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Abstract. Many cells express multiple connexins, the 
gap junction proteins that interconnect the cytosol of 
adjacent cells. Connexin43 (Cx43) channels allow inter- 
cellular transfer of Lucifer Yellow (LY, MW = 443 D), 
while connexin45 (Cx45) channels do not. We trans- 
fected full-length or truncated chicken Cx45 into a rat 
osteosarcoma cell line ROS-17/2.8, which expresses en- 
dogenous Cx43. Both forms of Cx45 were expressed at 
high levels and colocalized with Cx43 at plasma mem- 
brane junctions. Cells transfected with full-length Cx45 
(ROS/Cx45) and cells transfected with Cx45 missing 
the 37 carboxyl-terminal amino acids (ROS/Cx45tr) 
showed 30-60% of the gap junctional conductance ex- 
hibited by ROS cells. Intercellular transfer of three 
negatively charged fluorescent reporter molecules was 
examined. In ROS cells, microinjected LY was trans- 
ferred to an average of 11.2 cells/injected cell, while dye 

transfer between ROS/Cx45 cells was reduced to 3.9 
ceils. In contrast, ROS/Cx45tr cells transferred LY to 
>20 cells. Transfer of calcein (MW - 623 D) was also 
reduced by ~50% in ROS/Cx45 cells, but passage of 
hydroxycoumarin carboxylic acid (HCCA; MW = 
206 D) was only reduced by 35% as compared to ROS 
cells. Thus, introduction of Cx45 altered intercellular 
coupling between cells expressing Cx43, most likely the 
result of direct interaction between Cx43 and Cx45. 
Transfection of Cx45tr and Cx45 had different effects 
in ROS cells, consistent with a role of the carboxyl-ter- 
minal domain of Cx45 in determining gap junction per- 
meability or interactions between connexins. These 
data suggest that coexpression of multiple connexins 
may enable cells to achieve forms of intercellular com- 
munication that cannot be attained by expression of a 
single connexin. 

AP junctions are a complex of transmembrane pro- 
teins that form membrane pores at contact points 
between cells. Gap junction channels allow the 

passage of ions and small aqueous molecules from the cy- 
toplasm of one cell to another (for reviews see references 
2, 13, 31). A functional gap junction channel consists of 
two plasma membrane hemichannels, one in each cell, 
composed of hexamers of transmembrane proteins known 
as connexins. A number of connexin proteins have been 
identified with molecular masses in the range of 26-56 kD 
(6, 40). The role for connexin multiplicity is unknown at 
present. Electrophysiologic studies have revealed that 
connexins differ in unitary conductances and voltage sen- 
sitivity (1, 33, 38, 39), while dye transfer has been used to 
show that different connexins form channels with different 
molecular permeabilities (7, 32, 37). 

Many cells express more than one connexin. Differential 
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expression of connexins during development (7, 10, 36), 
tissue regeneration (18), and oncogenesis (21, 34) suggests 
that alterations of gap junction composition are important 
for cell regulation. Brisette et al. have correlated develop- 
mentally regulated changes in connexin expression in ke- 
ratinocytes with selective alterations in the intercellular 
transfer of cytidine triphosphate and methionine (7). 

We have found using two rat osteoblastic cell lines that 
two gap junction proteins, connexin43 (Cx431; Otl) and 
connexin45 (Cx45; Or6) , form channels with different mo- 
lecular permeability. ROS-17/2.8 (ROS) cells express Cx43 
at the cell surface and are able to efficiently transfer mi- 
croinjected Lucifer yellow (LY) through gap junctions 
(32). In contrast, UMR 106-01 (UMR) cells, express pre- 
dominantly Cx45 at the plasma membrane and poorly 
transfer LY (27, 32). However, small ions can pass through 
UMR gap junctions, as demonstrated by intercellular cur- 
rents measured with the double cell patch clamp technique 

1. Abbreviat ions used in this paper, calcein-AM, calcein-acetoxymethyl- 
ester; Cx43, connexin43; HCCA, hydroxyeoumarin carboxylic acid; LY, 
Lucifer yellow; ROS, ROS-17/2.8. 
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(32, 37). Increasing Cx43 expression by hormone treat- 
ment increased LY dye transfer in a number of osteoblas- 
tic cell models (10, 11, 26, 28). 

Consistent with these observations, we found that trans- 
fection of Cx43 into UMR cells confers the ability to trans- 
fer LY by gap junctions, but overexpression of chicken 
Cx45 by UMR cells has no effect on intercellular LY 
transfer (32). This observation also suggests that chicken 
and mammalian Cx45 have similar permeability (23, 37). 

Since LY can diffuse through Cx43 channels, but not 
through Cx45 channels, we wanted to determine whether 
introduction of Cx45 into ROS cells would alter intercellu- 
lar communication. This enabled us to examine conse- 
quences of expressing multiple connexins in a single cell 
and to determine whether these two connexins were capa- 
ble of interaction. ROS cells were stably transfected with 
either full-length Cx45 (ROS/Cx45) or a truncated Cx45 
with the 37 carboxyl-terminal amino acids removed (ROS/ 
Cx45tr), and then the gap junction permeability in these 
cells was examined using fluorescent reporter molecules in 
the 200-650-D size range. We found that transfected Cx45 
altered intercellular communication between ROS cells, 
suggesting that native Cx43 was interacting with Cx45. 
This suggests that the expression of multiple connexins 
may be a mechanism for the control of gap junction-medi- 
ated intercellular communication. 

