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Abstract

Genome‐wide association studies (GWAS) have successfully identified

thousands of single nucleotide polymorphisms (SNPs) associated with

complex traits; however, the identified SNPs account for a fraction of trait

heritability, and identifying the functional elements through which genetic

variants exert their effects remains a challenge. Recent evidence suggests that

SNPs associated with complex traits are more likely to be expression

quantitative trait loci (eQTL). Thus, incorporating eQTL information can

potentially improve power to detect causal variants missed by traditional

GWAS approaches. Using genomic, transcriptomic, and platelet phenotype

data from the Genetic Study of Atherosclerosis Risk family‐based study, we

investigated the potential to detect novel genomic risk loci by incorporating

information from eQTL in the relevant target tissues (i.e., platelets and

megakaryocytes) using established statistical principles in a novel way.

Permutation analyses were performed to obtain family‐wise error rates for

eQTL associations, substantially lowering the genome‐wide significance

threshold for SNP‐phenotype associations. In addition to confirming the well

known association between PEAR1 and platelet aggregation, our eQTL‐
focused approach identified a novel locus (rs1354034) and gene (ARHGEF3)

not previously identified in a GWAS of platelet aggregation phenotypes. A

colocalization analysis showed strong evidence for a functional role of

this eQTL.
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1 | INTRODUCTION

Platelet aggregation is critical for normal hemostasis and
pathologic thrombus formation (Jackson, 2007). Platelets
are known to play an important role in the pathogenesis
of atherosclerosis and in the acute thrombotic events that
characterize acute coronary syndromes (Freedman &
Loscalzo, 2013; Libby, 2001). High residual levels of
platelet reactivity despite antiplatelet therapy is also
associated with increased likelihood of major adverse
cardiovascular events after percutaneous coronary inter-
vention (de Prado et al., 2006). Several large cohorts have
documented the highly variable interindividual platelet
responsiveness to a variety of agonists (Kunicki &
Nugent, 2010). Furthermore, a number of genetic and
environmental factors contribute to substantial variation
in platelet function seen among normal persons.

Genome‐wide association studies (GWAS) have
successfully identified several single nucleotide polymor-
phisms (SNPs) that are associated with platelet aggrega-
tion phenotype (Johnson et al., 2010; Keramati
et al., 2021, 2019; Kim et al., 2013; Lewis & Ryan, 2013;
Mathias et al., 2010; Qayyum et al., 2015). Previous
family‐based studies have shown that the majority of
these platelet traits are heritable, with estimates up to
70% in African Americans (AAs) and almost 60% in
European Americans (EAs) (Bray et al., 2007; Faraday
et al., 2007). But even in aggregate, the SNPs identified
from prior GWAS explain only a small proportion of this
heritability. This phenomenon is observed in most
complex traits, because the effect size of most SNPs is
small providing limited power to pass the GWAS
significance threshold (He et al., 2013; Manolio
et al., 2009). With the implementation of stringent
thresholds, variants that confer small disease risks are
likely to be missed among the millions of SNPs that are
tested. Hence additional analytical approaches that
exploit genetic information beyond SNP association are
useful to uncover additional important genetic variants.

Establishing connections between genetic variants
identified in GWAS and their biological mechanisms has
been challenging (Gupta & Musunuru, 2013). Some
studies have looked at the overlap between complex trait‐
associated variants and expression quantitative trait loci
(eQTL) variants as evidence of common causal molecular
mechanisms (Dubois et al., 2010; Nica et al., 2010). The
concept is that a GWAS variant, in some tissues, may
affect expression at a nearby gene and that both the gene
and the tissue might play a role in the disease
mechanism (Huang et al., 2015). Others have also
explored approaches that integrate summary‐level data
from GWAS with eQTL data in a Mendelian randomiza-
tion style to identify genes whose expression levels are

associated with a complex trait because of pleiotropy
(Zhu et al., 2016). There is also increasing evidence that
SNPs associated with complex traits are more likely to be
eQTL and that a substantial proportion of these GWAS
risk variants influence complex trait by regulating gene
expression levels of their target genes (Albert &
Kruglyak, 2015; Emilsson et al., 2008; Nica et al., 2010;
Nicolae et al., 2010). Integrating this information in
GWAS can enhance the discovery of trait‐associated
SNPs for complex phenotypes, as gene expression
analyses can yield important information about genetic
architecture and can point to mechanisms that link
genetics and disease (Gupta & Musunuru, 2013). Anno-
tating SNPs with information on expression can certainly
improve our understanding of variants that underlie
biological control of gene expression and genes involved
in platelet aggregation.

