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ABSTRACT Identification of the nucleotide sequences encoding antibiotic resis-
tance elements and determination of their association with antibiotic resistance are
critical to improve surveillance and monitor trends in antibiotic resistance. Current
methods to study antibiotic resistance in various environments rely on extensive
deep sequencing or laborious culturing of fastidious organisms, both of which are
heavily time-consuming operations. An accurate and sensitive method to identify
both rare and common resistance elements in complex metagenomic samples is
needed. Referencing the sequences in the Comprehensive Antibiotic Resistance Da-
tabase, we designed a set of 37,826 probes to specifically target over 2,000 nucleo-
tide sequences associated with antibiotic resistance in clinically relevant bacteria.
Testing of this probe set on DNA libraries generated from multidrug-resistant bacte-
ria to selectively capture resistance genes reproducibly produced higher numbers of
reads on target at a greater length of coverage than shotgun sequencing. We also
identified additional resistance gene sequences from human gut microbiome sam-
ples that sequencing alone was not able to detect. Our method to capture the resis-
tome enables a sensitive means of gene detection in diverse environments where
genes encoding antibiotic resistance represent less than 0.1% of the metagenome.
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Antimicrobial resistance (AMR) is one of the most pressing challenges of the 21st
century that poses a threat to modern medicine and food security (1). The

challenge of AMR is amplified by the movement of genes between bacteria, coupled
with the movement of people and goods across the planet (2–4). One of the gaps in
addressing the antibiotic resistance crisis is a lack of suitable tools to catalog the
complete resistome (the entire AMR gene contingent) in various environments and
associated microbiomes. Detecting the resistome of an individual bacterium, a micro-
biome, and other environmental settings (sediment, hospitals, etc.) will aid in tracking
the spread of resistance and monitoring the emergence of new resistance alleles
associated with the use of antibiotics or other bioactive compounds (5–10). This
information can guide antibiotic use, in addition to informing stewardship programs
and public health decisions.

Profiling the resistomes of bacteria that are culturable is reasonably straightforward
using whole-genome sequencing followed by analysis using algorithms, such as the
Resistance Gene Identifier (RGI) in the Comprehensive Antibiotic Resistance Database
(CARD) (11). In metagenomes, where resistance determinants are relatively rare, deep
sequencing, requiring millions of sequencing reads, followed by careful filtering is
needed. This resource-intensive strategy can be alleviated by the targeted detection of
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selected genes, e.g., via PCR, microarrays, or CRISPR/Cas9-based methods (12–16).
However, such highly targeted approaches suffer from the fact that they are rarely
comprehensive and generally cannot account for the continual emergence of gene
variants and/or completely novel mechanisms of resistance (17–19).

A more appropriate approach for the identification of resistomes in metagenomes
is the use of a probe-and-capture strategy (20). Using this strategy, we and others have
captured, sequenced, and reconstructed human mitochondrial sequences as well as the
genomes of infectious agents and extinct species from various environments, including
highly degraded archeological and historical samples (21–26). In a probe-and-capture
experiment, target RNA baits are designed to be complementary to the target DNA
sequences of interest. Synthesized probes are biotin labeled and are incubated with the
DNA from metagenomic or genomic libraries, where they hybridize to related se-
quences (Fig. 1a and b). Targets are captured using streptavidin-coated magnetic bead
separation, and then the reaction mixtures are pooled and the sequences are deter-
mined on a next-generation sequencing (NGS) platform (Fig. 1c to e). This strategy
offers significant advantages for the sampling of resistomes in a variety of environ-
ments where resistance genes are generally rare and genetically diverse. Indeed,
recently, the use of this approach for resistance gene capture has been explored by
other groups (27–29). However, these accounts target many other genes that are not
rigorously associated with resistance, increasing the sequencing cost and the oppor-
tunity for false-positive gene identification.

Here, we chronicle our targeted method for the analysis of antibiotic resistomes. We
based our probe set design on stringently curated AMR gene (ARG) sequences from
CARD (v1.0.1, 2015), tiled across ARG sequences, combined with rigorous analysis to
suppress off-target hybridization. This design enables a more cost-effective and sensi-
tive method to sample the known resistance gene landscape (11). We tested the
efficacy of this probe set and our strategy using both a panel of pathogenic bacteria
with known resistance genotypes and uncharacterized human metagenomic stool
samples. Our method demonstrates the superior design and methodology of the
approach, which is readily applicable to both clinical and nonclinical settings.