Materials and Methods 

Cells and DNA Constructs 

ROS 17/2.8 cells were cultured in MEM (No. 11095-056, GIBCO BRL, 
Gaithersburg, MD) containing 10% heat-inactivated bovine calf serum 
(Hyclone, Logan, UT), 2 mM glutamine, 1 mM sodium pyruvate and 1% 
nonessential amino acids (GIBCO BRL), 5 u/ml penicillin, and 5 p,g/ml 
streptomycin (MEM+BCS). 

Chicken Cx45 is over 80% identical to the corresponding mammalian 
gene product at the amino acid level. Chicken Cx45 eDNA was isolated as 
previously described (3). To create a truncated form of Cx45 (Cx45tr), 
Cx45 eDNA in Bluescript KS was first amplified by PCR using a sense oil- 
gonucleotide: 5 ' -GAGGT CGACG GTATC G A T A A  GCTTG-3' and an 
anti-sense oligonucleotide: 5 ' -GAGCT GCTGA A T r C G  GTTGT 
T I T G G  TTGq"r CTACG CCTGG AT-3', which replaced the codon cor- 
responding to amino acid 357 with a stop codon and added an additional 
EcoRI site. The resulting PCR product was digested with EcoRI and then 
inserted into the EcoRI site of expression vector pSFFVneo (9). Insertion 
of full-length Cx45 in pSFFVneo was previously described (36). 

ROS cells were transfected with these pSFFVneo constructs using lipo- 
fectin (GIBCO BRL). Cells were selected by culturing in medium con- 
taining 0.5 i~g/ml geneticin (GIBCO BRL), and then plated at limiting di- 
lution to obtain single cell colonies which were screened for Cx45 or 
Cx45tr expression by R NA blot (see below). 

RNA Blots 
Total cellular RNA was isolated using guanidinium isothiocyanate, re- 
solved on formaldehyde-agarose gels and transferred to nylon mem- 
branes. The membranes were hybridized to 32p-labeled chicken Cx45 
cDNA probes (3) in 0.75 M sodium phosphate, 1% SDS, I00 i~g/ml 
salmon sperm DNA at 65°C and washed under high stringency conditions 
using 30 mM sodium phosphate, 1% SDS, 65°C. Cx45 mRNA was de- 
tected by autoradiography. The blots were stripped and rehybridized with 
a human ~/-actin eDNA probe to assess the total m R N A  added to the gel. 

Immunofluorescence 
Rabbit polyclonal antisera to Cx43 and Cx45 were generated from syn- 
thetic peptides as previously described (3, 4, 19). Cells were cultured on 
glass coverslips 1-3 d before treatment. The cells were fixed in methanol/ 

acetone (1:1) for 2 min at room temperature and washed with PBS. For 
single-label experiments, cells were incubated in PBS containing either 
anti-Cx43 or anti-Cx45 antiserum for 45 min at room temperature. The 
cells were then washed, labeled with rhodamine-conjugated goat anti-rab- 
bit IgG (Boehringer Mannheim, Indianapolis, IN), washed and viewed by 
fluorescence microscopy. 

ROS/Cx45 and ROS/Cx45tr cells were double labeled in a similar man- 
ner, except that cells were treated with PBS containing monoclonal anti- 
Cx43 IgG (No. 03-6900; Zymed Laboratories, South San Francisco, CA) 
before treatment with polyclonal anti-Cx45 antiserum. Anti-Cx43 was vi- 
sualized by confocal microscopy (BioRad Labs., Richmond, CA) with 
Texas red-conjugated goat anti-mouse IgG (Cappel, Durham, NC) and 
anti-Cx45 was visualized with FITC-conjugated goat anti-rabbit IgG 
(Cappel). 

Alkali Solubilization and Immunoblot 
Alkali-insoluble material was isolated using a procedure modified from 
Hertzberg (15). Cells were scraped from two confluent 100-mm culture 
dishes into PBS, centrifuged, resuspended in 1 ml of 1 mM NaHCO3 con- 
taining protease and phosphatase inhibitors (1 mM PMSF, i mM Na2VO4, 
10 mM NaF, 2 p,g/ml leupeptin, 1 ~g/ml pepstatin) at 4°C, and then made 
alkaline with 22 p.l of 1 M NaOH. The suspension was sonicated at 4 W for 
30 s, incubated on ice for -50 rain, and then centrifuged in a Beckman Op- 
tima TL ultracentrifuge at 30,000 g for 30 rain. The resulting pellet was 
resuspended in 40 Ixl sample buffer (50 mM Tris, 0.01% (vol/vol) 13-mer- 
eaptoethanol, 10% (vol/vol) glycerol, 2% (wt/vol) SDS, 10 mg/ml bromo- 
phenol blue, pH 6.7), heated to 68°C for 10 min, and the proteins were re- 
solved by SDS-PAGE using standard methods and 10% polyacrylamide 
gels (14). The proteins were then electrophoretically transferred to PVDF 
membranes (transfer buffer: 50 mM tris, 380 mM glyeine, 0.025% [wt/vol] 
SDS, 20% MeOH), blocked with blotto (40 mM Tris, 5% (wt/vol) Carna- 
tion powdered milk, 0.1% (vol/vol) Tween-20) for 1 h at room tempera- 
ture and incubated overnight with mixing with either anti-Cx43 IgG o r  