Our goal in this study was to investigate the potential
to leverage eQTL from a target tissue to identify novel
loci associated with phenotype from prior GWAS. In this
example, we leverage eQTL information from platelets
(PLTs) and megakaryocytes (MKs) to identify novel loci
associated with platelet aggregation phenotypes using
Whole Genome Sequencing (WGS) data from EAs and
AAs from the GeneSTAR family‐based study, generated
as part of the NHLBI's Trans‐Omics for Precision
Medicine (TOPMed) program. We incorporate eQTL
information from RNA‐seq data on PLTs and induced
pluripotent stem cell (iPSC) derived MKs (Kammers,
Taub, Rodriguez, et al., 2021) to uncover novel genetic
variants that determine platelet aggregation, using
permutation tests to assess statistical significance.

2 | MATERIALS AND METHODS

2.1 | Genetic study of atherosclerosis
risk cohort

GeneSTAR is an ongoing prospective study begun in
1983 designed to determine environmental, phenotypic,
and genetic causes of premature cardiovascular disease.
Participants came from EA and AA families identified
from 1983 to 2006 from probands with a premature
coronary disease event before 60 years of age who were
identified at the time of hospitalization in any of 10
Baltimore area hospitals. Their apparently healthy 30–59
year old siblings without known coronary artery disease
(CAD) were recruited and underwent initial phenotypic
measurement and characterization between 1983 and
2007 (Vaidya et al., 2007; Yanek et al., 2013). Adult
offspring (over 21 years of age) of siblings and probands
along with the coparents of the offspring were recruited
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and underwent initial phenotypic measurement and
characterization between 2003 and 2006. Participants
for the current study took part in a 2‐week trial of aspirin
from 2003 to 2006, and were apparently healthy, free of
CAD, and had not used aspirin or antiplatelet medica-
tions for 2 weeks before the baseline visit (Becker
et al., 2006). Platelet function was assessed before and
after 2 weeks of aspirin in whole blood and platelet‐rich
plasma (PRP) with multiple agonists such as collagen,
ADP, and epinephrine (EPI) as described previously
(Becker et al., 2006). Maximal aggregation (%) of PRP to
2 µM ADP was the phenotype we examined as proof of
concept in this study.

2.2 | Whole genome sequencing data

We used the sequencing data available through the
NHLBI's Trans‐Omics for Precision Medicine (TOPMed)
program (https://nhlbiwgs.org). WGS was performed to an
average depth of 38X using DNA isolated from blood,
PCR‐free library construction, and Illumina HiSeq X
technology. Details for variant calling and quality control
are described in detail in Taliun et al. (2021). In brief,
variant discovery and genotype calling was performed
jointly across all the available TOPMed studies using the
GotCloud 6 pipeline, resulting in a single, multistudy,
genotype call set. Sample‐level quality control was
performed to check for pedigree errors, discrepancies
between self‐reported and genetic sex, and concordance
with prior genotyping array data. Among the GeneSTAR
samples in TOPMed Freeze 6, 806 EAs in 196 families and
661 AAs in 190 families had complete phenotype data.

2.3 | RNA sequencing data

Details on the iPSC derived MK and PLT samples used in
the RNA sequencing are described in detail elsewhere
(Kammers et al., 2017; Kammers, Taub, Mathias,
et al., 2021; Kammers, Taub, Rodriguez, et al., 2021).
Briefly, for 185 iPSC‐derived MK cell lines and for 290
PLT samples with WGS data we also obtained RNA‐seq
data from extracted nonribosomal RNA. This included
iPSC‐derived MKs on 84 AA and 101 EA subjects as well
as platelets on 110 AA and 180 EA subjects. Details on
data processing are provided in Kammers, Taub,
Rodriguez, et al. (2021). In brief, we used the HISAT‐
StringTie suite (Pertea et al., 2016) for alignment and
assembly of RNA‐seq data and the Ballgown package
(Frazee et al., 2015) for efficient data storage, processing,
and analysis. Gene expression was quantified as frag-
ments per kilobase per million reads mapped (FPKM),

log‐transformed, and genes with median FPKM across all
samples less than or equal to 1 (for MKs) or 0.3 (for PLTs)
were excluded.

