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competent Haemophilus influenzae
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SUMMARY

The genomes of naturally competent Pasteurellaceae and Neisseriaceae have
many short uptake sequences (USS), which allow them to distinguish self-DNA
from foreign DNA. To fully characterize this preference we developed genome-
wide maps of DNA uptake using both a sequence-based computational model
and genomic DNA that had been sequenced after uptake by and recovery from
competent Haemophilus influenzae cells. When DNA fragments were shorter
than the average USS spacing of�1,000 bp, sharp peaks of uptakewere centered
at USS and separated by valleys with 1000-fold lower uptake. Long DNA frag-
ments (1.5–17 kb) gave much less variation, with 90% of positions having uptake
within 2-fold of themean. All detectable uptake biases arose from sequences that
fit the USS uptake motif. Simulated competition predicted that, in its respiratory
tract environment, H. influenzae will efficiently take up its own DNA even when
human DNA is present in 100-fold excess.

INTRODUCTION

Many bacteria are naturally competent, able to actively bind DNA fragments at the cell surface, and pull

them into the cytoplasm, where the incoming fragments may contribute nucleotides to cellular pools or

recombine with homologous genomic sequences (Lorenz and Wackernagel, 1994). The genetic exchange

associated with this latter process contributes to adaptation and is known to have promoted resistance to

antibiotics (Bae et al., 2014) and increased strains’ intracellular invasiveness (Mell et al., 2016) and vaccine

resistance (Kress-Bennett et al., 2016; Straume et al., 2015). Thus, understanding how different genomic re-

gions evolve via natural transformation processes could be used to predict the spread of pathogenic traits.

Most naturally competent bacteria that have been tested take up DNA regardless of sequence, but species

in two families, the Pasteurellaceae and the Neisseriaceae, exhibit strong preferences for DNA containing

short sequence motifs (Chen and Dubnau, 2004). Because these motifs have become highly enriched in the

corresponding genomes, these biases effectively limit uptake to DNA from close relatives with the same

uptake specificity (Dougherty et al., 1979; Scocca et al., 1974). The distribution of the preferred sequences

around the chromosome is uneven (Smith et al., 1995), which may cause different genes to experience quite

different rates of genetic exchange.

Most steps in the natural transformation process are highly conserved among transformable species (Chen

and Dubnau, 2004). In the Pasteurellaceae, the Neisseriaceae, and most other Gram-negative bacteria,

DNA uptake is initiated by binding of a type IV pilus uptake machine to double-stranded DNA (dsDNA)

at the cell surface. The DNA-binding protein has not been identified in H. influenzae, but in Neisseria it is

a minor pilin-type protein that forms part of the pilus (Cehovin et al., 2013). DNA binding is followed by

retraction of the pilus, which pulls the DNA across the outer membrane into the periplasm. Because circular

DNA is taken up as efficiently as linear DNA, uptake is thought to begin internally on DNA fragments rather

than at their ends (Barany et al., 1983). Thus, it is likely that the stiff dsDNA molecule is transiently kinked

(folded sharply back on itself) at the site of initiation to allow it to pass through the narrow secretin pore

of the uptake machinery. Forces generated by the retraction of the type IV pilus are thought to be respon-

sible for this kinking, which might be facilitated by strand separation at the AT-tracts (Danner et al., 1982).

Once a loop of the DNA is inside the periplasm, a ratchet process controlled by the periplasmic protein Co-

mEA is thought to pull the rest of theDNA through the outermembrane (Hepp andMaier, 2016; Salzer et al.,
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2016). Below we use ‘‘DNA uptake’’ to refer to the combined binding and membrane-transport steps that

moveDNA from the extracellular environment across the outermembrane into the periplasm. In Gram-pos-

itive bacteria similarmachinery acts to pull theDNA through the thick cell wall (Chen andDubnau, 2004). The

next step in natural transformation is translocation of the DNA out of the periplasm and into the cytoplasm.

Only the 30-leading strand remains intact, passing through an inner membrane pore encoded by the rec2/

comEC gene, whereas the other strand is degraded in the periplasm and its nucleotides are dephosphory-

lated and imported as nucleosides (Pifer and Smith, 1985). Circular DNA molecules are efficiently taken up

across the outermembrane but remain the periplasmbecause they lack free ends (Pifer and Smith, 1985). As

the single strand enters the cytoplasm it undergoes limited exonucleolytic degradation before being com-

plexed with cellular proteins. If sequence similarity permits, the strand may then recombine with homolo-

gous chromosomal sequences; otherwise the strand is degraded to its constituent nucleotides (de Vries

et al., 2001). Both linkage and sequencing studies indicate that fragments much longer than the cell are

readily taken up (Goodgal, 1982; Mell and Redfield, 2014), as are fragments as short as 200 bp, although

a lower limit has not been established (Mell et al., 2012; Maughan and Redfield, 2009). However, recombi-

nation of short fragments is limited because they are usually degraded by cytoplasmic nucleases before

they can recombine (Pifer and Smith, 1985). Uptake speed has been estimated at 500–1,000 bp/s, with trans-

formation essentially complete by 15 min (Deich and Smith, 1980).

Direct measures of DNA uptake bias

Uptake-competition experiments in the Pasteurellacean Haemophilus influenzae and Neisseria gonorrhoeae

showed that genetically marked ‘‘self-derived’’ DNA competes for uptake with unmarked self-derived DNA

but not withDNA fromunrelated sources (Dougherty et al., 1979; Scocca et al., 1974). Subsequent DNAuptake

experiments usingcloned radiolabeledDNAfragments found that these self-preferences are causedby theup-

takemachineries’ strongbiases for short sequencemotifs, called uptake signal sequences (USS) inH. influenzae

andDNAuptake sequences (DUS) inNeisseria species (Sisco andSmith, 1979) (Davidsenet al., 2004). Sequence

comparisons and site-directedmutagenesis initially identified theH. influenzaemotif as an 11bpsequencewith

a strong contribution by flanking AT-rich sequences (Danner et al., 1980, 1982), and later genome sequencing

identified 1,465 occurrences of a 9 bp USS core in H. influenzae and 1,892 occurrences of an unrelated 10 bp

DUS motif in N. meningitidis (Smith et al., 1995, 1999). Subsequent motif search analyses by Maughan et al.

(Maughan et al., 2010) expanded this number to 2,206 USSs in the genome of the standard H. influenzae lab

strain Rd, sharing the motif shown in Figure 1A. These genomic analyses were later complemented by direct

uptake experiments using mutated and degenerate USS variants (Maughan et al., 2010; Mell et al., 2012).

Mell et al. used mutagenesis and sequencing of pools of degenerate USS-containing fragments that had

been recovered after uptake to identify the contribution to uptake of eachUSSposition and found that the cen-

tralGCGGbases are crucial for uptake,withmuch smaller contributionsmadeby the flankingbasesandAT-rich

segments. The motif in Figure 1B shows the contribution of each base considered independently. Interaction

effects betweenbasesof theAT-tracts and thecorewerealso found tomake important contributions touptake,

but only a few of these have been directly measured. Although characterization of the unrelatedNeisseriacean

DUShasnot reached this levelofdetail (Mathis andScocca, 1982), the twouptake systemssharesmany features,

apparently convergently evolved, including the presence within each family of lineages with slightly different

preferred motifs (Frye et al., 2013; Redfield et al., 2006).

Evolution of uptake sequences in the genome

Alignment of homologous genomic regions fromdifferent Pasteurellaceae species showed that USS evolve

by point mutations (Redfield et al., 2006); i.e. they are not inserted elements. As a mechanism for this evo-

lution, (Danner et al., 1980) proposed that the combination of uptake bias and genomic recombination cre-

ates an evolutionary pressure that causes the preferred uptake sequences to accumulate throughout the

genome, with their numbers limited by their eventual interference with gene function. Consistent with

this, uptake sequences in both Haemophilus and Neisseria are underrepresented in newly acquired seg-

ments, rRNA genes, and coding sequences, especially those with strong functional constraints (Findlay

and Redfield, 2009; Smith et al., 1999). Modeling by Maughan et al. (Maughan et al., 2010) confirmed that

this molecular drive process could produce uptake sequence distributions as those of real genomes, with

no need for any fitness benefit from either the uptake sequences or the recombination they promote.

Thus, the presence of biased DNA uptake machinery may be sufficient in itself to explain the abundance

of uptake sequences. Such biases may be solely a consequence of direct selection on the DNA uptake ma-

chinery for more effective DNA binding or may have been reinforced by indirect selection for preferential

uptake of conspecific DNA. These processes might be especially important in respiratory tracts and other
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mucosal environments where Pasteurellaceae and Neisseriaceae species mainly occur (Man et al., 2017).

These environments contain abundant hostDNA, and transformation canonly occur if the releasedbacterial

DNA competes successfully for binding to the uptake machinery (Lethem et al., 1990; Shak et al., 1990).

The goal of the present study was to measure DNA uptake at every position in the H. influenzae genome

and to use this uptake data to characterize the effects of USS and identify any other factors affecting up-

take. To prepare a framework for interpreting uptake biases, we developed a computational model that

predicted the effect of uptake sequences on DNA uptake across the H. influenzae genome. We did not

attempt to build a model that accurately simulated the actual events of DNA uptake, because too little is

known about these. Instead, the initial version of this model was ‘‘naive’’ in that its parameters and set-

tings were based only on previously published information. Discrepancies between the model’s predic-

tions and the observed uptake were then used to identify features of uptake that were poorly predicted.

Hypothesized biological explanations for these discrepancies then guided changes to the model, and

the effect of each change on the discrepancy was used to confirm or refute the hypothesis. The most

important product of this recursive analysis was not the model itself, but the improved understanding

of factors affecting DNA uptake across the genome. These in turn increased the understanding of the

genomic distribution of recombination and the effects of competition with DNA from the host or other

microbiota.

RESULTS

A computational model of DNA uptake

As a framework for interpreting DNA uptake data we developed a simulation model of USS-dependent

DNA uptake. It takes as input the locations and strengths of USSs in the DNA whose uptake is to be
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Figure 1. The H. influenzae uptake signal sequence

(A) Sequence logo showing the individual contributions to genomic abundance of bases in the USSmotif (Maughan et al.,

2010).

(B) Sequence logo showing the individual contributions to uptake of bases in the USS motif, as measured by Mell et al.

(C) Conserved USS segments. See also Figure S1.
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simulated, the fragment-size distribution of this DNA, and binding and uptake functions that specify how

uptake probability depends on USS presence and strength. The output is the expected relative uptake of

every position in the genome.

Development of the model was guided by basic principles of sequence-specific protein-DNA interactions

(Halford and Marko, 2004; Rohs et al., 2010). The first step in these interactions is thought to be a random

encounter between aDNA fragment and the binding site of the protein, usually at a DNAposition that does

not contain the protein’s preferred sequence. This non-specific binding dramatically increases the proba-

bility that the protein will subsequently encounter any preferred sequence, either by sliding along the DNA

or by transient dissociation and reassociation, leading to specific binding between DNA and protein. In the

case of the USS this specific binding then enables uptake of the DNA fragment across the cell’s outer

membrane.

The model did not explicitly simulate the first step, non-specific binding, because this is expected to be

equally probable for all DNA positions. The specific binding and DNA uptake steps were separately

modeled because they are expected to depend on the properties of the DNA uptake machinery and on

the length and sequence of the DNA fragment. Although in real cells both steps may depend on the quality

of the USS, for simplicity the initial version of the model assumed that specific binding required only a

threshold similarity to the USS consensus and that the subsequent probability of uptake depended on

the strength of this similarity.

Simulating these steps required first specifying the genomic sequences that should be treated as USS. This

was not straightforward because genomes contain many USS variants that differ in how well they promote

DNA uptake (Findlay and Redfield, 2009; Maughan and Redfield, 2009). Our strategy was to score the in-

formation content (in bits) of every genome position, using the Position-Specific Scoring Matrix (PSSM)

fromMell et al.’s degenerate-sequence uptake experiment (Mell et al., 2012) (Table S1) and to use overrep-

resentation of high-scoring sequences as the USS criterion. We scored every genome position in the three

H. influenzae strains used for the experiments described below (Table 1) and in four randomly generated

sequences with the same length and base composition (Figure S1 shows the score distributions). In the

H. influenzae genomes, overrepresentation of high-scoring sequences was detectable above a score of

7.0 bits and became dramatic above 10.0 bits, where the numbers of high-scoring positions increased in

H. influenzae genomes but became vanishingly small in the random-sequence controls (see inset in Fig-

ure S1). Because the slight overrepresentation of scores between 7 and 10 bits was hypothesized to be

not a direct effect of DNA uptake but an indirect consequence of mutational degeneration of high-scoring

USSs, the model initially used a USS cut-off score of 10 bits (‘‘USS10,’’ n = 1941 in strain 86-028NP). This was

later reduced to a less stringent 9.5 bits after weak uptake effects had been examined (‘‘USS9.5,’’ n = 2,248 in

strain 86-028NP).