anti-Cx45 antiserum diluted into blotto. The membranes were then 
washed, incubated for 1 h with horseradish peroxidase-conjugated goat 
anti-rabbit IgG (Tago, Burlingame, CA) diluted 1:8,000 into blotto, 
washed, and peroxidase activity was detected using ECL (Amersham In- 
ternational, Buckinghamshire, UK). 

Flow Cytometry 

Flow cytometry was used to assess intercellular communication (34). One 
day before assay, cells were harvested with trypsin/EDTA. Approxi- 
mately one third of these cells were replated for use the next day as donor 
cells at 107 cells/100-mm tissue culture dish (Sarstedt, Newton, NC). The 
rest of the cells (2 x 107) were labeled with a nontransferrable dye, PKH- 
26 (17), using reagents from Sigma Chem. Co. (St. Louis, MO) to produce 
acceptor cells. The cells were washed with PBS, resuspended in 1 ml of 
diluent C and then added to 1 ml of diluent C containing 4 p,M PKH-26. 
The ceils were incubated at room temperature for 3 min, and then 2 ml 
BCS was added to quench the reaction. After a 1 min incubation, 4 ml 
MEM+BCS was added to the tube, the cells were centrifuged, washed 3× 
with MEM+BCS and then cultured overnight in two 100 mm tissue cul- 
ture dishes. Donor cells were labeled with the calcein-acetoxymethylester 
(calcein-AM; Molecular Probes, Eugene, OR). Cells in culture dishes 
were washed, incubated at 37°C for 15 min with 5 ml of MEM+BCS con- 
taining 5 p~l of 1,000× calcein-AM stock solution (1 mg/ml in EtOH), and 
then further washed with MEM+BCS. Both donor and acceptor cells 
were harvested by trypsinization, washed, and resuspended to 2.5 × 106 
cells/ml in MEM+BCS. The cells were then added to 35 mm tissue culture 
dishes (Falcon brand, Becton Dickinson, Lincoln Park, NJ) at varying ac- 
eeptor/donor (A/D) ratios (2.5 × 106 total cells/dish). After incubation in 
a CO2 incubator for 5 h at 37°C, the cells were harvested by trypsinization, 
resuspended in 3 ml MEM+BCS and analyzed by flow cytometry using a 
Coulter EPICS/XL (Irving, TX). Calcein was detected with channel 1 (525 
nm BP) and PKH-26 was detected with channel 2 (575 nm BP). 

Electrophysiological Measurements 
Junctional conductances (gj) were determined using the double whole cell 
patch clamp technique as previously described (35, 37). Patch pipettes 
were fabricated from Boralex micropipette glass (Rochester Scientific 
Co., Rochester, NY) and fire-polished to a tip diameter of ~<1 I~m. Tip re- 
sistances varied between 2-5 MI). Patch electrodes were coated before 
use with Sylgard (Dow Coming, Midland, MI) to reduce electrode capaci- 
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tance. The pipettes contained a solution of 3 mM ATP, and 3 mM phos- 
phocreatine, 120 mM K glutamate, 15 mM NaC1, 1 mM KH2PO4, 4 mM 
MgCI:, 0.1 mM ethylene glycol-bis-(f3-aminoethyl ether)-N,N,N',N'-tet- 
raacetic acid (EGTA), 10 mM N-2-hydroxyethylpiperazine-N'-2-ethane-sul- 
fonic acid (Hepes), pH 7.4. 

During patch-clamp experiments, the ceils were in a balanced salt solu- 
tion containing 142 mM NaC1, 1.3 mM KCI, 0.8 mM MgSO4, 0.9 mM 
NaH2PO4, 1.8 mM CaCI2, 5.5 mM dextrose, 10 mM Hepes, pH 7.4, at 
room temperature. Whole cell currents were obtained with two Axopatch 
200A integrating current-voltage clamp amplifiers (Axon Instruments, 
Inc., Foster City, CA). The pipette/cell seals were in the giga-ohm range 
and voltages were corrected for access resistance. 

To determine gj, the ceils were first damped to - 4 0  mV, and then the 
membrane voltage of the second cell was pulsed to + 140 mV in 20 mV in- 
crements at a frequency of 2 kHz. Each pulse was 5 s in duration and 
pulses were separated by a 2 s return to the holding voltage. Data were 
digitized at 4 kHz using pCLAMP software (version 6.0.1; Axon Instru- 
ments, Foster City, CA) and gi was calculated from transjunctional current 
measurements. 