2.4 | Genome‐wide association studies

A linear mixed effects model for genetic association was
applied to the WGS data using the GENESIS Package
(Conomos & Thornton, 2016), and analysis was first
performed separately in each ethnic group (EA and AA).
A genetic relationship matrix (GRM) was created using
the PC‐Relate function to account for phenotype correla-
tions due to the family structure of the GeneSTAR
samples. GWAS WGS‐based association analysis was
conducted using age and sex adjusted inverse normalized
transformation of the platelet phenotypes. In each group,
SNP quality control filtering was carried out family‐
aware using PLINK (http://zzz.bwh.harvard.edu/plink/).
Only SNPs with minor allele frequency (MAF) greater
than 1% in the respective group, Hardy–Weinberg
equilibrium test p value larger than 10−6 and missing
genotype frequency less than 5% were tested for
association, and reported. Further, SNPs with inflated
estimated standard errors (larger than 10) due to
collinearity were omitted.

2.5 | Meta‐analysis

SNPs with MAF larger than 1% in both groups were then
included in a meta‐analysis. Inverse variance weighted
fixed effects meta‐analyses based on the slope and
standard error estimates were conducted using the
metagen function implemented in the R package
meta, combining the stratified EA and AA results.
Quantile–quantile (qq) plots of −log10 observed versus
expected p values were examined to assess potential type
I error inflation. Manhattan plots and regional associa-
tion plots of the GWAS results using LocusZoom (Pruim
et al., 2010) were created based on the Human Genome
version 38 (hg38) build. Conditional analyses to poten-
tially identify multiple causal variants in all regions
identified using the GWAS WGS meta‐analysis approach
were performed by conditioning on the most significant
SNP in the regions of interest, and re‐assessing the
strength of association in the respective regions.

2.6 | eQTL analysis

Details of the eQTL analyses are provided in Kammers,
Taub, Rodriguez, et al. (2021). In brief, eQTL analyses
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were carried out for both MK and PLT at the gene level
stratified by ancestry (AA and EA), focusing on a 1Mb
window around each SNP and adjusting for sex, age,
percent CD41+ CD42a+ MK pellets (MKs only), RNA‐seq
batch, and 15 principal components (PCs) of the filtered
and log‐transformed gene expression matrix. Only SNPs
with at least two samples for each genotype and a call
rate greater than 80% were tested, using the R package
MatrixEQTL (Shabalin, 2012).

2.7 | Permutation analysis

To simulate null distributions for tests of association
between the set of eQTL identified SNPs and the trait,
residuals (obtained after regressing the phenotype on the
covariates) were randomly shuffled while SNP genotypes
were kept the same, to preserve the SNP correlation
structure (Churchill & Doerge, 1994). The 396 GeneS-
TAR families ranged from 1 to 15 members in size. For
multiple‐member families, residuals were shuffled
within families to also maintain within family phenotype
correlation structure. Residuals were randomly swapped
between singletons. To estimate the threshold for the 5%
family‐wise error rate (FWER) under the global null of
no association across all eQTL identified SNPs, we
permuted each set of residuals 1000 times as described
above, carried out 1000 separate GENESIS association
analyses on the set of all eQTL identified SNPs, recorded
the minimum p value for each of these 1000 analyses,
and selected the 5th percentile of these 1000 minimum p
values.

2.8 | Colocalization

We performed a Bayesian colocalization analysis to
investigate whether an observed association signal in
the GWAS and eQTL analysis is consistent with a shared
causal variant, using the framework described by
Giambartolomei et al. (2014). In brief, for two separate
traits (here, the phenotypes in the GWAS and the gene
expression for the gene of interest in the eQTL analyses)
five different hypothesis are considered under the
assumption of a single causal variant for each trait: H0:
no association with either trait; H1: association with trait
1, not with trait 2; H2: association with trait 2, not with
trait 1; H3: association with trait 1 and trait 2, two
independent SNPs; H4: association with trait 1 and trait
2, one shared SNP. Colocalization under the assumption
of a single causal variant for each trait is inferred by
support of hypothesis H5 calculating Bayes factors using
the approximation proposed by Wakefield (2009).