The computational model used these USS scores to predict DNA uptake for every position in the genome,

summing the contributions of binding and uptake probabilities from DNA fragments of different sizes (Fig-

ure 2A gives an overview). Each fragment under consideration was first checked for the locations of any

USS10s, and the maximum fragment length (20 kb) and the mean length of USS-free segments (mean_gap)

Table 1. Bacterial strains used in this study

Strain number Strain name Phenotype Source

RR3117 rec2::spec Spectinomycin-resistant Rd derivative. No

translocation of taken-up fragments to the

cytoplasm

(Sinha et al., 2012)

RR3125 Rd Drec2 Unmarked Rd derivative. No translocation of

taken-up fragments to the cytoplasm

(Sinha et al., 2012)

RR3133 86-028NP NalR Otitis media clinical isolate. Nalidixic acid

resistant

Mell et al., (2011)

RR1361 PittGG Nontypeable clinical isolate G. Ehrlich

RR722 Rd Rd KW20, rough (unencapsulated) derivative of

type d

H. O. Smith

ll
OPEN ACCESS

4 iScience 24, 102007, January 22, 2021

iScience
Article



were used to calculate the probability that a DNA receptor protein initially encountering a random location

in the fragment would then encounter and bind specifically to a USS10 rather than disassociating from the

fragment: p_bind = 1 – mean_gap/20000). Fragments with no USS were initially assigned a baseline p_bind

of 0.1.
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Figure 2. A computational model to predict DNA uptake

(A) Components of the DNA uptake model (see Transparent methods and Results for details).

(B and C) Model predictions for uptake centered at a 12-bit USS for: (B) 100, 200, and 300 bp fragments, (C) a mixed

distribution of fragments between 25 and 300 bp with and without baseline uptake.

(D–F) Model predictions for uptake of a 3,000 bp region with 3 USSs (red squares, scores in black) using different

fragment-length distributions: (D) 50–300 bp fragments, (E) 50–2000 bp fragment, (F) 1–14 kb fragments.

(G and H) Predicted DNA uptake of a 50 kb segment of the 86-028NP genome using (G) short- and (H) long-fragment

length distributions:

(I) Locations and scores of USS10s in this 50 kb segment.

See also Table S1 and Figures S1 and S2.
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The probability that this specific binding led to uptake of the DNA fragment was then calculated from the

USS10 score (or the mean score if the fragment contained more than one USS10), using the function p_up-

take = 0.1 + (1–0.1)/(1 + exp(�5 * (score–11))),where 0.1 specifies the baseline uptake of USS-free fragments

and �5 is an arbitrarily chosen coefficient specifying the slope at the inflection point. The score of 11 bits

specifying the inflection point of the function was chosen because this score was the midpoint of the range

of increasing USS overabundance in the genomes (see Figure S1). When combined with the baseline

p_bind of 0.1, the p_uptake baseline assigned fragments with no USS10 a net uptake probability of 0.01.

Once the contributions of every size of fragment had been calculated for each position (Figure 2A), the

model combined all the contributions, taking into account the frequency of each size in the input DNA.

The position-specific uptake predictions were then normalized to a genome-wide mean uptake probability

of 1.0. Except in simple test cases, for computational efficiency DNA fragment lengths were specified as the

median lengths of bins (10 bp bins for short fragments, 200 bp bins for long fragments) rather than each

being considered separately (e.g. 101–120 bp, 121–140 bp).

Model results

Figures 2B and 2C show examples of model predictions for simple situations. Figure 2B shows the uptake

predictions for an 800-bp simulated genome containing a single USS with score 12.0 bits, considering three

different input DNA fragment sizes (100, 200, and 300 bp). The peaks at the USS have straight sides, a basal

width twice the length of the fragments being taken up, and 31-bp flat tops arising from the model’s

requirement for a full-length USS. When the DNA fragment sizes were evenly distributed between 25

and 300 bp in length (Figure 2C), the peak had steep sides at its tops and gradually flattened at the

base; maximum width at the base equaled twice the maximum fragment length. In simulated mini-ge-

nomes with more than one USS (Figures 2D–2F), isolated peaks were only seen when the DNA fragments

being taken up were substantially shorter than the spacing of the USSs (Figure 2D), and peaks disappeared

entirely when the fragments were long enough that almost all contained at least one USS (Figure 2F).

Figures 2G and 2H show the predicted uptake maps when this model analyzed a 50kb segment of the

H. influenzae 86-028NP genome, using the short-fragment and long-fragment length distributions from

the actual uptake experiments described below (Figures S2A and S2B), and Figure 2I shows the distribution

of USSs over this segment. Because the ‘‘short’’ DNA fragments are shorter than the typical separation be-

tween USSs, the model predicts that uptake will be restricted to sharp peaks at each USS. In contrast, up-

take of long DNA fragments is predicted to be much more uniform, because most of these will contain at

least one USS.

Generation of experimental DNA uptake data

To obtain high-resolutionmeasurements of actual DNA uptake, we sequencedH. influenzae genomic DNA

that had been taken up by and recovered from competent H. influenzae cells. Competent cells of the stan-

dard laboratory strain Rd were first incubated with genomic DNA preparations from strains 86-028NP and

PittGG, whose core genomes are readily differentiated from Rd (and each other) because they differ at�3%

of orthologous positions (Hogg et al., 2007). To allow efficient recovery of the taken-up DNA, the Rd strain

in which competence was induced carried a rec2mutation that blocks translocation of taken-up DNA frag-

ments, causing the DNA to be trapped intact in the periplasm (16). The 86-028NP and PittGG genomic

DNAs were pre-sheared to give short (50–800 bp) and long (1.5–17 kb) DNA preparations (size distributions

are shown in Figure S2), and three replicate uptake experiments were done with each DNA preparation.

After 20-min incubation with competent cells, the taken-up DNA was recovered from the cell periplasm us-

ing the cell-fractionation procedure of Kahn et al. (Barouki and Smith, 1985; Kahn et al., 1983; Mell et al.,

2012). Taken-up DNA samples were sequenced along with samples of the input 86-028NP and PittGG

DNAs and of the recipient Rd DNA. The input and uptake reads were then aligned to the corresponding

86-028NP and PittGG reference sequences, and coverage at every position was calculated. Table S2 pro-

vides detailed information about the four input samples, the twelve uptake samples, and the Rd sample.

Removal of contaminating Rd DNA

Preparations of DNA recovered from the periplasm after uptake always included some contaminating DNA

from the recipient Rd chromosome. The divergence between the Rd and donor genomes allowed us to es-

timate the extent of this contamination by competitively aligning the taken-up reads from each sample to

an artificial reference ‘‘genome’’ consisting of both recipient and donor genomes as separate
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‘‘chromosomes.’’ Reads that uniquely aligned to only one chromosome could then be unambiguously as-

signed to either donor (taken-up) or recipient (contamination). The resulting estimates of Rd chromosomal

contamination were between 3.2% and 19.3% of reads; sample-specific values are listed in Table S2.

The effects of this contamination were not expected to be uniform across each donor genome, because

segments of the 86-028NP and PittGG genomes with high divergence from or with no close homolog in

Rd would be free of contamination-derived reads. We used the competitive-alignment described earlier

to create contamination-corrected uptake coverages by discarding all reads that could not be uniquely

mapped to the donor genome; in addition to removing Rd contamination, this also removed reads from

segments that are identical between the donor and recipient strains (‘‘double-mapping reads’’) and reads

that mapped to repeats, such as the six copies of the rRNA genes. For consistency, the same changes were

applied to the input samples although they did not experience any contamination. This correction removed

an average of 18.6% of reads (range 8.9%–28.3%), left some segments of the 86-028NP and PittGG ge-

nomes with no coverage in all samples (2.3% and 2.1% respectively), and reduced coverage adjacent to

these segments. Figure S3 shows the locations of the missing data. Contamination details for each sample

are provided in Table S2, and the impacts are considered below. The uptake analysis described below

showed this correction to be effective.

Uptake ratios

To control for position-specific differences in sequencing efficiency, contamination-corrected read

coverage at each position in each uptake sample was divided by read coverage at that position in the cor-

responding input sample (e.g. coverages of each 86-028NP-short uptake sample were divided by 86-

028NP-short input coverages). Normalizing the mean of the three replicates to a genome-wide mean ratio

of 1.0 then gave a mean ‘‘uptake ratio’’ measurement for each genome position for each DNA type. Finally,

each position’s uptake ratio was smoothed using a USS-length (31 bp) window. Figure 2.5 and 2.6 show the

resulting uptake ratio maps.

Figure 3A shows the short-fragment uptake ratiomap for the first 50kb of the 86-028NP genome; the ticks in

Figure 3C indicate locations and scores of USS10s. The pattern is strikingly similar to that predicted for the

same DNA segment by the model (Figure 2G). Sharp uptake peaks are seen at USS10 positions, some sepa-

rated by flat-bottomed valleys and others overlapping. Figures S4A–S4C show similar analysis for the first

50 kb of strain PittGG’s genome, and Figures S5A and S5B show expanded maps for two examples of the

86-028NP peaks. The full-genome maps of these uptake ratios are provided in Figure S4D (86-028NP) and

S4G (PittGG); they display the consistency of the peak heights across each genome.

As expected, the long-fragment DNA samples (Figures 3B, S4B, S4E, and S4H) had much less variation in

uptake ratio than the short-fragment samples; 90% of positions had uptake ratios within 2-fold of the mean,

and there were few high peaks or low valleys. The few extended segments with low or no uptake coincided

with large gaps between USS10s. The largest gap was in the 86-028NP segment between 95 and 145kb—

the site of a genomic island that is absent from the PittGG and Rd strains, has few USS, and has high sim-

ilarity to an H. influenzae plasmid (Harrison et al., 2005). However, uptake ratios did exhibit substantial

short-range variation not predicted by the model, which is considered further below.

Sensitivity is limited by low sequencing coverage

At some genome positions our ability to detect USS-dependent uptake biases and possible USS-indepen-

dent biases in uptake coverage was limited by low sequencing coverage. Although some of this low

coverage arose from the contamination-correction step described earlier, segments of low coverage

were also seen in the raw data, likely arising from biases in the library preparation and sequencing steps.

Figure S6 compares the raw coverage of short and long input samples for a 50 kb segment of the 86-028NP

genome, illustrating the strong variation in sequencing coverage that was both broadly reproducible and

sequence dependent. Low coverage had similar effects in all samples, precluding calculation of uptake ra-

tios where input coverage was zero and generating high levels of stochastic variation where coverage was

low (segments with no coverage and positions with coverage below 20 reads are indicated in uptake ratio

maps by gaps and gray dots, respectively).

We used the low uptake ratios of positions at least 1,000 bp from the nearest USS9.5 to assess the effective-

ness of the contamination correction described earlier, because these positions are where contamination
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would have had its largest effects. This peak-separation distance was chosen because a peak-shape anal-

ysis of uptake around 158 USS10s that were separated by at least 1,200 bp from other USS10s and had up-

take ratios of at least 3.0 found that mean uptake ratio had fallen to baseline at positions 600 bp from the

USS (Figure S7). Figure 4 compares uptake ratios between the valley positions that received the contam-

ination correction described earlier (those with a Rd homolog) and the positions where no correction

was needed (those with no Rd homolog). The two distributions had nearly identical medians (0.0022 and

0.0020, respectively), indicating that the correction was sufficient but not excessive. These low values

also confirm that the DNase I treatment and washing steps removed at least 99.99% of the donor DNA

that had not been taken up.

Uptake ratios show no periodicity across the genome

Bacterial genomes show periodicity for several features related to DNA curvature and codon usage biases

(Mrazek, 2010), so we examined the distribution of uptake ratios across each genome by Fourier analysis,

using the R package TSA. The log-log plots in Figure S8 show that this found no strong influence of any

specific repeat period on either the variation in input-sample coverage (panels A–D) or the variation in up-

take ratios (panels E–H). Instead, to explain the observed variation, the analysis needed to invoke small

contributions from almost every possible repeat period.