Dye Transfer by Microinjection 
Cells were cultured on glass coverslips 1-3 d before microinjection experi- 
ments. The coverslips were mounted in a tissue chamber (Medical Sys- 
tems Corp., Greenvale, NY) on an epifluorescence microscope, covered 
with culture medium containing 2.5 mM probenecid and maintained at 
37°C in a 5% CO2 atmosphere. Cells were microinjected with solutions 
containing either 34 mg/ml Lucifer yellow CH (LY; MW = 443 g/mol), 20 
mg/ml calcein (MW = 623 g/tool), 20 mg/ml calcein blue (MW = 321 g/tool) 
or 10 mg/ml hydroxycoumarin carboxylic acid (HCCA; MW = 206 g/mol) 
(all from Molecular Probes) using 1100-1200 psi applied for 0.2-0.3 s. 2-5 
min after injection, the extent of intercellular dye transfer was determined 
by recording the number of adjacent cells containing dye that were visual- 
ized using suitable optics with a CCD camera with an image intensifier 
(Dage MTI, Michigan City, IN) and an image processing system (Georgia 
Instruments, Roswell, GA). 

In some cases cells were microinjected with a neutral aqueous solution 
containing both calcein and HCCA at 6.7 mg/ml. We used 400DCLP di- 
croic and 510WB40 emission filters (Omega Optics, Brattleboro, VT) 
combined with a monochromator excitation source (CVI Laser Corp, A1- 
berquerque, NM) to view HCCA (388 nm) or calcein (465 nm) with mini- 
mal crosstalk. 

Results 

Transfection of Cx45 Constructs into ROS Cells 

ROS cells express Cx43 at the cell surface (Fig. 2 a) and do 
not express Cx45 (Fig. 1) as previously described (11, 32). 
We stably transfected ROS cells with two chicken Cx45 
constructs, either full-length Cx45 cDNA (ROS/Cx45) or a 
truncated Cx45 construct which encodes a form of Cx45 
with 37 amino acids deleted from the cytoplasmic COOH- 
terminal domain (ROS/Cx45tr). G418-resistant, single cell 
colonies were selected by limiting dilution, and we identi- 
fled ROS/Cx45 and ROS/Cx45tr cell lines that showed 
transfected m R N A  expression (Fig. 1). Cx45 mRNA ap- 
peared as a doublet, which may reflect alternative poly- 
adenylation or splicing as a result of sites in both the ex- 
pression vector and cDNA (36). 

We next examined the expression and intracellular dis- 
tribution of Cx43 and Cx45 proteins in these cells. By indi- 
rect immunofluorescence, we found Cx43 largely localized 
to areas of intercellular contact (Fig. 2), characteristic of 
gap junction plaques. In transfected cells, both truncated 
and full-length Cx45 showed a similar intracellular distri- 
bution to that of Cx43. Examination of double-labeled 
cells by confocal fluorescence microscopy confirmed that 
Cx43 and Cx45 were extensively colocalized (Fig. 3). Thus, 
at the morphological level, both the full-length and trun- 

Figure 1. Northern blot analysis of Cx45 mRNA. Total RNA was 
isolated from either ROS (lanes I and 4), ROS/Cx45 cells (lanes 2 
and 5), or ROS/Cx45tr (lanes 3 and 6) and subjected to agarose 
gel electrophoresis, transferred to membranes, and then probed 
for mRNA corresponding to Cx45 (a). Note the lack of Cx45 
mRNA in ROS cells (lane 1). (b) The membranes were then 
stripped and reprobed for actin as a control for mRNA loading. 
Dashes correspond to 28s and 18s rRNA. 

cated forms of Cx45 were transported by the cell to sites 
where they have the potential to participate in intercellu- 
lar communication. Also, the intracellular distribution of 
Cx43 in these cells did not appear to be altered by expres- 
sion of Cx45 or Cx45tr. 

To further examine Cx43 and Cx45 expression, prepara- 
tions enriched for gap junction plaques were made by al- 
kaline extraction of cells hydrolyzed in a hypotonic bicar- 
bonate buffer (15). Plaque-enriched pellets from ROS, 
ROS/Cx45, and ROS/Cx45tr cells were resolved by SDS- 
P A G E  and analyzed by immunoblotting. As shown in Fig. 
4, all three cell types showed Cx43 associated with the in- 
soluble pellet. Note that Cx45 was also associated with the 
alkali-insoluble material (Fig. 4). 

All three cell lines contained immunoreactive Cx43 that 
appeared as a doublet at 40 and 42 kD, suggesting Cx43 
phosphorylation by transfected and untransfected cells 
(24, 25). ROS/Cx45 and ROS cells produced equivalent 
amounts of alkali-insoluble Cx43. The ratio of alkali-insol- 
uble Cx43 produced by ROS/Cx45 cells to that produced 
by ROS cells was 1.0 ___ 0.3 (n = 8), as determined by den- 
sitometric measurement of immunoblots. We also found 
that ROS/Cx45tr cells expressed 1.7 ___ 0.6 (n = 4)-fold 
more alkali-insoluble Cx43 than ROS cells. The expres- 
sion of Cx45tr relative to Cx43 by ROS/Cx45tr cells 
(Cx45tr:Cx43 ratio = 0.29 +_ 0.14 [n = 3]) was comparable 
to ROS/Cx45 cells (Cx45:Cx43 ratio = 0.22 - 0.01 [n = 3]) 
as determined by densitometry. Similar results were ob- 
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Figure 2. IntraceUular distribution of connexins in osteoblast cells. ROS (a and b), ROS/Cx45 (c and d), or ROS/Cx45tr (e and J0 cells 
were cultured on glass coverslips, fixed, permeabilized, and then incubated with rabbit IgG to either Cx43 (a, c, and e) or Cx45 (b, d, and 
f) diluted in PBS for 1 h at room temperature. The cells were then washed, labeled with Texas red-conjugated goat anti-rabbit IgG and 
photographed. Note the lack of Cx45 labeling of untransfected ROS cells (b). Cx43 and, in transfected cells, Cx45 appear largely in 
bright, punctate regions located where cells come into close apposition which correspond to gap junctions. Bar, 20 ~m. 