RESULTS
Design and characterization of resistance gene probes. A set of 80-mer nucle-

otide probes was custom designed and synthesized through the use of the myBaits

FIG 1 Platform for capture and identification of diverse antibiotic resistance genes. The targeted capture
sequencing work flow begins with DNA isolation from a sample of interest (stool from a healthy donor,
in this example). (a) DNA is fragmented through sonication and prepared as a sequencing library. (b, c)
Target sequences representing less than 1% of the total DNA are captured through hybridization with
biotinylated probes and streptavidin-coated magnetic beads. (d, e) The captured and amplified library
fragments are sequenced, and reads are analyzed for AMR gene sequence content by mapping to the
sequences in CARD.
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platform (Arbor Biosciences, Ann Arbor, MI). The probes (n � 37,826) span the protein
homolog model of curated ARGs from CARD and represent nucleotide sequences (n �

2,021) that are well characterized in the literature. Probes targeting genes for resistance
conferred through single point mutations (single nucleotide polymorphisms [SNPs],
e.g., sequences contained in the protein variant model in CARD) in chromosomal
metabolic genes (including DNA gyrase [gyrA] mutations associated with fluoroquin-
olone resistance and RNA polymerase subunit [rpoB] mutations associated with rifam-
pin resistance) were purposefully not included in our design. Of the genes targeted by
our probes, 78.03% mirrored the breakdown in CARD, dominated by genes encoding
antibiotic inactivation mechanisms and by genes encoding the beta-lactamases (Fig. 2).
The majority of the probes (n � 24,767) target a single gene, and the remainder target
multiple genes ranging up to a maximum of 211 genes (average, 5.96 genes) due to
sequence conservation within gene families (see Fig. S1A in the supplemental material).
For example, a single probe initially designed to target 80 nucleotides of the beta-
lactamase gene blaSHV-52 also targets an additional 208 genes, including other mem-
bers of the SHV, LEN, and OKP-A/-B beta-lactamases, due to homology between these
nucleotide sequences within AMR gene families. The combination of overlap in the
utility of some 80-mer probes and partial hybridization can allow probes to target
sequences that are divergent from their reference sequences and thus identify new
alleles at the SNP level up to 15% divergence.

At the individual determinant level, the number of probes per gene (average, 105
probes per gene; range, 1 to 309 probes per gene) and the length coverage of a gene
(average, 96.20%; range, 3.17% to 100%) vary (Fig. S1B and C). The majority of the
targeted genes (2,004/2,021; 99.16%) are covered by at least 10 or more probes (Fig.
S1B). Members of the beta-lactamase families (blaCTX-M, blaTEM, blaOXA, blaGES, blaSHV)
are among the genes with the highest probe coverage. The majority of genes (1,970/
2,021) have greater than 80% length coverage by probes, 26 genes have less than 50%
length coverage by probes , and only 1 (mexW, Antibiotic Resistance Ontology [ARO] ID:
30003031) has less than 5% length coverage by probes (Fig. S1C). Only 28 sequences
from CARD have no probe coverage, due to filtering of candidate probes during the
design. Overall, this probe set targets �1.77 megabases of antibiotic resistance-
associated nucleotide sequences and greater than 83% of the nucleotide sequences
curated in CARD. Additional metrics of the probe set are given in Fig. S1D to H.

ARG enrichment from bacterial genomes with a range of antibiotic resistance
determinants. To characterize the sensitivity and the selectivity of this probe set, we
conducted a series of control experiments using a panel of sequenced multidrug-
resistant Gram-positive and Gram-negative bacteria. The proportion of the genomes
targeted by our probe set ranged from 0.21 to 0.97%, consisting of 13 to 65 ARGs
representing 102 unique genes among the isolates tested (Table S1). Genomic DNA
from four different species was tested individually via enrichment on two different
library preparations (the NEBNext Ultra II library preparation versus the modified Meyer

Total = 2021

Class A beta-lactamase (660)

Class D beta-lactamase (294)

Class C beta-lactamase (246)

Efflux systems (179)

Class B beta-lactamase (158)