Prior probabilities for association with one or both traits
were chosen as the default parameters in the coloc.abf
function from the coloc R package (10−4 that a SNP is
associated with either of the two traits, and 10−5 that a
SNP is associated with both).

3 | RESULTS

A total of 9,769,070 SNPs in the EA families and
16,415,214 SNPs in the AA families met the QC filtering
criteria (described in Section 2). In the stratified
association analysis, one SNP in gene GTF2IRD1 on
chromosome 7 (rs13221023) exceeded the 5 × 10−8

GWAS p value threshold in the EA families. In the
AAs, one SNP (rs12041331) located in the PEAR1 gene
met this GWAS threshold (Table 1A and Figure S1). The
meta‐analysis of the 8,242,287 SNPs with a MAF of 1% or
larger in both groups only yielded SNP rs12041331 in the
PEAR1 gene (also identified in the stratified AA analysis)
meeting the GWAS threshold (Table 1A and Figure 1A).
The test statistics in the meta‐analysis and the stratified
analyses were well‐calibrated, with genomic control
parameters (Devlin & Roeder, 1999) of 1.011 in the
meta‐analysis, and 1.014 and 1.012 in the EA and AA
stratified analyses, respectively (Figure S2).

In the eQTL analysis, a total of 16,641,225 SNP‐gene
pairs were tested in the EA families and 20,101,156 pairs
were tested in the AA families for PLTs, as previously
described. Among those, 208,230 PLT eQTL SNP
associations in the EA families met a false discovery
rate of 5%, and 54,085 PLT eQTL SNP associations met
the same threshold in the AA families. A combined total
of 229,674 unique SNPs were common in both the EA
and AA platelet eQTL analysis; these were used for the
permutation approach applied to the GWAS meta‐
analysis results. The MK data had a total of 30,802,119
SNP‐gene pairs tested in the EA families and 34,673,581
in the AA families for eQTL analysis. A total of 50,255
MK eQTL SNP associations in the EA families met a false
discovery rate of 5%, and 9046 in the AA families,
respectively. A combined total of 55,088 unique MK
eQTL SNPs, found to be overlapping in EA and AA eQTL
results, were then used for the permutation approach
applied to the meta‐analysis of the GWAS signals.

In the GWAS meta‐analysis based on the 229,674
platelet‐identified eQTL, three SNPs met the PLT eQTL
permutation FWER threshold of p=1.00 × 10−6 in two
genes, PEAR1 on chromosome 1, and ARHGEF3 on
chromosome 3 (Table 1B and Figure 1B). In the GWAS
meta‐analysis based on the 55,088 MK‐identified eQTL,
only the intron SNP rs1354034 in the ARHGEF3 gene
met the permutation threshold of p= 7.55 × 10−6
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(Table 1C and Figures 1C, S3, and S4). While PEAR1 has
been firmly established as a gene modifying platelet
aggregation in response to agonists (Johnson et al., 2010;
Kim et al., 2013; Lewis & Ryan, 2013; Mathias et al., 2010;
Qayyum et al., 2015), the exchange factor ARHGEF3
found in platelets has largely gone unnoticed in that
particular role. Associations of ARHGEF3, and in
particular its intronic variant rs1354034, have been
reported in the GWAS catalogue for many platelet and
blood related phenotypes, such as platelet count, mean
platelet volume, reticulocyte fraction of red cells,
reticulocyte count, red blood cell count, blood protein
levels, lymphocyte counts, hematocrit, hemoglobin con-
centration, mean corpuscular hemoglobin, and platelet-
crit (https://www.ebi.ac.uk/gwas/). However, to our
knowledge, ARHGEF3 has not been previously identified
in a genome‐wide analysis as modifying platelet aggrega-
tion in response to agonists. The intronic ARHGEF3 SNP
rs12485738, reported by Meisinger et al. (2009) as
strongly associated with mean platelet volume, was
considered by Johnson et al. (2010) as a platelet

aggregation candidate SNP, and achieved a p value of
7.8 × 10−3 when tested for association in a meta‐analysis
with response to lower ADP levels (table S5a in Johnson
et al., 2010). When ARHGEF3 was considered as a
candidate gene (table S5b in Johnson et al., 2010), no
SNPs were significant after multiple comparisons correc-
tion, but low p values were reported for SNPs rs4455300
(ADP, p= 0.0006), rs9851853 (epinephrine, p= 0.0029)
and rs11716680 (collagen, p= 0.016). Also noteworthy,
another exchange factor (ARHGEF11) was highlighted as
a gene within proximity (60 kb) of the PEAR1 peak SNP
(Johnson et al., 2010, table 4).