Uptake of short-fragment 86-028NP DNA

To investigate how USSs contribute to the DNA uptake process, our strategy was to first analyze discrep-

ancies between model predictions and observed uptake ratio peaks in the 86-028NP short-fragment data-

set, because these would reveal ways in which the simple assumptions underlying the model mischaracter-

ized the actual steps of DNA uptake. Model changes that improved the predictions were considered to

better reflect the true constraints on uptake of short DNA fragments. The refined model’s predictions
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Figure 3. Experimentally determined uptake ratios for a 50 kb segment

The X axis is the same 50 kb segment of the 86-028NP genome as Figures 2G and 2H. Gray points indicate positions with

input coverage lower than 20 reads. Gaps indicate unmappable segments.

(A) Uptake ratios of short-fragment DNA. Inset: same data with a logarithmic-scale Y axis.

(B) Uptake ratios of long-fragment DNA.

(C) Locations and scores of USS10s.

See also Figures S3 and S4.
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were then compared with the real uptake ratios for 86-028NP long-fragment DNA, allowing additional

refinement, and finally to the short- and long-fragment uptake ratios for PittGG DNA.

Figure 5 compares predicted and measured uptake (orange and blue lines respectively) of short-fragment

86-028NP DNA for the first 50kb of the genome. The close correspondence between the model’s predic-

tions and observed peak locations and shapes confirmed that almost all of the variation in uptake was due

to USSs. (The Pearson correlation coefficient over all positions was 0.92). However, the more detailed an-

alyses below identified components of the model that could be improved.

First, the predicted low-uptake valleys were too high. This is not easily seen in Figure 5, but the log-scale

inset in Figure 3 and the analysis in Figure 4 show that most valley-bottom positions had uptake ratios be-

tween 0.01 and 0.001, well below the model’s predicted baseline uptake of 0.052 (dashed orange line in

Figure 4).

Second, the score cutoff of 10.0 bits was too high. Analysis of score-subsets within the uptake-valley dataset

showed that 9.5 bits was a better cutoff. For the 78 positions with scores between 9.5 and 10.0 bits, the cor-

relation between score and uptake ratio was 0.27. Although a similar correlation (0.27) was seen for the 136

positions with scores between 9.0 and 9.5 bits, it was driven mainly by very small effects, and only four po-

sitions had uptake ratios higher than 0.1. For the 461 positions with USS scores between 8.5 and 9.5 bits the

correlation was only 0.09.

Third, most of the predicted peaks were too high. Figure 6 complements Figure 4’s analysis of uptake val-

leys with an analysis of similarly isolated uptake peaks. The blue dots show the uptake ratio at every USS9.5
position in the genome that is at least 1,000 bp from the nearest USS10 (n = 209), and the small orange dots

show predicted uptake at the same positions. The lack of scatter in the orange points confirms that the sep-

aration distance was sufficient to avoid predicted effects of nearby USS; the least-squares difference be-

tween predicted and observed uptake ratios at these 209 USS positions was 0.521.

In the original-version of the uptake model, the sigmoidal parameters of the p_uptake function (baseline

and location and slope of inflection point) were set using the frequencies of USS scores in the 86-028NP

genome; as expected, the same parameters were obtained when a sigmoidal function was fit to the uptake
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Figure 4. Depths of uptake ratio valleys with and without contamination correction

Uptake ratios of positions in the 86-028NP short-fragment dataset that were at least 1kb from the nearest USS9.5 and

whose uptake coverages were either corrected for contamination with homologous Rd sequences (left, 272,547 positions)

or not corrected for contamination because they had no Rd homology (right, 89,418 positions). Orange and red dashed

lines indicate valley uptake predicted by the original and revised models respectively.

See also Figure S6.
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points predicted by this model (orange line in Figure 6). To improve the predictions we replaced these

p_uptake parameters with those of a sigmoidal function fitted to the real uptake data (blue line in Figure 6),

changed the p_uptake baseline to 0.005, lowered the USS score cutoff from 10.0 bits to 9.5 bits, and ran the

model again. The purple points in Figure 6 show that although peak-height predictions for low-scoring USS

were somewhat improved by the changed p_uptake function, those for USS with scores >11.5 bits became

slightly worse; the least-squares difference for the 209 positions was modestly reduced from 0.521 to 0.420.

We initially suspected that the overprediction of peak heights might be due to overestimating the propor-

tion of very short fragments in the input DNA, but eliminating the contributions of fragments shorter than

80 bp had very little effect on predicted peak heights. (This is likely because these fragments contribute

little DNA and rarely contain USS.) We then considered an alternative explanation, that USS might be inef-

fective when they were very close to fragment ends. The red dots in Figure 6 show that requiring USS to be

at least 50 bp from fragment ends lowered predicted peak heights to the mean observed height while

maintaining a low baseline uptake. Distances of 30 bp and 70 bp were also tested, but gave peaks that

were, respectively, too high and not high enough. Incorporating this modification into the model barely

changed the least-squares difference of its predictions with the observed uptake ratios (0.93, up from

0.92) but dramatically reduced the least-squares difference from 0.420 to 0.052. This revised model was

used by the analyses described below.

The above analyses do not explain why many uptake ratio peaks were substantially higher or lower than

predicted by their USS score. The scatter is unlikely to be due to noise alone, because more extreme

smoothing of the uptake ratio data with windows as large as 150 bp improved the correlation by only

0.001. Below we consider three other factors that might influence DNA uptake: weak non-USS uptake

biases, effects of interactions between bases at different positions in the USS, and effects of DNA shape.

Weak uptake biases could arise from either low-scoring USS or non-USS sequence factors. Because weak

biases would only be detectable in genome segments that lack strong USSs, we searched for them using a

far-from-USS10 dataset containing only DNA segments whose ends were at least 0.6kb from the closest

USS10 and that had input coverage of at least 20 reads. This dataset contained 513 segments where

weak uptake effects could in principle be detected (22% of the genome); their mean uptake ratio over

the 428678 positions was 0.0102. In these segments, the only positions with distinct uptake ratio peaks

>0.2 were nine weak USSs with scores between 9.5 and 9.9 bits (an example is shown in panel C of Fig-

ure S5). Because this analysis did not find any non-USS positions giving uptake higher than 0.2, it suggests

that other sequence factors do not detectably promote uptake in the absence of a USS.
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Figure 5. Predicted and observed DNA uptake analysis for short fragments of 86-028NP DNA

(A) Map of uptake ratios and initial model predictions. The blue points show the same uptake ratio map as in Figure 3A.

The orange points show the same predicted uptake as in Figure 2G.

(B) Locations and scores of USS9.5s.
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The degenerate-USS analysis of Mell et al. (Mell et al., 2012) found that pairwise interactions between the AT-

tract bases andcorebases of aUSSmadesubstantial contributions touptakeof a 200bpsynthetic fragment. To

evaluate the effects of these interactions in predicting uptake of genomic DNA, the USS scores used by our

revised model were raised or lowered in proportion to the interaction effects reported in Figure 6 of Mell

et al. Figure 7 shows that for the same 209 isolated USS9.5s used earlier (Figure 6), this adjustment had little ef-

fect on high-scoring USS but further reduced the scores of low-scoring USS. The data points are colored by

their uptake ratios, showing that weak USS giving unusually high or low uptake were equally likely to have their

scores reduced.However, these scoring changeshadno effect on the short-fragment uptake predictionsof the

revisedmodel (both Pearson correlations 0.93), probably because (1) the scores of strong USS were not signif-

icantly changed and (2) the scores of weak USS already gave near-baseline uptake.

DNA shape effects

Most of the interactions in Figure 7 were between bases separated by 10 bp or more, so we complemented

that analysis with analysis of DNA shape, which reflects both pairwise andmore complex interactions over a

5 bp range. The major shape features that can be predicted from DNA sequence are the minor groove

width, the propeller twist between two paired bases, the helix twist between one base pair and the next,

and the roll of one base pair relative to the next. In Figure 8, the wide gray line reproduced in each panel

shows these feature predictions for the consensus USS. The USS inner core (orange shading) has a relatively

wide minor groove and high propeller twist, which would facilitate sequence recognition by proteins (Rohs

et al., 2009). To the left of this and in both AT-tracts (yellow shading) the minor groove is narrow with low

propeller twist and negative roll, predicting that these segments are both rigid and slightly bent.

To see if shape features affect uptake in ways that were not captured by scores alone, we compared the shape

featuresof subsets of the 209 isolatedUSSwith similar scores but different uptake ratios. PanelsA–Dof Figure 8

compare the shape featuresof veryweakUSS (USS9.5-10) whoseuptake ratioswereeither low (<0.6, blue lines)or

high (>2.0, orange lines). Similarly, panels E–H and I–L show the same comparisons for USSswith low andmod-

erate scores (USS10-10.5 and USS10.5-11, respectively). USSs with scores higher than 11 bits were not analyzed

because they did not exhibit enough uptake variation to reveal correlations between uptake and DNA shape.

In all three score subsets the inner-core shape features were very similar for low-uptake and high-uptake

subsets (blue and orange lines), probably because this sequence perfectly matches the consensus in 206

Figure 6. Short-fragment uptake ratios and predicted DNA uptake at isolated 86-028NP USS as a function of USS

score

Predicted or measured DNA uptake at 209 USS9.5 positions separated by at least 1,000 bp from the nearest USS10s. The

blue dots show the measured uptake ratios; gray bars show the ranges of the three replicates at each position. The blue

line shows a sigmoidal function fit to these points. The small orange dots and line show uptake predicted by the original

model at the same positions, and the small purple and red dots show uptake predicted by the intermediate and revised

model versions discussed in the text.

See also Figure S6.
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of the 209 USS9.5. (The other three had otherwise-perfect core sequences and good AT tracts but had only

baseline uptake ratios.) However, the AT-tract shapes had marked differences, with low-uptake

USSs having no distinctive shape features and high-uptake USSs resembling the USS consensus shape.

This suggests that the predicted rigidity and slight bend caused by interactions within the consensus AT

tracts facilitate DNA uptake.

Uptake of fragments with more than one USS

Many genomic USSs are sufficiently close that they will co-occur even on short DNA fragments; 23% of 86-

028NP USS10s are within 100 bp of another USS10, and 17% are within 30 bp (Figure S9A). Fragments with

multiple USSmight be expected to have relatively high uptake, because they providemore targets to which

the uptake machinery receptor could bind, but only one of the two previous studies in Neisseria found this

effect (Ambur et al., 2007; Goodman and Scocca, 1991).

Visual examination of uptake ratio maps around the 230 pairs of 86-028NP USS10s within 100 bp found only

single peaks; Figure S9B shows that the midpoints of these USS pairs (red and green points) have very

similar uptake ratios to those of the 209 isolated USSs (pale blue points). Figure S5 panels E and F show

examples of peaks at USS pairs separated by 69 bp and 230 bp.

A special subclass of USS pairs consists of oppositely oriented pairs that are so close that they overlap;

these can form RNA hairpins and are usually located at the ends of genes where they act as transcriptional

terminators (Kingsford et al., 2007; Smith et al., 1995, 1999). Figure S9A shows that the 86-028NP genome

has 109 USS10 pairs whose centers are within 14 bp: 69 in the �/+ orientation, all 0–3 bp apart, and 40 in

the +/� orientation, all 10–14 bp apart. The green points in Figure S9B shows that midpoint uptake ratios

of these pairs were very similar to those of other pairs or at isolated USS10s with similar scores.

Overall, these results indicate that the presence of two USS10s within 100 bp does not detectably increase

the probability of the receptor binding to a USS, a result consistent with that of Ambur et al. for pairs of

closely spaced DUS in Neisseria meningitidis (Ambur et al., 2007). Because individual fragments were

not tracked, we cannot make any conclusions about uptake of fragments with more widely separated USS.

Uptake of long-fragment 86-028NP DNA

Figure 9A compares the revised model’s predictions for long-fragment 86-028NP DNA with the

uptake ratios observed over the same 50kb genome segment as in Figure 3B. In contrast to predictions
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Figure 7. Effects of within-USS interactions on USS scores

USS scores calculated with and without interactions effects for 209 isolated 86-028Np USS9.5s (see Transparent methods

for details). Red line shows expected scores if the interactions had no effect. Point color indicates the uptake ratios at the

USS: yellow, <0.01; red, 0.01–0.1; purple, 0.1–0.5; blue 0.5–1.5; green, >1.5.
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for short-fragment uptake (correlation of 0.93), it seriously underpredicted the variation in long-fragment

uptake ratios (correlation of 0.60). Although 51% of 86-028NP positions had long-fragment uptake ratios

lower than 0.8 or higher than 1.2, only 13% had predicted uptake outside these limits.

