for cancer therapy and how demethylating agents affect
the 3’UTR should be taken into accountwhen evaluating themechanism
and efficacy of these therapies.

Taken together, our findings indicate that the 3’UTR is a region of
epigenetic importance. These data raise the possibility of a novel com-
ponent of epigenetic regulation that operates during T cell development
and activation. Furthermore, they shed light on a potential novel mech-
anismbywhich T cells upregulate immune checkpointmediators. These
findings lay a foundation for a broader understanding of the effect of
DNA methylation on cellular processes, and most importantly, they
may highlight novel components of cancer pathogenesis, opening new
avenues for clinical therapy.
Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.04.045.
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