AMEs (134)

qnr (95)

Glycopeptide resistance (67)

23S rRNA methyltransferase (37)

Trimethoprim resistance (29)

Other (122)

FIG 2 Design of a probe set to target over 2,000 antibiotic resistance genes. Breakdown of resistance gene classes
from CARD that are targeted by probes. A legend for the top 10 classes is shown. AME, aminoglycoside-modifying
enzymes; qnr, quinolone resistance genes. The remaining 122 genes belong to various classes. The beta-lactamase
genes make up the majority of genes targeted by probes and are highlighted with a black border.
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and Kircher library preparation) of various insert sizes (average library fragment size
range, 396 to 1,257), referred to here as trial 1 and trial 2 (Table S2). Our enrichment
approach is insensitive and tractable to different insert sizes, as there was a strong
correlation between the read count on targeted regions for bacterial genomes enriched
individually between the two trials (Pearson correlation, 0.811 to 0.975) (Table S3;
Fig. S2).

This probe set is selective for regions associated with antibiotic resistance in these
isolates, given that over 90% of the reads mapped to the respective draft bacterial
genomes and the majority (greater than 85% in all cases) of the reads mapped to the
small proportion (�1%) of the genome associated with resistance (Fig. 3A; Table S3).
We successfully captured 100% of the targeted genes in both library preparation
methods with at least 10 reads and with 100% length coverage for the four species of
bacteria tested (Table S3). This represents a sensitivity ranging from 0.21% to 0.97% of
the total DNA in these samples, with successful enrichment of regions as small as 97 bp
(mexW in Pseudomonas aeruginosa C0060 with a probe coverage of 2 had greater than
10 reads in both trials) and 80 bp (crp in Klebsiella pneumoniae C0050 had greater than
100 reads in both trials). Other genes that had low probe length coverage included
mdtA (22.4% coverage by 11 probes) in Escherichia coli C0002, which still retained over
100 reads in both trials, and a 140-bp region of aad(6) (16.8% coverage by 4 probes) in
Staphylococcus aureus C0018 that was recovered with over 1,000 reads in both trials.

Successful enrichment of ARGs in mock metagenomes. Genomic DNA from
multiple bacteria was pooled at various ratios of 4 or 8 isolates, with the sequences of
some bacteria representing less than 10% of the total mock metagenome (Table S4). In
28/32 enrichments, 80% or more of the sequencing reads mapped to probe-targeted
regions within the individual bacterial genome regardless of the pooling ratios (Fig. 3A;
Table S5). The one exception was trial 1, pool 2 (enriched), where on-target mapping
was not as effective (�70%); nevertheless, even the results of this trial remained over
50-fold better than those of the trial with the shotgun-sequenced samples (shotgun
samples) (Table S5). In all shotgun samples, the percentage of reads on target never
exceeded 5%, and in 31/32 cases, it was less than 2% of the total sequencing data (Fig.
3A; Table S5).

At the isolate level, the percentage of the mock metagenome that was represented
by probe-targeted regions in an individual isolate ranged from 0.0015 to 0.63% of the
total DNA (Table S4; Fig. S3). In 21/32 enriched cases, over 90% of the probe-targeted
regions were captured by 10 reads or more (Fig. 3B; Table S5). In contrast, none of the
shotgun-sequenced samples recovered more than 80% of the probe-targeted regions
with at least 10 reads. The cases in which enrichment underperformed were associated
with two species in particular: K. pneumoniae and P. aeruginosa (Fig. 3B; Table S5). We
defined the sensitivity of detection of AMR for a given isolate to be the percentage of
total DNA represented by probe-targeted regions of a given genome at which greater
than 90% of the probe-targeted regions were recovered with at least 10 reads. These
values ranged from 0.033% for S. aureus C0018 to 0.11% for P. aeruginosa C0060 (Fig.
S3). With these bacterial species tested, our probe set could successfully capture the
resistome of these isolates, which represents less than 0.1% of the total DNA and even
less at the individual gene level.