Because long-fragment uptake ratios lacked the dramatic peaks and valleys seen for short fragments, sto-

chastic noise arising at the regions of low sequencing coverage described earlier was expected to play a

larger role. To estimate the magnitude of this effect, we compared the effects of adding different amounts

of artificially generated noise to simulated (noise-free) uptake data (Figure S10A shows examples of noise-

free and noise-added coverages). Figure S10B shows that, as expected, the correlation between noisy and

noise-free data worsened as the arbitrary level of noise increased for both short-fragment (blue) and long-

fragment (red) simulations and that increasing noise had a much stronger effect on the long-fragment sim-

ulations. For short DNA fragments, simulations with noise levels of 2 and 2.5 gave correlations of 0.94 and
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Figure 8. Predicted shape features of USS

The thick gray line reproduced in each box shows shape analysis of the consensus USS sequence. Blue and orange lines in

each box show shape analysis of genomic USS separated by at least 500 bp, grouped by score and colored by uptake

ratio. The orange and yellow bars below each box indicate components of the USS (see Figure 1): light orange: outer core;

dark orange: inner core; yellow: AT tracts.

(A–D) USS9.5-10: Blue: uptake ratios <0.2 (n = 68, mean USS score = 9.7). Orange: uptake ratios >0.2 (n = 10, mean USS

score = 9.8).

(E–H) USS10.0-10.5: Blue: uptake ratios <0.6 (n = 47, mean USS score = 10.22). Orange: uptake ratios >2.0 (n = 10, mean USS

score = 10.26).

(I–L) USS10.5-11.0: Blue: uptake ratios <0.6 (n = 14, mean USS score = 10.64). Orange: uptake ratios >2.0 (n = 59, mean USS

score = 10.79). (A, E, and I) Minor groove width, in Å. (B, F, and J) Propeller twist, in degrees. (C, G, and K) Helix twist, in

degrees. (D, G, and L) Base pair roll, in degrees.

See also Figure S6. Gray bars for each point show the standard error. Dots indicate significant differences by Kolmogorov-

Smirnov between high-uptake and low-uptake positions with (red dots) and without (black dots) Bonferroni correction.
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0.92, very close to the 0.93 correlation between the revised model and the real data (dashed blue line in

Figure S9B). For long DNA fragments with the same noise levels, more noise was needed, with a 3.0 multi-

plier giving a correlation of 0.56, slightly lower than the observed correlation of 0.60 (dashed red line in Fig-

ure S9B). This confirms that the disparities between measured uptake ratios and USS-based predictions

were at least partially due to noise in the sequencing data. However, these correlations are still 21% and

10% higher than the best correlation obtained between the revised model’s predictions and real data.

One notable feature of the long-fragment uptake ratio maps in Figures 3B and 9A is the presence of occa-

sional spikes of unusually high uptake, e.g. at position 18,540 (examples are shown in panels G and H of

Figure S5). These spikes were much narrower than expected for true uptake biases acting on long DNA

fragments, so they were likely due to stochastic differences between input and uptake coverage in regions

of low coverage not due to true differences in uptake. Consistent with this explanation, 70.4% of positions

with uptake ratios greater than 2.0 had coverage less than 100 reads, compared with only 8% of positions

with more typical uptake ratios between 0.5 and 2. Table S3 shows analysis of the distribution of uptake

extremes at positions with different levels of sequencing coverage, and panels I and J of Figure S5 show

the low coverage at the example spikes. However, this explanation did not apply to most positions with

very low uptake, which were in broad segments with few or weak USS, not in narrow spikes at low coverage

positions, and thus likely reflect genuinely low uptake.

Prediction of uptake of PittGG DNA

Because the uptake model was refined using uptake data for DNA of strain 86-028NP, the revised model’s

predictions were assessed using uptake data for DNA of a different strain, PittGG, which differs from 86-

028NP DNA by SNPs and indels affecting about 11% of its genome. Figure S11 compares the uptake pre-

dictions with the observed PittGG uptake ratios. For short-fragment data the peak heights and valley

A
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D

Figure 9. Predicted and observed uptake of long 86-028NP DNA fragments

(A) and (C) Uptake maps for 86-028NP long-fragment DNA. Orange points: USS-dependent uptake predicted by the

revised model. Blue points: mean uptake ratios from three replicate experiments (gray indicates input coverage <20

reads, gaps indicate unmappable positions).

(B) and (D) USS9.5 positions and scores. (A) and (B) The same 50 kb genome segment shown in previous figures. (C) and (D)

Whole genome.
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depths were similar to those for 86-028NP, as was the Pearson correlation between predicted and observed

uptake (0.92). Although the model predicted similar long-fragment variation for 86-028NP and PittGG, the

PittGG experimental data showed more extreme variation, and the correlation was only 0.41, substantially

worse than the 0.60 obtained for 86-028NP. As with the 86-028NP data, much of this discrepancy may be

due to noise in regions of low sequencing coverage. However, this may not fully explain PittGG’s lower

correlation, because input samples of the two strains had similar frequencies of low-coverage positions

(Table 2.2).

Predicted competition with other DNAs in the human respiratory tract

H. influenzae’s natural environment is the human respiratory tract, where its DNAmust compete for uptake

with DNAs from other bacteria, and with host-derived DNA whose concentration in respiratory mucus of

healthy individuals can exceed 300 mg/mL (Lethem et al., 1990; Shak et al., 1990). The revised model was

used to investigate this competition.

Table 2 lists the frequencies of USS10 and USS11 in the genomes of various species. Pasteurellaceae species

that share H. influenzae’s Hin-type USS (e.g. H. parainfluenzae and Aggregatibacter actinomycetemcomi-

tans) typically have about 1000 USS10s per Mb (Redfield et al., 2006); most of these are strong USS with

scores R11. Pasteurellaceae with the Apl-type USS (e.g. H. ducreyi and Mannheimia haemolytica) have

about 10-fold fewer Hin-type USS10s, and fewer than 20% of these are strong. Other common respiratory

tract bacteria (e.g. N. meningitidis, Streptococcus pneumonia and Pseudomonas aeruginosa) have USS

only at the frequencies expected for their base compositions. The human genome is exceptional in having

about 5-fold fewer USS10 per Mb than expected from simulated sequences with the 41% GC content of hu-

man DNA (observed frequency 4.6/Mb, simulated frequency 30/Mb, both with mean scores of only 10.3

bits). Because the USS inner-core motif includes a CpG, the underrepresentation of USS10 in human

DNA relative to simulated sequences is probably a consequence of the 4- to 5-fold depletion of CpGs

in the human genome caused by deamination of methylated cytosines (Babenko et al., 2017; Bird, 1986).

To estimate how strongly these DNAs would compete with H. influenzae DNA for uptake by H. influenzae

cells, we concatenated the 86-028NP genome with each of two Pasteurellacean genomes andwith three 1.9

Mb segments of the human genome and used the revised uptake model to predict relative uptake. The

respiratory pathogenH. parainfluenzaewas used as theHin-type USS representative. The genital pathogen

H. ducreyi was used as a representative species with Apl-type USSs, because none occur in the human res-

piratory tract, and segments of human DNA also served to represent non-Pasteurellacean bacteria. To

approximate the lengths of DNA fragments in the respiratory tract (Lethem et al., 1990; Shak et al.,

1990), the model was run using fixed fragment lengths of 1kb and 10kb, and because human DNA will

contain many fragments lacking USSs, the predictions were made with and without the model’s p_uptake

baseline binding probability of 0.005. For each genome in the concatenated sequence, the predicted

Table 2. Frequencies of Hin-type USS in genomes of other species

Species Genome size USS10/Mb USS11/Mb

H. influenzae 86-028NP 1.914 1014 754

H. parainfluenzae T3T1 2.087 867 683

Aggregatibacter actinomycetemcomitans

VT1169

2.129 970 737

H. ducreyi 35000HP 1.699 102 16

Mannheimia haemolytica M42584 2.732 96 18

N. meningitidis 2.272 52 4

Streptococcus pneumoniae 2.039 16 1

Pseudomonas aeruginosa 6.264 8 0

Homo sapiensa 3 x 1.9 Mb 6.6 0.1

Random-sequence DNAb, 41% G + C 3 x 1.9 Mb 29.5 0.3

aMeans for three 1.9 Mb segments of human chromosomes 1, 3, and 12.
bMeans for three 1.9 Mb ‘‘genomes’’ with the same base composition as human DNA.
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uptake at every position was then summed to get a total genome uptake value for each fragment length

and baseline assumption.

Table 3 shows the relative amounts of H. influenzae DNA predicted to be taken up under the various

competition conditions. As expected from published uptake-competition experiments (Albritton et al.,

1984; Redfield et al., 2006), H. influenzae and H. parainfluenzae DNAs were taken up with equal efficiency

in all simulated conditions, andH. ducreyiDNAwasmuch less competitive, contributing only 5% of the 1 kb

fragments and only 12% of the 10 kb fragments. With human DNA as the 1:1 competitor, more than 99% of

the DNA taken up was predicted to be fromH. influenzae. For all competing DNAs, baseline uptake of frag-

ments containing no USS made only a tiny contribution.

DISCUSSION

DNA uptake by competent H. influenzae Rd cells was measured at every position in the genomes of two

divergent H. influenzae strains, using short-fragment and long-fragment DNA preparations. Differences

between observed uptake and that predicted by a computational model of USS-dependent uptake re-

vealed the strength of the uptake machinery’s bias toward USS and the absence of other sequence biases.

These findings increased our understanding of DNA uptake bias and its potential effects on the distribution

of recombination.

Implications for DNA uptake

The USS motif

The measured discrimination for USS was very strong; with short DNA fragments, valleys at USS-free seg-

ments had �1000-fold lower uptake ratios than peaks at high-scoring USS. This non-zero baseline is un-

likely to be due to residual contamination by recipient DNA, because valley depths were similar for seg-

ments with and without Rd homology (Figure 4). One surprising finding of Mell et al. (2012) work was the

difference between the inner-core uptakemotif identified by their degenerate-USS experiments (Figure 1A)

and the extended motif of USS sequences in the H. influenzae genome (Figure 1B). Our analysis confirmed

that uptake absolutely requires a perfect match to the inner core but found that this was not sufficient to

raise uptake above baseline, even if the rest of the core was perfectly matched.

Effect of USS shape

The predicted shape differences between similarly-scoring USSs that gave strong or weak uptake (Figure 8)

suggest a preference for USS that are rigidly bent at AT-tracts and the outer core (Harteis and Schneider,

2014; Rohs et al., 2009). Similar preferences have been described for several DNA binding proteins and

have been associated with specific binding by arginine or lysine residues to narrow minor grooves (Rohs

et al., 2009; Stella et al., 2010). These features have been integrated successfully in some transcription fac-

tor-binding models (Li et al., 2017), but using them to improve uptake prediction will require more compre-

hensive investigation into the effects of DNA shape on uptake. The stiffness also suggests that the initial

passage of DNA through the secretin pore may be facilitated by transient strand melting at or beside

the USS rather than by bending (Danner et al., 1982).

Table 3. Predicted relative uptake of H. influenzae DNA in simulated competition with DNAs of other species

Assumptions:

1 kb

fragments,

p_uptake = 0

1 kb

fragments,

p_uptake = 0.005

10 kb

fragments,

p_uptake = 0

10 kb

fragments,

p_uptake = 0.005

86-028NP DNA in competition with:

H. parainfluenzae

DNA (Hin-type USS)a,b
0.500 0.500 0.475 0.475

H. ducreyi DNA

(Apl-type USS)a,b
0.952 0.951 0.884 0.883

Homo sapiens DNAc (no USS enrichment) 0.998 0.997 0.991 0.990

aH. influenzae DNA as a fraction of the total DNA predicted to be taken up.
bCompetitions were genome:genome.
cMeans for the three genome 1.9 Mb segments described in Transparent methods.
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Other USS effects on DNA uptake

Comparison of predicted and measured heights of uptake peaks suggested that USSs were ineffective

when located very close to fragment ends. This would be consistent with experimental evidence that up-

take initiates internally rather than at fragment ends (Barany et al., 1983) but would need to be experimen-

tally investigated. The presence of two USSs within 100 bp did not detectably increase uptake, a finding

consistent with Ambur et al.’s (Ambur et al., 2007) study of very close uptake sequences in Neisseria.