tained by immunoprecipitation of total cellular extracts of  
[35S]methionine labeled Cx43 and Cx45 (not shown). 

FA CS Assays for Dye Transfer 

To determine whether expression of Cx45 or Cx45tr al- 
tered intercellular communication between ROS cells, cell 
coupling was assessed using a FACS assay developed by 
Tomaset to  et al. (34). Cells were harvested and divided 
into two populations. One set of cells was labeled with a 
permanent,  lipophilic dye, PKH-26. The second set was la- 

beled with calcein-AM which diffuses across the plasma 
membrane into the cytosol, where it is hydrolyzed to free 
calcein and can act as a reporter  for aqueous transfer be- 
tween cells. The two sets of cells were cultured together 
for 5 h to allow transfer of calcein from donor  cells to 
PKH-26-1abeled acceptor cells, reharvested, and then the 
number  of double-labeled cells was determined by flow 
cytometry. 

Differences between the cell types were revealed by 
plating cells at increasing acceptor/donor (A/D) ratio. In 
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Figure 3. Confocal immunofluorescence microscopy of Cx43 and 
Cx45. ROS/Cx45 (a--c) or ROS/Cx45tr (d-f) cells were cultured 
on glass coverslips, fixed, permeabilized, incubated with mono- 
clonal mouse IgG to Cx43, washed then incubated with affinity- 
purified rabbit anti-Cx45 IgG. The cells were then washed, labeled 
with Texas red-conjugated goat anti-mouse IgG and FITC-con- 
jugated goat anti-rabbit IgG and images were obtained using op- 
tics suitable for Texas red (Cx43; a and d) and FITC (Cx45, b; 
Cx45tr, e). Note the extensive colocalization of Cx43 and the 
Cx45 constructs. This was confirmed by computing the logical 
"and" of images of the intracellular distribution of Cx43 and 
Cx45 (c) or Cx43 and Cx45tr (t), where high intensity pixels cor- 
respond to pixels with high levels of Cx43 and Cx45 labeling. Bar, 
5 p,m. 

all three cell types examined,  the amount  of calcein trans- 
fer decreased with increasing A/D ratio (Figs. 5 and 6). 
However ,  ROS/Cx45 cells showed a much more  dramatic  
decrease in dye coupling. At  the highest A/D ratio exam- 
ined, where  dye transfer  is most  dependent  on second or- 
der transfer of  calcein between cells, ROS/Cx45 showed 
much less dye transfer than either ROS or ROS/Cx45tr  
cells (Figs. 5, j-l and 6). R O S  and ROS/Cx45tr  ceils 
showed comparable  intercellular calcein transfer  during 
the 5-h incubation period as assessed by this FACS 
method.  

We also examined dye transfer using the FACS assay in 
heterogeneous  cell cultures at A /D  ratio of  20:1 (Fig. 6 c). 
Both  ROS/Cx45 and ROS/Cx45tr  cells were as effective as 
ROS donor  cells, when cocultured with ROS acceptor 
cells (Fig. 6 c). However ,  using ROS donor  cells, ROS/  
Cx45 acceptor  cells showed significantly less dye transfer 
than ROS/Cx45tr  cells, further confirming that full-length 
chicken Cx45 reduced the ability of R O S  cells to transfer 
calcein between cells. This also was consistent with results 
f rom homogeneous cultures, where second order dye trans- 
fer be tween acceptor cells was the dominant  component  in 
determining the extent of double labeling at this ratio. 

Gap Junctional Conductance 

We used the double-cell patch clamp method  to measure  
gj (see Materials and Methods).  The  current-voltage rela- 

Figure 4. Western immunoblot analysis of alkali-insoluble mate- 
rial enriched for gap junctions. Alkali-insoluble material was pre- 
pared as described in Materials and Methods from ROS (lanes 1 
and 4), ROS/Cx45 (lanes 2 and 5), or ROS/Cx45tr (lanes 3 and 6) 
cells, resolved by SDS-PAGE, transferred to a PVDF membrane 
and probed with IgG to either Cx43 (lanes 1-3) or Cx45 (lanes 
4-6). Note the presence of Cx45 (lane 5) and Cx45tr (lane 6) in 
the alkali insoluble pool, consistent with localization of these pro- 
teins in gap junction plaques. Specific bands are denoted by dots 
and dashes correspond to Mr markers of 80.0, 49.5, 32.5, 27.5, and 
16.6 kD. 