Target gene recovery from mock metagenomes by enrichment exceeds that by
shotgun sequencing. We recovered significantly more targeted genes with at least 1,
10, or 100 reads mapping (mapping quality � 41 MAPQ, length � 40 bp) by enrichment
than by shotgun sequencing (Fig. 3B; Table S5). Furthermore, the average percent
coverage of the probe-targeted regions with at least 1, 10, or 100 reads in all isolates
enriched individually or in pools was always higher than that for the shotgun samples
and ranged from being 1.05- to 18.3-fold higher (Fig. 3C; Table S5). For all genomes in
all pooled libraries across both trials, the average normalized read count and the depth
of the reads on probe-targeted ARGs from enriched libraries were over 50 times (57.09
to 25,683.42) higher than those from the shotgun sequencing control (Table S5). In
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31/32 cases, the fold increase in read counts exceeded 2 orders of magnitude and was
over 4 orders of magnitude for some probe-targeted regions (Table S5). The one case
that did not conform (from trial 1, pool 2; see above) reflects a minor and nonrepro-
ducible variability in the quality of the capture for unknown reasons. Nonetheless, there

FIG 3 Comparison of enriched and shotgun sequencing results for on-target mapping, recovery, and length coverage. Each point on the
graph represents the results of a replicate experiment for either a genome that was enriched individually or a genome pooled with other
genomes across both trials. The horizontal line for each isolate represents the mean. (A) Percentage of reads on target for each bacterium
tested in various sample types for both enriched and shotgun samples. (B) Percent recovery of regions predicted to be targeted by probes
for each bacterial genome tested in both enriched and shotgun samples (1 versus 10 versus 100 reads per probe-targeted region). (C)
Average percent length of coverage of probe-targeted regions with reads from isolates tested individually and in pools in both enriched and
shotgun samples (1 versus 10 versus 100 reads). If samples did not have any probe-targeted regions with a given read coverage, the results
were excluded from panel C. This represents eight samples in the panel labeled “At least 10 reads” (all from the shotgun data [strain C0002,
n � 1; strain C0050, n � 2; strain C0060, n � 3; strain C0006, n � 1; strain C0292, n � 1]), all samples for the shotgun data in the panel labeled
“At least 100 reads,” and five samples for the enriched data (strain C0060, n � 4; strain C0292, n � 1).
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was a clear distinction between the shotgun and enriched samples, with the enriched
data showing a more consistent agreement between normalized read counts per
probe-targeted region than the shotgun data (Fig. 4). A similar trend was observed
when the raw read counts for each sample were used (Fig. S4).

ARG analysis of a human gut metagenome. In order to test the efficacy and the
reproducibility of our enrichment in more complex samples, we performed enrich-
ments on replicates from metagenomic libraries with DNA isolated from a healthy
individual’s stool sample. We compared the results of the experiments with those of
traditional shotgun sequencing, whereby selected libraries were sequenced to a depth
of over 3.5 million paired reads (Table S2). We included a series of positive-control
enrichments with genomic DNA from E. coli C0002, which was previously used for
enrichment with the mock metagenomes. In all cases, we identified the same genes,
with a consistent number of reads mapping among these replicate enrichments (when
subsampled to equal depths among sets), proving reproducibility regardless of the
probe and library ratio (Table S6; Fig. S5). Within each set, we found an excellent

FIG 4 Enrichment results in higher read counts for antibiotic resistance genes than shotgun sequencing. Normalized read counts at
each probe-targeted region within the Escherichia coli C0002 genome (A) and Staphylococcus aureus C0018 genome (B) in enriched
and shotgun samples, including individual and mock metagenomes of multiple isolates, are shown. Among the enriched and shotgun
pairs, reads were subsampled to equal depths and mapped to the individual isolate’s genome. Read counts were normalized by the
number of reads mapping per target length (in total number of reads per kilobase per million [RPKM]). The predicted number of
probes for each region along the genome is shown at the bottom of each panel. The y axes are in the logarithmic scale.
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correlation with the previous results seen with E. coli C0002 (Pearson correlations,
�0.923 for all pairs in set 1, �0.924 for all pairs in set 2, and �0.901 for all pairs in set
3) (Fig. S5).