Lack of USS-independent effects

The very low valleys between short-fragment uptake peaks allowed us to examine more than 400,000 po-

sitions for USS-independent increases in uptake. None were found; the only positions with distinct uptake

ratio peaks >0.2 were nine weak USSs.

Implications for genetic exchange

Preferential uptake of USS can create variation in recombination at all levels: across a single genome, between

strains of one species, and between both closely related and unrelated species. Pifer and Smith showed that

transformation frequency in H. influenzae decreased exponentially when fragments were smaller than 3.5 kb.

This decrease was attributed to exonuclease degradation of fragments from their 30 ends, because similar

numbers of short and long fragments were taken up, only 50-end label was incorporated into the chromosome,

short fragments transformedmoreefficientlywhen the selectedmarkerwas far fromoneend.Mell andRedfield

(2014) used genome sequencing of inter-strain recombinants to examine the distribution of recombination

tract lengths; despite the presence of 2%–3% SNPs, the mean tract length was 6.9 kb and the longest was

43 kb. The efficient uptake and recombination of long fragments allows fragments containing non-homolo-

gous segments to still recombine well, provided both fragment ends are homologous. Fragments with only

one homologous end recombine much less efficiently (‘‘homology-facilitated recombination’’ (de Vries and

Wackernagel, 2002)), and integration of fragments with no homology is very rare.

Across the genome

Across the genome of an H. influenzae strain, the genetic consequences of USS-dependent DNA uptake

depend on USS locations and the lengths of the available DNA fragments. If only short fragments are avail-

able, the limitation to positions close to a USS may be obscured by limitation caused by degradation of

incoming DNA in the cytoplasm. If most fragments are long, recombination will be both more frequent

and more evenly distributed across the genome, because long fragments are more likely to both contain

USS and recombine. The result will be that almost all recombination is caused by fragments long enough to

usually contain at least one strong USS. This situation is caused by the high abundance and relatively even

distribution of genomic USS, itself an expected consequence of the functionally neutral accumulation of

USS under a molecular drive caused by USS-biased DNA uptake (Danner et al., 1982; Maughan et al., 2010).

Recombination between H. influenzae strains

On average, about 85% of the genomes of H. influenzae strains are homologous, with sequence divergence

lowenough to haveonly amodest effect on recombination frequencies (Mell et al., 2011).On average, genome

segments that are absent from other strains have lower density of USS (0.58/kb versus 1.08/kb for sequences

present in 86-028NP but absent from Rd). Only some of these will be segments newly acquired from species

without USS. If a non-homologous segment introduced into one strain by conjugation or transduction is bene-

ficial, the USSs in adjacent DNA will help it efficiently spread to other strains by transformation.

Recombination between Pasteurellaceae species

Uptake of DNA from related species can also influence recombination, either directly if the DNA is suffi-

ciently similar to recombine with the H. influenzae genome or indirectly if it successfully competes with

H. influenzae DNA for uptake or, once inside the cell, for access to nucleases or recombination machinery.

For H. influenzae the most important competition will be with other Pasteurellaceae that share both the

respiratory tract niche and the Hin-type USS, but similar effects are expected for Pasteurellaceae in other

host species.

Competition with DNAs from human cells and other respiratory bacteria

In the respiratory tract, the most important source of competing DNA is human cells. However, our analysis

suggests that H. influenzae’s uptake specificity allows its DNA to outcompete human and other foreign

ll
OPEN ACCESS

iScience 24, 102007, January 22, 2021 17

iScience
Article



DNAs even if these are in 100-fold excess, a combined effect of the low number of USS10s and their poor

match to the uptake motif. Note that efficient self-uptake does not necessarily imply a selective advantage,

because USS accumulation in H. influenzae’s genome may simply be due to the molecular drive process.

Uptake of DNA in the respiratory tract could also be influenced by the presence of chromatin and

nucleoid proteins stably bound to the DNA. Although laboratory experiments typically use highly purified

DNA, DNA released by cell death will be coated with these proteins, which can contribute significantly to

biofilm stability (Brockman et al., 2018). Because such proteins could interfere with uptake both directly,

by blocking binding to the USS and indirectly, by blocking sliding of non-specifically bound uptake ma-

chinery along the DNA, it will be important to re-examine DNA uptake using DNA that retains its bound

proteins.

Limitations of the study

Three factors limited measurements of uptake ratios: low sequencing read coverage, contamination of

recovered donor DNA with recipient DNA, and segments of sequence identity between donor and recip-

ient. Many reads had to be excluded at the contamination-correction step, because they were in segments

that were either identical between donor and recipient or were repeated within the donor genome. Strong

sequence-dependent variation in read coverage caused other positions to be excluded from analysis

because they had no coverage in the control input sample. Overall, 2.3% of the genome was excluded

from analysis, and an additional 1.7% was flagged as unreliable due to low coverage. In addition, the sto-

chastic variation at low coverage positions introduced substantial noise into the calculation of experi-

mental uptake ratios, especially at uptake valleys. On the other hand, the model predictions for long-frag-

ment may be more accurate than indicated by their modest correlation with the noisy measured uptake

ratios.

Resource availability
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J. Redfield (redfield@zoology.ubc.ca).

Materials availability

All bacterial strains are available from Joshua Chang Mell (joshua.mell@drexelmed.edu).

Data and code availability

All fastQ files have been deposited under NCBI BioProject:PRJNA387591. The corresponding BioSamples

are listed in Table S2. FastQ files were also deposited at Mendeley data (https://doi.org/10.17632/

hcxp9d4zkf.1. Available at https://data.mendeley.com/datasets/hcxp9d4zkf/1). The PacBio-sequenced

PittGG genome reference was deposited into GenBank under SRA number SRR10207558. Full calculations

and R scripts are available at: https://github.com/mamora/DNA_uptake.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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ACKNOWLEDGMENTS

Financial support for this work was provided by the National Science and Engineering Research Council of

Canada (to RJR) and by the National Institutes of Health (to GDE (5R01DC002148-21)). We thank the Drexel

Genomic Core Facility for DNA sequencing; Rachel Simister for her assistance with the bioanalyzer frag-

ment analysis; and Matt Pennell, Sally Otto, Stephen Hallam, and David Baltrus for advice on the manu-

script. We also thank two anonymous reviewers for their very helpful comments and the Editor for their

patience during the revisions.

ll
OPEN ACCESS

18 iScience 24, 102007, January 22, 2021

iScience
Article

mailto:redfield@zoology.ubc.ca
mailto:joshua.mell@drexelmed.edu
https://doi.org/10.17632/hcxp9d4zkf.1
https://doi.org/10.17632/hcxp9d4zkf.1
https://data.mendeley.com/datasets/hcxp9d4zkf/1
https://github.com/mamora/DNA_uptake
https://doi.org/10.1016/j.isci.2020.102007


AUTHOR CONTRIBUTIONS

MM, JCM, and RJR designed the experiments and analysis. MM performed the experiments and most of

the analyses; JCM and RJR performed the remaining analyses. Sequencing was done in the laboratory of

GDE; data curation by RLE, JCM, and MM. RJR and MM wrote the manuscript with input from the other

authors.

DECLARATIONS OF INTERESTS

The authors declare no competing interests.

Received: January 15, 2020

Revised: November 30, 2020

Accepted: December 23, 2020

Published: January 22, 2021

REFERENCES
Albritton, W.L., Setlow, J.K., Thomas, M., Sottnek,
F., and Steigerwalt, A.G. (1984). Heterospecific
transformation in the genus Haemophilus. Mol.
Gen. Genet. 193, 358–363.

Ambur, O.H., Frye, S.A., and Tønjum, T. (2007).
New functional identity for the DNA uptake
sequence in transformation and its presence in
transcriptional terminators. J. Bacteriol. 189,
2077–2085.

Babenko, V.N., Chadaeva, I.V., and Orlov, Y.L.
(2017). Genomic landscape of CpG rich elements
in human. BMC Evol. Biol. 17, 19.

Bae, J., Oh, E., and Jeon, B. (2014). Enhanced
transmission of antibiotic resistance in
Campylobacter jejuni biofilms by natural
transformation. Antimicrob. Agents Chemother.
58, 7573–7575.

Barany, F., Kahn, M.E., and Smith, H.O. (1983).
Directional transport and integration of donor
DNA in Haemophilus influenzae transformation.
Proc. Natl. Acad. Sci. U S A 80, 7274–7278.

Barouki, R., and Smith, H.O. (1985).
Reexamination of phenotypic defects in rec-1 and
rec-2 mutants of Haemophilus influenzae Rd.
J. Bacteriol. 163, 629–634.

Bird, A.P. (1986). CpG-rich islands and the
function of DNA methylation. Nature 321,
209–213.

Brockman, K.L., Azzari, P.N., Taylor Branstool, M.,
Atack, J.M., Schulz, B.L., Jen, F.E.-C., Jennings,
M.P., and Bakaletz, L.O. (2018). Epigenetic
regulation alters biofilm architecture and
composition in multiple clinical isolates of
Nontypeable Haemophilus influenzae. MBio 9,
e01682–18.

Cehovin, A., Simpson, P.J., McDowell, M.A.,
Brown, D.R., Noschese, R., Pallett, M., Brady, J.,
Baldwin, G.S., Lea, S.M., Matthews, S.J., et al.
(2013). Specific DNA recognition mediated by a
type IVpilin. Proc. Natl. Acad. Sci. U S A 110 (8), In
this issue, 3065–3070.

Chen, I., and Dubnau, D. (2004). DNA uptake
during bacterial transformation. Nat. Rev.
Microbiol. 2, 241–249.

Danner, D.B., Deich, R.a., Sisco, K.L., and Smith,
H.O. (1980). An eleven-base-pair sequence

determines the specificity of DNA uptake in
Haemophilus transformation. Gene 11, 311–318.

Danner, D.B., Smith, H.O., and Narang, S.A.
(1982). Construction of DNA recognition sites
active in Haemophilus transformation. Proc. Natl.
Acad. Sci. U S A 79, 2393–2397.

Davidsen, T., Rødland, E.A., Lagesen, K.,
Seeberg, E., Rognes, T., and Tønjum, T. (2004).
Biased distribution of DNA uptake sequences
towards genome maintenance genes. Nucleic
Acids Res. 32, 1050–1058.

Deich, R.A., and Smith, H.O. (1980). Mechanism of
homospecific DNA uptake in Haemophilus
influenzae transformation. Molecular and
General Genetics 177, 369–374.

Dougherty, T.J., Asmus, A., and Tomasz, A.
(1979). Specificity of DNA uptake in genetic
transformation of gonococci. Biochem. Biophys.
Res. Commun. 86, 97–104.

Findlay, W.A., and Redfield, R.J. (2009).
Coevolution of DNA uptake sequences and
bacterial proteomes. Genome Biol. Evol. 1,
45–55.

Frye, S.A., Nilsen, M., Tønjum, T., and Ambur,
O.H. (2013). Dialects of the DNA uptake
sequence in Neisseriaceae. PLoS Genet. 9,
e1003458.

Goodgal, S.H. (1982). DNA uptake in
Haemophilus transformation. Annu. Rev. Genet.
16, 169–192.

Goodman, S.D., and Scocca, J.J. (1991). Factors
influencing the specific interaction of Neisseria
gonorrhoeae with transforming DNA.
J. Bacteriol. 173, 5921–5923.

Halford, S.E., and Marko, J.F. (2004). How do site-
specific DNA-binding proteins find their targets?
Nucleic Acids Res. 32, 3040–3052.

Harrison, A., Dyer, D.W., Gillaspy, A., Ray, W.C.,
Mungur, R., Carson, M.B., Zhong, H., Gipson, J.,
Gipson, M., Johnson, L.S., et al. (2005). Genomic
sequence of an otitis media isolate of
nontypeable Haemophilus influenzae:
comparative study with H. influenzae serotype d,
strain KW20. J. Bacteriol. 187, 4627–4636.

Harteis, S., and Schneider, S. (2014). Making the
bend: DNA tertiary structure and protein-DNA
interactions. Int. J. Mol. Sci. 15, 12335–12363.

Hepp, C., and Maier, B. (2016). Kinetics of DNA
uptake during transformation provide evidence
for a translocation ratchet mechanism. Proc. Natl.
Acad. Sci. U S A 113, 12467–12472.