A Bayesian colocalization analysis using the platelet
aggregation phenotype and gene expressions strongly
supported the notion of a single shared common genetic
causal variant in the newly detected gene ARHGEF3.
Meta‐analysis p values for the association of the 7598
SNPs within 1MB of rs1354034 with the platelet
aggregation trait were considered, of which 4128 were
PLT eQTL for ARHGEF3 gene expression, and 3809 were
MK eQTL. The posterior probability of one common

TABLE 1 Loci identified using the standard genome‐wide significance level of 5 × 10−8 through the WGS‐based GWAS meta‐analysis
(A), and the eQTL PLTs (B) and MKs based (C) permutation tests using the respective FWER permutation thresholds

(A) Loci identified through the WGS‐based GWAS meta‐analysis
SNP Model CHR Position MEA MAA p Gene

rs12041331 META 1 156,899,922 0.09 0.35 2.05 × 10−10 PEAR1

rs12041331 AA 1 156,899,922 0.09 0.35 4.35 × 10−8 PEAR1

rs13221023 EA 7 74,528,803 0.04 0.07 2.40 × 10−8 GTF2IRD1

(B) Loci identified through the eQTL PLTs based permutation test

SNP Model CHR Position MEA MAA p Gene eGEA eGAA

rs2182760 META 1 156,898,198 0.09 0.17 5.02 × 10−7 PEAR1 PEAR1 PEAR1

rs12041331 META 1 156,899,922 0.09 0.35 2.05 × 10−10 PEAR1 PEAR1 PEAR1

rs12041331 AA 1 156,899,922 0.09 0.35 4.35 × 10−8 PEAR1 PEAR1 PEAR1

rs1354034 META 3 56,815,721 0.40 0.25 7.55 × 10−7 ARHGEF3/SPATA12 ARHGEF3 ARHGEF3

(C) Loci identified through the eQTL MKs based permutation test

SNP Model CHR Position MEA MAA p Gene eGEA eGAA

rs234103 AA 1 184,969,377 0.49 0.43 3.92 × 10−6 NIBAN1 FAM129A SWT1

rs85671 AA 1 184,970,425 0.49 0.44 4.21 × 10−6 NIBAN1 FAM129A SWT1

rs234104 AA 1 184,971,007 0.49 0.44 4.21 × 10−6 NIBAN1 FAM129A SWT1

rs234107 AA 1 184,973,263 0.49 0.44 7.77 × 10−6 NIBAN1 FAM129A SWT1

rs234111 AA 1 184,976,103 0.49 0.44 5.07 × 10−6 NIBAN1/RNF2 FAM129A SWT1

rs1354034 META 3 56,815,721 0.40 0.25 7.55 × 10−7 ARHGEF3/SPATA12 ARHGEF3 ARHGEF3

Note: Column names as follows. SNP: the locus rs number when available. Model: the model used to identify the locus (EA/AA stratified, or META analysis).
CHR: chromosome of the identified locus. Position: genomic position of the locus identified. Gene: gene the locus resides in. If intergenic, the flanking genes
are reported. MEA/MAA: minor allele frequencies of the EA and AA families. P: statistical significance (p‐value) from the hypothesis test of no association
based on a standard Gaussian null distribution. eGEA/eGAA: gene for which the reported SNP is an eQTL in the EA and AA families. An italicized MAF in
column MAA indicates that the reference allele was switched.
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causal variant for association with the trait and
ARHGEF3 gene expression (Hypothesis 4 as described
in Giambartolomei et al., 2014) was 65.4% in the PLT and
99.8% in the MK. SNP rs1354034 had the strongest
association with the phenotype (p= 7.55 × 10−7) and the
8th smallest PLT eQTL p value (p= 4.07 × 10−10),
resulting in a posterior probability of 96.3% being the
causal variant under the COLOC assumptions (Table 2
and Figure 2, PLT). However, because several SNPs had a
stronger association with ARHGEF3 expression in the
PLT than rs1354034 and the GWAS p value did not pass
the traditional threshold of genome‐wide association, the
posterior probabilities that the causal variant is only
associated with gene expression (Hypothesis 2) or that
two independent SNPs underly the associations (Hypoth-
esis 3) also have appreciable support from the observed

data (posterior probabilities of 14.8% and 19.8%, respec-
tively). Among the ARHGEF3 MK eQTL on the other
hand, rs1354034 also had the smallest eQTL p value
(p=1.74 × 10−29), resulting in a posterior probability of
virtually 100% being the causal variant (Table 2 and
Figure 2, MK). A conditional analysis in this region
supported the notion of a single independent variant
affecting this platelet aggregation trait (Figure S5).