tion was linear in the range +_ 60 m V  for all three cell types 
(not shown). All three cell types had different gj (ROS; 
gj = 32.3 ___ 4.5 nS [n = 7], ROS/Cx45; 19.8 ___ 2.1 nS [n = 
7], ROS/Cx45tr  9.2 ___ 1.2 nS [n = 5]). By Student 's  two- 
tailed t test (29), all three gi values were significantly dif- 
ferent f rom the other two (P < 0.001). Values for whole 
cell gap junctional conductance did not correlate with the 
ability for the ceils to transfer calcein as determined by the 
FACS assay. Thus, the differences in calcein transfer mea- 
sured by FACS were not due only to an overall decrease in 
gap junctional intercellular communicat ion,  since ROS/  
Cx45 cell pairs had higher gj than ROS/Cx45tr  cells. 

Measurement of Molecular Permeability by Transfer of 
Microinjected Dyes 

To further examine intercellular communicat ion,  cell cou- 
pling was assessed by visualization of the transfer of mi- 
croinjected fluorescent dyes between cells (Fig. 7). Un-  
transfected ROS cells t ransferred microinjected LY to an 
average of 11.2 -- 6.6 (n = 59) cells/microinjected cell. In 
contrast, dye-transfer  be tween ROS/Cx45 cells was re- 
duced to 3.9 ___ 3.7 (n = 74). Two other ROS/Cx45 clones 
also showed comparable  reduction in LY dye transfer (4.8 
-+ 2.7 [n = 40], 4.0 -- 3.2 [n = 40]). The  difference in the 
extent of LY dye transfer observed for ROS and ROS/  
Cx45 cells was statistically significant (P < 0.001) as as- 
sessed by the nonparametr ic  Wilcoxon/Mann-Whitney U 
test (29). Cx45tr had the opposite effect on dye-coupling 
between cells (Fig. 7). 

ROS/Cx45tr  cells showed enhanced transfer of LY with 
typically greater  than 25 cells coupled to the microinjected 

Koval et al. Connexin45 Alters Connexin43 Gap Junction Permeability 991 



Figure 5. Flow cytometric assay of intercellular dye transfer. Do- 
nor cells labeled with calcein-AM and acceptor cells labeled with 
PKH-26 were cocultured as described in Materials and Methods. 
(a, d, g, andj) ROS cells; (b, e, h, and k) ROS/Cx45 cells; and (c,f, 
i, and/) ROS/Cx45tr cells. (a-c) Donor and acceptor cells mixed 
just before FACS analysis. Cells containing PHK-26 alone ap- 
peared in quadrant 1, while ceils labeled with calcein alone were 
in quadrant 4. In the other panels, cells were cocultured for 5 h at 
donor-acceptor ratios of roughly 1:1 (d-f), 1:7 (g-i), or 1:15 (j-l) 
before harvesting and FACS analysis (see Fig. 6). Double-labeled 
acceptor cells that had received calcein appear in quadrant 2. 
ROS/Cx45 show significantly fewer double-labeled cells (h and k) 
than comparably treated ROS (g and j) or ROS/Cx45tr (i and l) 
cells. 

cell. This enhanced level of cell coupling by ROS/Cx45tr  
cells differed from results ob ta ined  with the F A C S  assay 
and is likely to reflect differences between these two methods 
of analyzing intercel lular  communicat ion  (see Discussion).  

To de te rmine  differences in the molecular  permeabi l i ty  
of gap junct ions in ROS and ROS/Cx45 cells, we examined 
the intercel lular  transfer  of two negat ively charged fluo- 
rescent  dyes of  different  size calcein, and H C C A .  As  
shown in Fig. 8, c and d, ROS/Cx45 cells showed reduced  
transfer  of microinjected calcein, consistent with results 
ob ta ined  with LY (Fig. 7). Using the Kolmogorov-Smir-  
nov test (29, 11), we conf i rmed that  the distr ibutions ob- 
ta ined with calcein and LY were equivalent  for the same 
cell type. Intercel lular  t ransfer  of calcein for R O S  (8.3 __- 
5.2 coupled cells/microinjected cell, n = 41) and ROS/  
Cx45 (4.2 ___ 3.4, n = 50) were significantly different  (P < 
0.001). 

In  contrast, transfer of a smaller fluorescent dye, H C C A ,  
was less a t tenua ted  in cells expressing full-length Cx45 
(Fig. 8, a and b). The dis tr ibut ion of  intercel lular  transfer  
of H C C A  by R O S  cells (9.2 ___ 4.6, n = 55) was compara-  

Figure 6. Expression of Cx45 decreases intercellular communica- 
tion in ROS/Cx45 cells. (a) Schematic showing ceils plated at ac- 
ceptor:donor (A/D) ratios of 1:1, 5:1, and 10:1, where donor cells 
are dark and acceptor cells are light. This assumes that each cell is 
surrounded by six neighbors and is for illustrative purposes only. 
Note that A/D ratios on the order of 10:1 or 20:1 are required to 
get a monolayer where acceptor cells are in direct contact with a 
maximum of one donor cell. (b) The percent of double-labeled 
cells was calculated from FACS data (Fig. 5, d-l) using the num- 
ber of cells in quadrant 2 divided by the total number of PKH-26-- 
labeled cells analyzed. A/D ratios were determined as the ratio of 
the number of cells in quadrants 1 and 2 to the number of cells in 
quadrants 3 and 4. ROS (O), ROS/Cx45tr (11), and ROS/Cx45 
(A) cells were examined. (c) Acceptor cells labeled with PKH-26 
were cocultured for 5 h at A/D of 20:1 with various donor cells as 
indicated on the X-axis label, and then harvested and analyzed by 
FACS as described above. Bars represent the average of five ex- 
periments _+ SE. 