Hogg, J.S., Hu, F.Z., Janto, B., Boissy, R., Hayes,
J., Keefe, R., Post, J.C., and Ehrlich, G.D. (2007).
Characterization and modeling of the
Haemophilus influenzae core and supragenomes
based on the complete genomic sequences of Rd
and 12 clinical nontypeable strains. Genome Biol.
8, R103.

Kahn, M.E., Barany, F., and Smith, H.O. (1983).
Transformasomes: specialized membranous
structures that protect DNA during Haemophilus
transformation. Proc. Natl. Acad. Sci. U S A 80,
6927–6931.

Kingsford, C.L., Ayanbule, K., and Salzberg, S.L.
(2007). Rapid, accurate, computational discovery
of Rho-independent transcription terminators
illuminates their relationship to DNA uptake.
Genome Biol. 8, 1–12.

Kress-Bennett, J.M., Hiller, N.L., Eutsey, R.A.,
Powell, E., Longwell, J., Hillman, T., Blackwell, T.,
Byers, B., Mell, J.C., Post, J.C., et al. (2016).
Identification and characterization of msf , a novel
virulence factor in Haemophilus influenzae. PLoS
One 11, e0149891.

Lethem, M., James, S.L., Marriott, C., and Burke,
J.F. (1990). The origin of DNA associated with
mucus glycoproteins in cystic fibrosis sputum.
Eur. Respir. J. 3, 19–23.

Li, J., Sagendorf, J.M., Chiu, T.P., Pasi, M., Perez,
A., and Rohs, R. (2017). Expanding the repertoire
of DNA shape features for genome-scale studies
of transcription factor binding. Nucleic Acids Res.
45, 12877–12887.

Lorenz, M.G., and Wackernagel, W. (1994).
Bacterial gene transfer by natural genetic
transformation in the environment. Microbiol.
Rev. 58, 563–602.

Man, W.H., De Steenhuijsen Piters, W.A.A., and
Bogaert, D. (2017). The microbiota of the
respiratory tract: gatekeeper to respiratory
health. Nat. Rev. Microbiol. 15, 259–270.

ll
OPEN ACCESS

iScience 24, 102007, January 22, 2021 19

iScience
Article

http://refhub.elsevier.com/S2589-0042(20)31204-9/sref1
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref1
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref1
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref1
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref2
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref2
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref2
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref2
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref2
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref3
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref3
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref3
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref4
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref4
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref4
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref4
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref4
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref5
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref5
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref5
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref5
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref6
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref6
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref6
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref6
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref7
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref7
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref7
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref8
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref8
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref8
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref8
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref8
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref8
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref8
http://refhub.elsevier.com/S2589-0042(20)31204-9/optP1k6TyxSx5
http://refhub.elsevier.com/S2589-0042(20)31204-9/optP1k6TyxSx5
http://refhub.elsevier.com/S2589-0042(20)31204-9/optP1k6TyxSx5
http://refhub.elsevier.com/S2589-0042(20)31204-9/optP1k6TyxSx5
http://refhub.elsevier.com/S2589-0042(20)31204-9/optP1k6TyxSx5
http://refhub.elsevier.com/S2589-0042(20)31204-9/optP1k6TyxSx5
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref9
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref9
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref9
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref10
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref10
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref10
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref10
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref11
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref11
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref11
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref11
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref12
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref12
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref12
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref12
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref12
http://refhub.elsevier.com/S2589-0042(20)31204-9/optFWESfcpZk5
http://refhub.elsevier.com/S2589-0042(20)31204-9/optFWESfcpZk5
http://refhub.elsevier.com/S2589-0042(20)31204-9/optFWESfcpZk5
http://refhub.elsevier.com/S2589-0042(20)31204-9/optFWESfcpZk5
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref13
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref13
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref13
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref13
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref14
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref14
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref14
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref14
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref15
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref15
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref15
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref15
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref16
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref16
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref16
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref17
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref17
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref17
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref17
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref18
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref18
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref18
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref19
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref19
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref19
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref19
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref19
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref19
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref19
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref20
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref20
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref20
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref21
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref21
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref21
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref21
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref22
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref22
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref22
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref22
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref22
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref22
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref22
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref23
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref23
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref23
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref23
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref23
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref24
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref24
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref24
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref24
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref24
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref25
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref25
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref25
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref25
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref25
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref25
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref26
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref26
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref26
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref26
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref27
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref27
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref27
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref27
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref27
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref28
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref28
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref28
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref28
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref29
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref29
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref29
http://refhub.elsevier.com/S2589-0042(20)31204-9/sref29


Mathis, L.S., and Scocca, J.J. (1982). Recognize
different specificity determinants in the DNA
uptake step of genetic transformation. J. Gen.
Microbiol. 128, 1159–1161.

Maughan, H., and Redfield, R.J. (2009). Extensive
variation in natural competence in haemophilus
influenzae. Evolution 63, 1852–1866.

Maughan, H., Wilson, L.A., and Redfield, R.J.
(2010). Bacterial DNA uptake sequences can
accumulate by molecular drive alone. Genetics
186, 613–627.

Mell, J.C., and Redfield, R.J. (2014). Natural
competence and the evolution of DNA uptake
specificity. J. Bacteriol. 196, 1471–1483.

Mell, J.C., Shumilina, S., Hall, I.M., and Redfield,
R.J. (2011). Transformation of natural genetic
variation into Haemophilus Influenzae genomes.
PLoS Pathog. 7, e1002151.

Mell, J.C., Hall, I.M., and Redfield, R.J. (2012).
Defining the DNA uptake specificity of naturally
competent Haemophilus influenzae cells. Nucleic
Acids Res. 40, 8536–8549.

Mell, J.C., Viadas, C., Moleres, J., Sinha, S.,
Fernández-Calvet, A., Porsch, E.A., St. Geme,
J.W., Nislow, C., Redfield, R.J., and Garmendia, J.
(2016). Transformed recombinant enrichment
profiling rapidly Identifies HMW1 as an
intracellular invasion locus in Haemophilus
influenza. PLoS Pathog. 12, e1005576.

Mrazek, J. (2010). Comparative analysis of
sequence periodicity among prokaryotic
genomes points to differences in nucleoid
structure and a relationship to gene expression.
J. Bacteriol. 192, 3763–3772.

Pifer, M.L., and Smith, H.O. (1985). Processing of
donor DNA during Haemophilus influenzae
transformation: analysis using a model plasmid
system. Proc. Natl. Acad. Sci. U S A 82, 3731–
3735.

Redfield, R.J., Findlay, W.A., Bossé, J., Kroll, J.S.,
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Figure S1. Frequency distribution of USS scores for all positions in H. influenzae and 

random-sequence genomes. Related to Figure 1.

Legend: 86-028 NP (blue), PittGG (orange), Rd (gold), and four random-sequence 1.9 Mb 

genomes with the same base composition (38%G+C, black and grey).  Scores were 

calculated with the uptake scoring matrix in Table S1. The numbers in the lower right are 

the numbers of positions meeting cutoff scores of 9.5, 10.0 and 10.5 bits. Inset: Expanded 

view for positions with scores higher than 9 bits.
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Figure S2: Distributions of fragment lengths in input DNA preparations. Related to Figures 

3, 5 and 9.

Legend: Relative abundances of DNA fragment lengths were estimated from Bioanalyzer

data for input DNA samples from strains 86-028NP (blue) and PittGG (orange).  A. Short-

fragment preparations. B. Long-fragment preparations. Solid lines: length distributions of 

fragments in input DNA preparations, normalized to most frequent length.  Dashed lines: 

Length distributions of sequenced fragments, with arbitrary scaling. Insets: Bioanalyzer

pseudo-gel images of sheared DNAs (NP: 86-028NP, GG: PittGG). Bioanalyzer molecular 

weight markers are shown in purple and green. 



Figure S3 Locations of positions with missing uptake ratio data.  Related to 

Figures 3, 5 and 9.

Legend: Each point represents a genome position for which an uptake ratio 

could not be calculated. The points are vertically jittered, so segments with no 

coverage appear as black rectangles. A. 86-028NP, short-fragment data.  B. 86-

028NP, long-fragment data. C. PittGG, short-fragment data. D. PittGG, long-

fragment data.
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Figure S4. Experimentally determined uptake ratio maps and USS10 maps. Related to 

Figure 3.

Legend: Grey points indicate positions with input coverage lower than 20 reads. Gaps 

indicate unmappable positions.  A-C: Maps of a 50 kb segment of the PittGG genome.  A.

Uptake ratios of short-fragment PittGG DNA. B. Uptake ratios of long-fragment PittGG

DNA. C. PittGG USS10 positions and scores.  D-I: Whole-genome maps.  D. Uptake ratios 

of short-fragment 86-028NP DNA. E. Uptake ratios of long-fragment 86-028NP DNA.  F. 

86-028NP USS10 positions and scores.  G. Uptake ratios of short-fragment PittGG DNA. H.

Uptake ratios of long-fragment PittGG DNA.  I. PittGG USS10 positions and scores. 
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Figure S5. Shapes of typical 86-028NP uptake peaks. Related to Figures 3 and 9.

Legend. Blue dots: uptake ratios after smoothing with a 31 bp window. A.-H.: 

Orange dots: uptake ratios without smoothing (note that Y axis is offset by 0.5 

units). Red triangles and numbers: locations and scores of USS.  A.-F. 86-028NP 

short-fragment DNA: A. and B.: peaks at strong USS. C. and D.: peaks at weak 

USS. E. and F.: peaks at pairs of USS separated by A. 69 bp and B. 230?? bp. G. 

and H. Uptake ratio spikes not at USS in 86-028NP long-fragment DNA. I. and J.  

Purple dots: sequencing coverage of input 86-028NP long-fragment DNA.



Figure S6.  Variation in read coverage. Related to Figures 3 and 9.

Legend: Read coverage of the 86-028NP long-fragment (green) and short-fragment 

(purple) input samples over a 50 kb genome segment.
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Figure S7.  Shape analysis of isolated USS10 peaks. Related to Figures 4 and 6.

Legend: Short-fragment uptake ratio data for positions around 158 86-028NP 

USS10s that were separated by at least 1200 bp from other USS10s and had 

uptake ratios of at least 3.0. 
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Figure S8. Tests of periodicity. Related to Figures 3 and 9.

Legend: Fourier-transform analyses were performed using R-package RCA.  The X-axes are 

log10 of repeat period in bp; Y-axes are log10 of the relative periodicity at each repeat period.

A-D. Tests using coverage in input samples.  E-H. Tests using uptake ratios. Samples: A & 

E: 86-028NP short fragments; B & F: 86-028NP long-fragments; C & G:Pitt GG short 

fragments; D & H: PittGG long fragments. 
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Figure S9.  Analysis of DNA uptake effects of USS10 pairs in the 86-028NP 

genome.   Related to Figure 3 and 6.

Legend: A. Frequencies of spacings between close USS10 pairs. B. Uptake 

ratios for isolated USS10 (blue points, data from Figure 6) and for centers of 

pairs of USS10 whose centers are 14-100 bp apart (red points) or 0-13 bp 

apart (dark green points).
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Figure S10. Simulated noise analysis. Related to Figures 5 and 9.

Legend: A. Effects of added red noise on simulated noise-free coverage. Black points: no added 

noise; Green, yellow and red points: simulated noise added with multipliers of 1.0, 2.0 and 3.0 

respectively. B. Correlation coefficient from simulated uptake ratios with and without different 

levels of noise. X-axis represents the multiplicative factor applied to the coverage-dependent 

amount of noise added. Simulated results for 86-028NP-short and 86-028NP-long DNA fragments 

are shown in blue and red, respectively. Dashed lines at 0.93 (blue) and 0.60 (red) indicate the 

real-data correlation of predicted uptake with observed uptake ratios for 86-028NP-short (top) and 

long (bottom) fragment size distributions, respectively. 
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Figure S11. Predicted and observed uptake ratios for PittGG short and long 

DNA fragments. Related to Figure 3.

Legend: A and E: Uptake maps for the first 50kb of the PittGG genome;  C. 

and G.: Uptake maps for the full PittGG genome. B., D., F. and I.: Vertical 

tick marks indicate locations and scores of USS10s.  Orange lines: USS-

dependent uptake predicted by the revised model.  Blue lines: Mean uptake 

ratios from 3 replicate experiments (grey points indicate positions with <20 

reads input coverage, gaps indicate unmapable possitions). Note that some 

grey dots are beyond the tops of some panels.