4 | DISCUSSION

GWAS have successfully identified tens of thousands of
SNPs associated with complex traits, including genetic
variants that affect platelet function by modifying platelet
parameters such as platelet aggregation, platelet count,

FIGURE 1 GWAS meta‐analysis results. (a) Manhattan plot of the GWAS for all 8,242,287 SNPs passing quality control. The dashed
horizontal line is at p=5 × 10−8, representing the standard GWAS cut‐off for significance. (b) Manhattan plot of the GWAS for the 229,674
eQTL in platelet. The dashed horizontal line is at 6.00 (p=1.00 × 10−6), representing the cut‐off for a 5% FWER derived using permutations.
(c) Manhattan plot of the GWAS for the 55,088 eQTL in megakaryocytes. The dashed horizontal line is at 5.12 (p= 7.55 × 10−6),
representing the cut‐off for a 5% FWER derived using permutations. SNPs passing the respective significance threshold at the PEAR1
(chromosome 1) and ARHGEF3 (chromosome 3) loci are highlighted with a red background. eQTL, expression quantitative trait loci;
FWER, family‐wise error rate; GWAS, genome‐wide association studies; SNP, single nucleotide polymorphism
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mean platelet volume and altering the expression of key
platelet receptors. In general, SNPs that influence gene
expression (eQTL) are significantly enriched (Nicolae
et al., 2010), and consequently, researchers have explored
various ways of incorporating eQTL into GWAS.

Using the ENCODE data base, Nicolae et al. (2010)
constructed a score quantifying the likelihood that a SNP
has a function in regulating transcript levels. They
concluded that annotating SNPs with a score reflecting
the strength of evidence that a SNP is an eQTL can
improve ability to discover true associations. Gupta and
Musunuru (2013) discussed the use of eQTL databases in
the study of noncoding variants in cardiovascular and
metabolic phenotypes, and reviewed successes in using
eQTL to link variants with functional candidate genes.
Zhu et al. (2016) proposed a new method called SMR that
integrates summary‐level data from GWAS with expres-
sion data from eQTL to identify genes whose expression
levels are associated with complex traits due to pleiot-
ropy. The authors adopt a Mendelian randomization
approach to estimate and test for the causative effect of
an exposure variable on an outcome. J. Li et al. (2013)
used eQTL weights as prior information in SNP‐based

association tests to improve test power while maintaining
control of the family‐wise error rate or false‐discovery
rate. Some SNPs that were insignificant without eQTL
weighting became significant using eQTL‐weighted
Bonferroni or Benjamini–Hochberg procedures. The
authors concluded that using informative weights may
improve power, and little power is killed when unin-
formative weights are used. Saccone et al. (2010)
developed an online prioritization tool (SPOT), which
systematically combines multiple biological databases to
prioritize SNPs by genomic information network. SNPs
are assigned a prioritization score based on pathway
information, comparative genomics, a linkage scan, and
results from other independent GWAS. Wu et al. exploit
the fact that complex traits are often affected by multiple
genes in annotated gene pathways, and extend TWAS
from a gene to a pathway based analysis (Wu &
Pan, 2018). Integrating KEGG and GO pathways with
GWAS and eQTL information, the authors were able to
identify several novel pathways associated with schizo-
phrenia. Zeng et al. (2019) investigated the prevalence
and role of secondary cis‐eQTLs regulating gene expres-
sion in peripheral blood in two large cohort studies.