ble to that  ob ta ined  with calcein and LY in ROS cells, as 
verified by the Kolmogorov-Smirnov  test. The extent  of 
H C C A  transfer  by ROS/Cx45 cells (5.9 ___ 3.8, n = 43) was 
significantly different  from the extent  of H C C A  transfer  
by R O S  cells (P < 0.01). However ,  we also confirmed that  
the amount  of H C C A  transfer  by ROS/Cx45 cells was sig- 
nificantly different  than the extent  of ei ther  LY or calcein 
transfer  by ROS/Cx45 cells, using the Wilcoxon/Mann-  
Whi tney  U test (P < 0.02). Similar results were obta ined  
with calcein blue, which closely resembles  H C C A ,  where 
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Figure 7. Intercellular transfer of microinjected Lucifer yellow is 
altered by expression of Cx45 constructs. Dye transfer between 
ROS (a), ROS/Cx45 (b), or ROS/Cx45tr (c) cells cultured on 
glass coverslips was assessed by the direct visualization of the 
movement of microinjected LY using fluorescence microscopy. 
For each microinjection event, the number of coupled cells was 
determined as the number labeled by LY. The number of micro- 
injections were 59, 78, and 41 for ROS, ROS/Cx45, and ROS/ 
Cx45tr cells, respectively. 

ROS/Cx45 cells showed calcein blue transfer  to 6.3 ___ 3.8 
cells/ injected cell (n = 20). 

To show the rela t ionship be tween  repor te r  molecule  
size and the amount  of second-order  cell coupling, we ex- 
pressed these microinject ion da ta  as a percentage  of total  
microinject ions where  the dye was passed to six or more  
cells (Fig. 8 c). Whi le  R O S  cells showed little difference in 
the abil i ty to t ransfer  these three  differently sized dyes, 
ROS/Cx45 cells were  much more  effective in the ex tended  
transfer  of the smallest  dye, H C C A ,  as compared  to the 
two larger  dyes. We further  conf i rmed this visually by mi- 
croinjecting a solut ion containing both  calcein and H C C A  

Figure 8. ROS/Cx45 cells show differential intercellular transfer 
of different sized fluorescent dyes. Dye transfer between ROS (a 
and c) or ROS/Cx45 (b and d) cells cultured on glass coverslips 
was assessed by the direct visualization of the movement of mi- 
croinjected calcein (dark bars; c and d) or HCCA (light bars; a 
and b) using fluorescence microscopy. For each microinjection 
event, the number of coupled cells was determined as the number 
labeled by a given fluorescent dye. The number of calcein micro- 
injections were 41 and 50, for ROS and ROS/Cx45, respectively, 
and for HCCA were 55 and 43 for ROS and ROS/Cx45. (e) Inter- 
cellular transfer for HCCA (light bars), LY (stippled bars), and 
calcein (dark bars), expressed as the percentage of microinjec- 
tions showing coupling to six or more cells. ROS cells transferred 
all of these dyes in a comparable manner, as opposed to ROS/ 
Cx45 cells which had more reduced transfer of calcein and LY 
than transfer of HCCA. 

into R O S  and ROS/Cx45 cells which enabled  us to simul- 
taneously examine transfer  of these dyes in the  same 
monolayer  (Fig. 9). Consistent  with the quanti ta t ive analy- 
sis of dye transfer  descr ibed above,  ROS/Cx45 cells prefer-  
entially t ransferred H C C A ,  while t ransfer  of calcein was 
more  restricted. 
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Figure 9. Comicroinjection of calcein and HCCA. ROS (a and b) 
or ROS/Cx45 (c and d) cells were microinjected with a solution 
containing a mixture of calcein and HCCA and visualized by flu- 
orescence microscopy as described in Materials and Methods. 
ROS cells showed equivalent dye transfer for both calcein (b) 
and HCCA (a), while ROS/Cx45 cells had preferential transfer of 
the smaller dye, HCCA (c), to some cells (arrowheads). Bar, 40 Ixm. 

Discussion 

In this paper we used three differently sized fluorescent 
reporter molecules to show that the expression of full- 
length chicken Cx45 decreased molecular permeability of 
intercellular communication between ROS cells. All of the 
probes were efficiently transferred by ROS ceils, where 
gap junction channels were composed of Cx43 alone. In 
ROS/Cx45 transfectants, intercellular transfer of LY and 
calcein were reduced by ~50--65%, while transfer of a 
smaller dye, HCCA, was decreased by ,'-~35%. The probes 
used in this study all have net negative charge. Previous 
electrophysiological studies on Cx45 gap junctions have 
shown that these channels are relatively selective for cat- 
ions over anions, suggesting that transfer of other nega- 
tively charged molecules through Cx45 channels may also 
be hindered (23, 37). 