Table S1:  USS uptake scoring matrix: Related to Figure 1. 
 
 

 1 2 3 4 5 6 7 8 9 10  

A 0.07 0.09 0.42 0.63 -0.13 -0.13 -0.07 -0.06 -0.07 -0.10  

C -0.09 -0.04 -0.13 -0.12 -0.11 -0.12 -0.10 1.86 -0.09 -0.12  

G 0.06 -0.02 -0.03 -0.07 1.01 -0.13 1.61 -0.05 1.76 1.57  

T -0.01 -0.03 -0.08 -0.06 -0.12 0.83 -0.12 -0.05 -0.08 -0.11  

            

            

 11 12 13 14 15 16 17 18 19 20  

A -0.11 -0.01 0.15 0.07 0.04 0.04 -0.02 -0.05 -0.02 0.00  

C -0.03 0.05 -0.07 -0.05 -0.08 -0.08 -0.04 0.01 -0.02 -0.01  

G -0.10 -0.06 0.03 0.00 -0.06 -0.11 -0.11 -0.08 -0.02 0.00  

T 0.40 0.03 -0.07 -0.02 0.13 0.27 0.26 0.16 0.07 0.00  

            

            

 21 22 23 24 25 26 27 28 29 30 31 

A 0.00 0.00 -0.01 0.00 0.05 -0.01 0.04 -0.06 -0.06 -0.03 -0.03 

C 0.01 0.00 0.00 0.01 -0.06 -0.04 -0.10 -0.01 -0.03 -0.01 -0.01 

G 0.01 0.01 0.01 0.00 0.06 -0.06 -0.13 -0.12 -0.08 -0.03 0.00 

T -0.02 -0.01 0.00 -0.01 -0.04 0.13 0.35 0.32 0.23 0.08 0.04 

 
 
 
 
 
 
 
 



Table S2.  Sample metadata.  Related to Table 1 and  Figures 3 and 9. 

Sample 
name1 

Sample 
type Biosample ID 

Bioproject 
accession 

Donor 
strain 

Genome 
size 

Fragment 
size 

range 
(bp) 

Recipient 
strain 

% of DNA 
recovered 

UP1  
(NP lg) 

Taken-
up DNA SAMN07187224 PRJNA387591 

86-028NP 
NalR  1,914,387 

1500-
17000 

RR3117 
(rec2::spec) 2.06 

UP2  
(NP lg) 

Taken-
up DNA SAMN07187225 PRJNA387591 

86-028NP 
NalR  1,914,387 

1500-
17000 

RR3125 
(rec2-) 1.38 

UP3  
(NP lg) 

Taken-
up DNA SAMN07187226 PRJNA387591 

86-028NP 
NalR  1,914,387 

1500-
17000 

RR3125 
(rec2-) 1.38 

UP4  
(GG lg) 

Taken-
up DNA SAMN07187227 PRJNA387591 PittGG) 1,887,046 

1500-
17000 

RR3117 
(rec2::spec) 1.60 

UP5  
(GG lg) 

Taken-
up DNA SAMN07187228 PRJNA387591 PittGG  1,887,046 

1500-
17000 

RR3125 
(rec2-) 1.24 

UP6 
(GG lg) 

Taken-
up DNA SAMN07187229 PRJNA387591 

PittGG 
(RR1361) 1,887,046 

1500-
17000 

RR3125 
(rec2-) 2.48 

UP7 
(NP sh) 

Taken-
up DNA SAMN07187230 PRJNA387591 

86-028NP 
NalR  1,914,387 50-800 

RR3117 
(rec2::spec) 0.64 

UP8 
(NP sh) 

Taken-
up DNA SAMN07187231 PRJNA387591 

86-028NP 
NalR  1,914,387 50-800 

RR3125 
(rec2-)  0.32 

UP9 
(NP sh) 

Taken-
up DNA SAMN07187232 PRJNA387591 

86-028NP 
NalR  1,914,387 50-800 

RR3125 
(rec2-) 0.41 

UP10 
(GG sh) 

Taken-
up DNA SAMN07187233 PRJNA387591 PittGG  1,887,046 50-800 

RR3117 
(rec2::spec) 0.77 

UP11 
(GG sh) 

Taken-
up DNA SAMN07187234 PRJNA387591 PittGG  1,887,046 50-800 

RR3125 
(rec2-) 0.91 

UP12 
(GG sh) 

Taken-
up DNA SAMN07187235 PRJNA387591 PittGG  1,887,046 50-800 

RR3125 
(rec2-) 1.03 

UP13 
(NP lg) 

Input 
DNA SAMN07187236 PRJNA387591 

86-028NP 
NalR  1,914,387 

1500-
17000 N/A N/A 

UP14 
(GG lg) 

Input 
DNA SAMN07187237 PRJNA387591 PittGG  1,887,046 

1500-
17000 N/A N/A 

UP15 
(NP sh) 

Input 
DNA SAMN07187238 PRJNA387591 

86-028NP 
NalR  1,914,387 50-800 N/A N/A 

UP16  
(GG sh) 

Input 
DNA SAMN07187239 PRJNA387591 PittGG  1,887,046 50-800 N/A N/A 

Rd 
recipient 

DNA SAMN12049038 PRJNA387591 
Rd  

(recipient) 1,831,585 
Not 

sheared Rd KW20 N/A 

	



Sample 
name1 

Mean size 
of library 
fragments  

Un-
mapped 

reads 
Mapped 
reads 

Mean 
MAPQ 
score 

Reads 
mapping 
only to 

recipient 
(MAPQ>0) 

Reads 
mapping 
only to 
donor 

(MAPQ>0) 

% 
contam-
ination 
with Rd 

DNA 

% of 
reads 

removed 

Mean 
read 

coverage 

UP1  
(NP lg) 342.4 22,982 2,6468,71 47.2 122,712 2,253,377 5.16 14.9 174 

UP2  
(NP lg) 334.0 29,276 2,386,785 47.1 151,131 1,987,921 7.07 16.7 154 

UP3  
(NP lg) 341.3 29,111 2,962,387 47.1 226,132 2,428,674 8.52 18.0 188 

UP4  
(GG lg) 348.8 11,134 2,183,783 46.3 145,426 1,792,255 7.51 17.9 140 

UP5  
(GG lg) 348.2 10,423 2,149,185 46.4 366,986 1,539,930 19.25 28.3 121 

UP6 
(GG lg) 309.5 7,732 1,227,888 46.0 97,875 978,918 9.09 20.3 77 

UP7 
(NP sh) 227.8 203,460 5,011,237 45.8 363,683 4,006,647 8.32 20.0 303 

UP8 
(NP sh) 219.5 211,676 3,592,281 44.7 522,918 2,591,844 16.79 27.8 197 

UP9 
(NP sh) 247.2 201,601 7,0983,09 46.5 801,198 5,452,848 12.81 23.2 417 

UP10 
(GG sh) 240.9 171,799 4,746,454 45.4 323,716 3,807,524 7.84 19.8 293 

UP11 
(GG sh) 241.0 124,946 5,563,501 46.1 157,046 4,687,429 3.24 15.7 361 

UP12 
(GG sh) 233.8 234,499 5,298,060 44.9 205,997 4,389,741 4.48 17.1 337 

UP13 
(NP lg) 344.5 11,787 2,715,317 46.8 1,333 24,04,540 0.06 11.4 185 

UP14 
(GG lg) 388.4 7,774 5,836,702 46.4 1,345 5,314,003 0.03 9.0 192 

UP15 
(NP sh) 222.4 13,750 4740911 45.3 1154 3,961,509 0.03 16.4 296 

UP16  
(GG sh) 234.0 9531 6627713 45.3 1668 4,938,510 0.03 25.5 395 

Rd 241.0 4564 4083313 N/A N/A N/A N/A N/A 298 

	

1. NP lg: Long-fragment 86-028NP DNA, GG lg: Long-fragment PittGG DNA, NP-sh: Short-fragment 86-
028NP DNA, GG sh: Short-fragment PittGG DNA. 



Table S3. Analysis of low-coverage positions. Related to Figures 3 and 9. 
 
86-028NP-long: 

Input coverage: ≤10 10-20 20-50 50-100 >100 sum 
% in the 
genome 

% of positions with this coverage 2.36 0.45 1.78 6.14 89.27 100  

% of positions with uptake ratios >2.0 7.53 4.73 20.75 37.81 29.18 100 0.82% 

 % of positions with uptake ratios >3.0 30.22 12.07 38.38 19.33 0 100 0.06% 

% of positions with uptake ratios <0.5 1.78 0.85 2.7 6.6 88.07 100 8.90% 

% of positions with uptake ratios <0.25 2.19 0.69 2.08 4.82 90.22 100 4.00% 

 

86-028NP-short 

Input coverage ≤10 10-20 20-50 50-100 >100 sum  

% of positions with this coverage 3.37 0.63 1.68 2.88 91.44 100  

% of positions with uptake ratios >4.0 9.13 3.93 7.11 9.2 70.63 100 1.11% 

% of positions with uptake ratios >5.0 45.46 16.48 7.87 9.11 21.08 100 0.13% 

% of positions with uptake ratios >0.1 1.19 0.75 1.91 3.23 92.92 100 44.40% 

% of positions with uptake ratios >0.01 1.45 0.76 1.93 3.22 92.63 100 28.15% 

 

PittGG-long 

Input coverage ≤10 10-20 20-50 50-100 >100 sum  

% of positions with this coverage 2.33 0.43 1.36 2.85 93.03 100  

% of positions with uptake ratios >2.0 16.85 10.76 25.65 27.8 18.94 100 1.57% 

 % of positions with uptake ratios >3.0 61.87 17.07 15.62 5.44 0 100 0.26% 

% of positions with uptake ratios <0.5 0.58 0.32 0.97 2.87 95.26 100 6.90% 

% of positions with uptake ratios <0.25 0.86 0.46 1.65 4.41 92.62 100 2.57% 

 

PttGG-short 

Input coverage ≤10 10-20 20-50 50-100 >100 sum  

% of positions with this coverage 3.11 0.73 1.98 2.9 91.28 100  

% of positions with uptake ratios >4.0 1.73 1.62 6.77 11.33 78.55 100 2.50% 

% of positions with uptake ratios >5.0 8.8 7.41 20.2 28.53 35.06 100 0.24% 

% of positions with uptake ratios >0.1 1.25 0.77 2.25 3.02 92.72 100 39.38% 

% of positions with uptake ratios >0.01 1.54 0.76 2.06 3.02 92.62 100 26.50% 
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Transparent Methods 1 

Identifying USSs in the genomes. Genomic USSs were identified by scoring each genome 2 

position with the position-specific scoring matrix (PSSM) of Mell et al. (2012); this is based on 3 

uptake of synthetic fragments containing degenerate USS sequences. Positions scoring ≥ 10.0 or 4 

≥ 9.5 (maximum score is 12.6) were included in the standard (USS10 and USS9.5) lists of USS 5 

locations. Since USS are asymmetric, USS positions in both orientations were specified by the 6 

location of their central base 16. Sequence logos of USSs were generated using R package 7 

seqLogo v. 3.8.  8 

Predicting DNA uptake from DNA sequence. The predictive model was written in R v.3.5.1. 9 

Given a list of USS positions and scores in a DNA genome of specified length, it used a specified 10 

distribution of DNA fragment lengths or length bins (e.g. 1-100 bp, 101-200 bp, etc.) to 11 

calculate the relative uptake of every position in a circular genome. At each DNA position in 12 

turn, for each fragment length or bin, the model summed the predicted uptake contributions 13 

for every fragment of that length that overlapped the position.  For efficiency, the full 14 

calculation was only done for the first position. At each subsequent position, the model 15 

calculated the new sum from the previous position’s sum by subtracting the contribution of the 16 

formerly leftmost fragment and adding the contribution of the new rightmost fragment (Figure 17 

2.3A).   18 

Each fragment’s predicted contribution to uptake depended on the number of USS it contained, 19 

and on the scores and relative locations of these USS. Fragments with no or incomplete USSs 20 

were assigned baseline values for the probabilities of being bound (p_bind) and taken up 21 