FIGURE 2 Colocalization using meta‐analysis p values (dark grey) and eQTL p values for association with ARHGEF3 (light grey),
separately for platelets (PLT) and megakaryocytes (MK) eQTL. For clarity of display, the x‐axis represent the index in the SNP set, not the
genomic locations. The respective p values for SNP rs1354034 are highlighted with a red background. eQTL, expression quantitative trait
loci; SNP, single nucleotide polymorphism
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A colocalization analysis of eQTL signals with GWAS
hits detected 1349 genes whose expression in peripheral
blood was associated with a total of 591 phenotypes, with
more than 10% of the colocalized signals due to
nonprimary cis‐eQTLs. After conducting GWAS on 12
complex eye diseases or traits, Strunz et al. (2020)
examined regulation of gene expression in healthy retina
as a disease relevant tissue, and identified more than
400,000 significant eQTL variants regulating more than
3000 genes. The authors found that expression of 10 of
those genes was regulated by significant eQTLs associ-
ated with multiple eye diseases or traits, providing
evidence for their role in the etiology of these conditions.
These studies demonstrate that integrating eQTL infor-
mation in GWAS can potentially improve power in
highlighting causal genes.

In our study we presented an approach to improve
power to detect GWAS signals when shared among eQTL
by substantially lowering the genome‐wide significance
threshold compared to the standard Bonferroni proce-
dure using permutation analyses. In addition to improv-
ing power, focusing on eQTL also is more likely to yield
functional variants. We also stress the importance of
using relevant target tissues for eQTL analyses, particu-
larly for the study of platelet related phenotypes.

We previously investigated the transcriptional profile of
platelets and iPSC‐derived megakaryocytes, and com-
pared those with peak‐associated SNP‐expressed gene
pairs of 48 other tissue types from the GTEx catalogue
(GTEx Consortium, 2020). One of our key findings was
that the eQTLs we detected were largely unique to MKs
and PLs, with a somewhat large fraction not seen among
any of the 48 GTEx tissues (Kammers, Taub, Rodriguez,
et al., 2021).

Our here presented analysis strategy shares some of
the characteristics of transcriptome‐wide association
studies (TWAS). For example, both TWAS and our
approach exploit the fact that gene expression may be a
molecular mediator between genotype and phenotype.
However, there are also important distinctions. TWAS
were initially motivated by the fact that the majority of
SNPs in the GWAS catalogue (https://www.ebi.ac.uk/
gwas/) were in noncoding regions of the human genome,
rendering functionality unclear. Thus, TWAS were
introduced as an approach to directly investigate
associations between genetically regulated gene expres-
sion and the phenotype of interest (Gamazon et al., 2015;
Gusev et al., 2016). In general, a TWAS is a two‐step
procedure where genetically regulated gene expression is
first assessed in a reference data set for which

TABLE 2 Bayesian colocalization results for the PLT and MK ARHGEF3 eQTL

Bayesian colocalization results for PLT ARHGEF3 eQTL
PPH0 = 0.000, PPH1 = 0.000, PPH2 = 0.148, PPH3 = 0.198, PPH4 = 0.654

SNP CHR Position MEA MAA P/GWAS P/eQTL BF/G BF/E BF PP

rs1354034 3 56,815,721 0.40 0.25 7.55 × 10−7 4.07 × 10−10 9.12 16.46 25.58 0.963

rs12488986 3 56,816,160 0.18 0.14 1.32 × 10−2 7.67 × 10−12 1.58 19.65 21.23 0.012

rs1039383 3 56,815,027 0.23 0.16 1.09 × 10−1 2.48 × 10−12 0.27 20.87 21.14 0.011

rs1039384 3 56,815,161 0.23 0.18 1.68 × 10−1 2.48 × 10−12 0.01 20.87 20.88 0.009

rs17288922 3 56,817,359 0.17 0.13 1.13 × 10−2 3.07 × 10−11 1.67 18.36 20.03 0.004

Bayesian colocalization results for MK ARHGEF3 eQTL
PPH0 = 0.000, PPH1 = 0.000, PPH2 = 0.001, PPH3 = 0.001, PPH4 = 0.998