Reduced intercellular communication by ROS/Cx45 
cells cannot be due to an indirect effect on Cx43 abun- 
dance, phosphorylation or localization which were not al- 
tered in these cells (Figs. 2--4). Also, our results are not 
likely to be due to clonal variation, since similar results 
were obtained with other ROS/Cx45 cell clones. 

A possible explanation for altered communication be- 
tween ROS/Cx45 cells is that transfected Cx45 and native 
Cx43 directly interact to form mixed gap junction chan- 
nels. This interaction could occur in two different ways. 
One possibility is that a homotypic Cx43 hexamer in one 
cell might bind to a homotypic Cx45 hexamer in another 
to form a hybrid junction (heterotypic junction). Alterna- 
tively, Cx43 and Cx45 might combine in the same cell to 
form mixed hexamers (heteromeric junction). Formation 
of heterotypic gap junctions with unique properties has 
been demonstrated using connexins expressed by Xenopus 
oocytes (1, 8, 16, 33, 38, 39). Specificity of heterotypic gap 
junction formation in mammalian cells has been demon- 

strated by Tomasetto et al., who found that Cx26 and Cx43 
did not form functional junctions (34). 

We found that rat Cx43 and chicken Cx45 can form 
functional heterotypic gap junction channels using trans- 
fected N2A neuroblastoma cells (Li, K., and T. H. Stein- 
berg, unpublished observations). Also, Moreno et al. have 
shown that heterotypic gap junctions formed by human 
Cx43 and Cx45 expressed in SKHepl  cells have unitary 
conductance intermediate between homotypic Cx43 and 
Cx45 channels (22). Note that heterotypic Cx43/Cx45 
channels were impermeant to LY (22). 

The possibility that two or more connexins might form a 
completely mixed heteromeric hemichannel was recently 
demonstrated by Stauffer (30) using Sf9 cells cotrans- 
fected with [3-type connexins, Cx32 and Cx26. Assembly of 
heteromeric channels from a-type connexins has not been 
demonstrated. One consequence of complete connexin in- 
termixing in ROS/Cx45 cells would be that the molecular 
permeability of gap junctions in these cells might be deter- 
mined by the stoichiometry of Cx43 and Cx45. For in- 
stance, two different cell lines, UMR cells which are 
poorly coupled (32) and BWEM cells which are well cou- 
pled (19) endogenously express both Cx43 and Cx45. 

Both ROS/Cx45 and ROS/Cx45tr cells showed de- 
creased gap junctional conductance as compared to ROS 
cells, suggesting that both the full-length and truncated 
forms of chicken Cx45 were interacting with Cx43. ROS/ 
Cx45 cells had higher gi than ROS/Cx45tr cells, yet dye 
transfer by ROS/Cx45tr cells was not reduced. This sug- 
gests that the COOH-terminal domain of Cx45 affects ei- 
ther connexin channel permeability or the ability of Cx45 
to interact with Cx43. Also, the C O O H  terminus of Cx45 
may be involved in regulating the exclusion of negatively 
charged molecules (37), while the channel diameter could 
be controlled by other parts of Cx45, such as helical do- 
mains. 

The reason for enhanced intercellular transfer of micro- 
injected LY by ROS/Cx45tr cells (Fig. 7 c) is not clear at 
present. Transfer of calcein by ROS/Cx45tr cells was com- 
parable to ROS cells as determined with the FACS assay 
(Figs. 5 and 6). Note that the microinjection assay mea- 
sures the dispersion of dye from a single source during a 
5-min time period, while the FACS assay involves the 
transfer of dye from multiple sources during a 5-h incuba- 
tion. Thus, the increased sensitivity of the FACS assay 
may obscure subtle differences in dye transfer that are de- 
tectable by microinjection. 

However, there are other important differences be- 
tween the two assays. For instance, microinjection uses an 
established monolayer of cells, while the FACS assay mea- 
sures intercellular transfer between cells that are in the 
process of attaching to a surface and forming gap junc- 
tions. Also, physical contact of an osteoblast with a mi- 
cropipette induces increases in cytosolic calcium (Geist, S., 
and T. H. Steinberg, unpublished observations). Perhaps 
the C O O H  terminus of Cx45 is involved in calcium-depen- 
dent regulation of gap junctional intercellular communica- 
tion. There is some precedent for a role of the COOH-ter-  
minal domain in regulating connexin function; truncated 
Cx43 mutants are insensitive to cytosol acidification, 
which normally inhibits Cx43-mediated intercellular com- 
munication (12, 20). 
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In summary, we have found that the expression of one 
connexin can alter intercellular communication mediated 
by another connexin. This suggests that in cells expressing 
multiple connexins, these proteins interact and form gap 
junctions with properties distinct from those of gap junc- 
tions formed by the individual connexins. Additional work 
will be required to determine whether this is due to het- 
erotypic or heteromeric channel formation. Connexin multi- 
plicity may provide a mechanism that allows the cell to 
regulate the intercellular permeation of molecules in a 
manner that would not be possible with the expression of 
only a single connexin. 
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