 2 

(p_uptake); initial values for both were arbitrarily set to 0.1.  For fragments with one or more 22 

complete USS10, p_bind was calculated as 1 – mean_gap/20000, where mean_gap was the 23 

mean length of USS-free segments in the fragment and 20000 the maximum fragment length in 24 

bp. The uptake function p_uptake was initially specified as p_uptake = 0.1 + (1 - 0.1)/(1 + exp(-5 25 

* (score – 11))).  26 

Once the model had calculated the contributions of a specific fragment length or length bin to 27 

uptake of every genome position, it moved on to the next length or bin. Once the contributions 28 

of every length or bin had been calculated, the model combined all the contributions for each 29 

position, taking into account the frequency of each length or bin in the input DNA. These 30 

position-specific uptake predictions were then normalized to a mean genome-wide uptake 31 

value of 1.0. 32 

In response to ongoing analysis of the 86-028NP DNA uptake data, the initial model underwent 33 

modifications to improve its predictions for a ‘far from USS10’ subset of positions that were at 34 

least 0.5kb from a USS9.5. (n = 361965 positions), combined with 209 USS9.5 peak positions 35 

separated from the nearest USS10s by at least 1000 bp. This reduced the baseline p_uptake of 36 

USS-free fragments from 0.1 to 0.005 and the USS cutoff score from 10 to 9.5, excluded from 37 

consideration USS9.5 that were within 50 bp of fragment ends, and identified better slope and 38 

inflection point values for the sigmoidal uptake function using the R function “nls” from the 39 

stats-package.  These changes replaced the previous uptake function with p_uptake = 0.005 + 40 

(1 - 0.005)/(1 + exp(-3.8 * (score – 10.6))). 41 

A subsequent change adjusted uptake predictions according to the GC content around each 42 

position. First the observed effect of GC content on uptake was approximated by a linear 43 
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function describing how the 86-028NP long fragment uptake ratios depended on their local GC 44 

contents calculated with a 2 kb window (see inset in Fig. GC).  Each genomic position was 45 

assigned the GC content of a 1001 bp window centered on it. The predicted uptake at each 46 

position was then modified using the local GC content and the function.  47 

Bacterial strains, culturing, and competent cell preparations: The KW20 recipient strains were 48 

rec2 derivatives of the standard H. influenzae lab strain Rd KW20, with (RR3117) and without 49 

(RR3125) a spectinomycin resistance allele (Mell et al., 2012; Sinha et al., 2012). The 86-028NP 50 

donor strain (RR3133) was a derivative with a nalidixic acid resistance allele (Mell et al. 2011); 51 

the PittGG isolate was unmodified. Standard growth and culturing methods were used (Poje 52 

and Redfield, 2003); liquid cultures were grown with shaking at 37 °C in brain-heart infusion 53 

broth supplemented with NAD (2µg/ml) and hemin (10 µg/ml) (sBHI), with 1.2% agar added for 54 

plate cultures. To prepare naturally competent cells, cultures were first maintained in 55 

exponential growth at OD600 below 0.2 for at least 2 hr, and at OD600 = 0.2 cells were collected 56 

by filtration from 10 ml of culture, transferred into 10 ml of starvation medium M-IV, and 57 

incubated at 37 °C for 100 minutes before DNA uptake experiments (Poje and Redfield, 2003).  58 

Input DNA preparations. High molecular weight donor DNA was purified using standard 59 

phenol:chloroform extractions (Sambrook, 2001) from 10 ml overnight cultures of the 86-60 

028NP derivative, and PittGG carrying selectable markers (Table S2). This DNA was then 61 

sheared into separate ‘long fragment’ (1.5-9 kb) and ‘short fragment’ (50-500 bp) preparations 62 

using Covaris G-tubes and sonication respectively. The fragment length distributions were 63 

measured using a Bioanalyzer with a DNA 12000 kit (Agilent), dividing the relative fluorescence 64 

at each time point by its fragment length estimated from the size standards.  65 
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DNA uptake and recovery. 10 ml of competent rec-2 mutant Rd cells in MIV were incubated 66 

with 10 µg of sheared donor DNA for 20 min at 37 °C. To degrade remaining free DNA, the 67 

culture was incubated with 1 ug/ml of DNase I for 5 minutes. Cells were washed twice by 68 

pelleting and resuspension in cold MIV, and the final pellet was rinsed twice with cold MIV 69 

before resuspension in 0.5 ml of extraction buffer (Tris-HCL 10 mM pH 7.5, EDTA 10 mM, CsCl 70 

1.0 M). Periplasmic DNA was extracted using the organic phenol:acetone extraction method as 71 

described by Mell et al. 2012 (Barouki and Smith, 1985; Kahn et al., 1983; Mell et al., 2012) 72 

followed by an ethanol precipitation. DNA was resuspended in 20 µl of T10E10 buffer (Tris-HCl 10 73 

mM pH 7.5, EDTA 10 mM). The DNA was then incubated at 37 °C with 400 ng of RNase A for 1 74 

hour, followed by 30 min incubation with 30 ng of proteinase K to remove RNase A. Recovered 75 

DNA was then separated from longer fragments of contaminating genomic DNA by 76 

electrophoresis in a 0.8% agarose gel and recovered from the gel slice with a Zymo gel DNA 77 

recovery kit. Recovered periplasmic DNA was quantified using a Qubit dsDNA HS Assay Kit 78 

(absolute DNA concentration).  79 

DNA sequencing and data processing. Sequencing libraries of the input and taken-up DNA 80 

samples were prepared using Illumina Nextera XT DNA library prep kits according to 81 

manufacturer recommendations. An Illumina NextSeq500 was used to generate 1-10 82 

million paired-end reads of 2x150 nt for each library (giving >100-fold genomic coverage). 83 

Summary statistics for each sample are provided in Table S2.  84 

Reference sequences: The original PittGG reference (NC_009567.1) generated by 85 

pyrosequencing had many indel errors, so a new reference was constructed by Pacific 86 

Biosciences RSII of our laboratory version of this strain (RR1361) (assembly by HGAP2 v2.3, 87 
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followed by Circlator (Hunt et al., 2015), and then Quiver to polish the circular junction). For our 88 

analysis the NCBI sequence references for PittGG, 86-028NP, (NC_007146.2) and Rd KW20 89 

(NC_000907.1) were then further corrected using Pilon v1.22 and the new Illumina reads of 90 

input or control samples. This was particularly important for the Rd KW20 recipient reference, 91 

since the original sequence dates from 1995 (Fleischmann et al., 1995) and contains several 92 

hundred ambiguous bases and errors. This correction step also accommodated the presence of 93 

the nalidixic acid resistance marker in 86-028NP. 94 

Competition essays simulations of H. influenzae with human DNA, used 3 random segments of 95 

the same size as H. influenzae 86-028NP genome (1914386 bp) the Chromosome 1 96 

(CM000663.2, positions 33610150 – 35524535), Chromosome 3 (CM000665.2, positions 97 

1348752 – 3263137), and Chromosome 12 (CM000674.2, positions 18170588 – 20084973). 98 

Respiratory bacterial genomes used to score USS10 and USS11 in table 2 and competitions essays 99 

were Streptococcus pneumoniae R6 (NC_003098.1), Neisseria meningitidis MC58 100 

(NC_003112.2), Pseudomonas aeruginosa PAO1 (NC_002516.2), Aggregatibacter 101 

actinomycetemcomitans VT1169 (NZ_CP012958.1), Haemophilus parainfluenzae T3T1 102 

(NC_015964.1), Haemophilus ducreyi 35000HP (NC_002940.2), Mannheimia haemolytica 103 

M42548 (NC_021082.1). 104 

Chromosomal contamination measurements and corrections: Reads from the recipient 105 

genomic DNA that contaminated taken-up DNA samples were identified by a ‘competitive 106 

alignment’ step that aligned all the sample’s reads (using bwa mem v0.7.15, samblaster v0.1.24, 107 

and sambamba v0.5.0) to a concatenated double-reference sequence consisting of the recipient 108 

Rd genome and the donor genome (86-028NP or PittGG). Because the donor and recipient 109 
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genomes are distinguished by a high density of SNVs, as well as structural variation and large 110 

indels (Harrison et al., 2005; Hogg et al., 2007; Mell et al., 2011), most contaminating Rd reads 111 

in uptake samples aligned only to the Rd reference while most of the desired donor-derived 112 

reads aligned only to the donor reference. Reads that mapped equally well to both genomes or 113 

to repetitive sequences within a genome were identified by their MAPQ scores of 0 and were 114 

removed from the analysis. The numbers of reads mapping uniquely to either donor or 115 

recipient genome were then used to calculate the contamination level of each taken-up DNA 116 

sample, as the ratio of recipient-mapping reads to total uniquely mapping reads (Table S2).  117 

Subsequent depth of coverage values and summary statistics were extracted for all positions or 118 

specific intervals using bedtools coverage v2.16.2 or sambamba flagstat (Table S2). All 119 

subsequent analyses and plotting used the R statistical programming language, including 120 

standard add-on packages dplyr, tidyr, plyr, ggplot2, data.table. Other packages used are 121 

specified below. Code is available at https://github.com/mamora/DNA_uptake.  122 

Calculation of experimental uptake ratios from sequence coverage. After contaminating reads 123 

had been removed from each sample, uptake maps for each donor DNA were created by 124 

dividing the mean of the three normalized taken-up-DNA coverages for each position by the 125 

corresponding normalized input-DNA coverage. Finally, uptake ratios were normalized to a 126 

genome-wide mean uptake of 1.0 and smoothed by calculating the mean uptake over a 31 bp 127 

central-oriented sliding window using function rollapply from R package zoo v. 1.8-5. The 128 

effects of this smoothing are shown for the peak examples in Figure S5. 129 

Periodicity analysis:  To detect possible periodic patterns in coverage depth and in uptake 130 

ratios for the four datasets, periodograms were created using the R package TSA v. 1.2. 131 



 7 

Analysis of uptake ratio data:  To obtain a set of well-isolated USS10s for analysis of peak 132 

shapes, we identified the closest peak separation at which USS effects did not overlap by 133 

examining sets of USS10 that were separated by different distances (1200, 1000, 800, 600 bp), 134 

excluding positions with missing data and USS10 that were 400 bp or less from positions with 135 

low input coverage (≤ 20 reads). Separation of ≥1000 bp was found to give the best 136 

compromise between good peak separation and the number of USS meeting the separation 137 

criterion (237 USS10s and 209 USS9.5s).  138 

The search for non-USS sequences causing weak uptake effects used a subset of positions that 139 

were at least 0.6kb from the closest USS10. This gave 575 ‘far from USS’ segments summing to 140 

29% of the genome. Uptake maps of segments containing positions with uptake ratios > 0.2 141 

were examined visually to distinguish between (i) shoulders of adjacent USS10 peaks, (ii) 142 

increased uptake at USS with scores between 9.5 and 10, and (iii) increased uptake at non-USS 143 

sequences.  144 

Incorporating within-USS interaction effects into uptake predictions:  Figure 6 of Mell et al. 145 

(Mell et al., 2012) shows the strength and direction of pairwise interaction effects between 146 

positions on the same USS , inferred from uptake analysis of synthetic degenerate USS. From 147 

this figure we extracted the mid-range value of the interaction effect at each interacting pair of 148 

USS positions (only some pairs of positions showed such effects). For each 86-028NP USS9.5 149 

whose sequence differed from the USS consensus at both positions of such a pair, the USS 150 

score was modified by adding or subtracting the corresponding interaction value. The modified 151 

scores were then used by the model to predict DNA uptake, as described above.  152 
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Simulated noise analysis: Simulated noise-free uptake data for short and long fragments was 153 

first generated by smoothing raw uptake coverage data for 86-028NP-short (sample UP7) and 154 

86-028NP-long (sample UP3) using a LOESS regression, and normalizing the results to a mean 155 

coverage of 1.0. Simulated relative-noise amplitudes for every genome position were generated 156 

using the ‘tuneR’ R-package (Ligges et al., 2018). Before being added to the noise-free data, the 157 

noise amplitude at each position was adjusted in proportion to the noise-free simulated 158 

coverage at that position, with the maximum noise range for each coverage level set by a 159 

multiplier (1.0, 1.5, 2.0, 2.5 or 3.0) and by the range of all experimental replicates for positions 160 

with that mean coverage.  Red noise was used because, when added to the simulated noise-161 

free coverage it gave an autocorrelation of 0.999, identical to that of the experimental data. 162 

Other noise types were evaluated but not used, since their autocorrelations were lower (0.975 163 

for pink noise and 0.836 for white noise). 164 
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