SNP CHR Position MEA MAA P/GWAS P/eQTL BF/G BF/E BF PP

rs1354034 3 56,815,721 0.40 0.25 7.55 × 10−7 1.74 × 10−29 9.12 50.89 60.01 1.000

rs6445826 3 56,814,971 0.50 0.13 9.96 × 10−3 4.37 × 10−16 1.84 24.17 26.01 0.000

rs13085861 3 56,825,269 0.46 0.46 1.04 × 10−3 2.81 × 10−8 3.58 10.92 14.50 0.000

rs13074522 3 56,826,855 0.48 0.12 5.28 × 10−3 6.05 × 10−10 2.27 12.23 14.50 0.000

rs13062174 3 56,824,658 0.46 0.49 3.50 × 10−3 4.07 × 10−8 2.66 10.86 13.52 0.000

Note: PPH0–PPH4: posterior probabilities for Hypotheses 0–4 as described in Section 2 and Giambartolomei et al. (2014). Column names as in Table 1, and as
follows. P/GWAS: p value from WGS GWAS. P/eQTL: p value from eQTL analysis. Bayes factors as described in Giambartolomei et al. (2014). BF/G: log10
Bayes factor for the SNP‐phenotype association. BF/E: log10 Bayes factor for the SNP‐gene association. BF: log10 Bayes factor for the joint association of the
SNP with phenotype and gene expression.

Abbreviations: BF, Bayes factor; eQTL, expression quantitative trait loci; GWAS, Genome‐wide association studies; MK, megakaryocytes; PLT, platelets; PP,
posterior probability of colocalization.
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transcriptomic data are available, and a prediction model
is delineated based on these findings. The prediction
model is then used in the second step to impute gene
expression for the GWAS cohort, and the imputed gene
expressions are then correlated with the phenotype of
interest. Since its introduction, a variety of other TWAS‐
like methods have been put forward (Barbeira
et al., 2018, 2019; Hu et al., 2019; Luningham et al., 2020;
Pividori et al., 2020; Xu et al., 2017; Zhou et al., 2020) that
differ in a variety of aspects, such as the type of GWAS
input, the statistical approaches to generate the eQTLs
underlying the predictors, among others (see B. Li &
Ritchie, 2021 for a review). A TWAS can be considered as
a multimarker association approach that allows for the
identification of genes underlying the etiology of the
phenotype, while our approach identifies single variants
that have potential to be causal. A TWAS is a more
complicated procedure than our approach, and in
particular the development of prediction models used
in Step 1 is an active area of research (B. Li &
Ritchie, 2021). Our approach for the main part is simply
based on a GWAS and an eQTL analysis, with the latter
being used to select SNPs from the former. The
association p values from the GWAS do not change in
our approach, only the significance threshold derived by
the permutation test, does. In that sense it could also be
reasoned that both TWAS and our methods improve
power in part by reducing the multiple hypothesis
burden.

In addition to confirming the well known PEAR1
platelet aggregation locus, we also identified a novel
platelet and megakaryocyte eQTL rs1354034 (ARHGEF3)
associated with aggregation to ADP after exposure to
aspirin. The SNP rs1354034 falls within the protein
coding gene ARHGEF3 (Rho guanine nucleotide ex-
change factor 3, RhoGEF3), which activates RhoGTPases
and plays an important role in the regulation of cell
morphology, cell aggregation, cytoskeletal rearrange-
ments, and transcriptional activation. It regulates the
switch of RhoGTPase from the inactive GDP‐bound state
to the active GTP‐bound state and is one of the most
abundant GEFs found in human megakaryocyte lineage
and platelets (Astle et al., 2016; Eicher et al., 2016).
ARHGEF3 has been shown in previous GWAS to be
associated with platelet count and mean platelet volume
(Gieger et al., 2011; J. Li et al., 2013; Lin et al., 2017; Read
et al., 2019; Schick et al., 2016; Shameer et al., 2014). The
silencing of ARHGEF3 has been shown to completely
ablate erythropoiesis and thrombocyte formation in a
zebrafish model (Serbanovic‐Canic et al., 2011).
Serbanovic‐Canic et al. (2011) also reported that the
disruption of the ARHGEF3 target, RhoA, produced
severe anemia, which was corrected by iron injection.

Zou et al. (2017) reported that rs1354034, which is
located in a DNase I hypersensitive region in human
megakaryocytes, is an eQTL associated with ARHGEF3
expression level in human platelets (Zou et al., 2017).
They also suggested that it may be the causal SNP that
accounts for the variations observed in human platelet
traits and ARHGEF3 expression. They further reported
that in vitro human platelet activation assays revealed
rs1354034 is highly correlated with human platelet
activation by ADP, and concluded that modulation of
ARHGEF3 gene expression in humans with a promoter‐
localized SNP may play a role in human megakaryocytes
and human platelets. Our Bayesian colocalization analy-
sis showed compelling evidence for a functional role of
this eQTL.
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