Across the enriched gut microbiome samples with the full number of reads and no
filters, on average, 50.69% of reads mapped to sequences from CARD and 68 genes
with at least 10 reads were identified, whereas 0.03% of reads mapped, on average, and
32 genes with at least 10 reads were identified in the shotgun libraries (Fig. S6A and B;
Table S7). We found significantly more genes with at least 1, 10, and 100 reads from
each enriched sample than from the shotgun samples, and the average percent
coverage of a gene by the number of reads in the enriched samples was 1.5-fold higher
(Fig. S6B and C). When subsampled to the same depth as their enriched pairs (between
22,324 and 149,320 reads), we identified, on average, 1 (range, 0 to 2) antibiotic
resistance determinant with at least 10 reads after filtering in the shotgun samples,
making comparisons at this level unrealistic (Table S8). Conversely, when subsampled
to the depth of the sample with the lowest enriched read coverage (22,324 reads), we
identified, on average, 28 ARGs with at least 10 reads in the enriched libraries postfil-
tering (Table S8).

High fold enrichment of ARGs from human stool. We combined the read counts

for genes with at least 10 reads that passed the chosen filters within each set to
compare the probe and library ratios in subsampled and full-read samples through
both enrichment and shotgun sequencing. With the full number of reads, 24/70
(34.28%) of genes detected overlapped across all enriched libraries (n � 27), while we
identified 16 genes of a total 32 (50.00%) that overlapped across all the shotgun
libraries (n � 6) (Tables S7 and S9). When subsampled to the lowest enriched read
coverage (22,324 reads), there were no genes that overlapped across all 6 shotgun
libraries, while 13/47 (27.66%) of the genes overlapped across all 27 enriched libraries
(Table S10). Comparing the subsampled enriched libraries (22,324 reads), the majority
(31/34) of the genes missing in at least one sample were those with, on average, less
than 20 reads across the 27 libraries (Table S10; Fig. S7). The order of genes with higher
read counts (i.e., a higher abundance and a higher gene copy number) was consistent
among the enriched and shotgun samples, and there was a more significant discrep-
ancy between the two sets of samples for reads associated with lower-abundance
genes (Fig. S7 and S8). Thus, enrichment, in the same way as shotgun sequencing, does
not in some way bias the prevalence of the rank order of AMR genes in these samples.
Finally, both methods resulted in an excellent correlation among technical replicates
individually (Pearson correlations, 0.871 for shotgun samples and 0.972 for enriched
samples; Fig. S7 and S8).

We found that the performance of enrichment exceeded that of shotgun sequenc-
ing by identifying more unique antibiotic resistance genes at much lower sequencing
depths. The enriched samples provided a more diverse representation of ARGs at less
than 100,000 paired reads, compared to over 5 million reads in the shotgun samples
(Fig. S8 and S9). With the full number of reads in both methods (between 66- and
389-fold more in the shotgun samples than in the enriched samples), the average fold
enrichment was �600-fold, and there were still 18 to 50 fewer genes in the shotgun
samples than in the enriched samples (Fig. 5A; Table 1). In most cases, there were only
a few genes found via shotgun sequencing that were missing in the paired enriched
sample (between 9 and 15; 22 unique genes). Only between 1 and 5 of these genes (7
total unique genes) in each sample were predicted to be targeted by probes (Table 1).
Of these, only one, novA, was missing from all enriched samples but was present in all
shotgun samples with �10 reads, a mapping quality of �11, and percent length
coverage by reads of �10%. The other 6 genes (macB, vanRG, vanSG, smeE, cfxA6, cepA)
were found in only a few shotgun samples with less than 30 reads and less than 20%
read length coverage, on average (Table 1; Table S13). When the two sample types
were combined for hierarchical clustering analysis, the enriched libraries clustered
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4
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FIG 5 Comparison of resistance elements between enriched and shotgun libraries. For the enriched and
shotgun samples, the full number of reads for each sample was mapped to the sequences in CARD using
the rgi bwt tool, and the results were filtered for genes with probes mapping with reads with an average
mapping quality of �11 and a percent length coverage of a gene by reads greater than or equal to 10%.
(A) (i) Read counts were normalized per kilobase of reference gene per million reads sequenced (RPKM)
and log transformed to produce the heatmap. The rows are grouped based on resistance mechanisms,
as annotated in CARD (not all mechanisms and classes are labeled). ABC, ATP-binding cassette antibiotic
efflux pump; MFS, major facilitator superfamily antibiotic efflux pump; RND, resistance-nodulation-cell
division antibiotic efflux pump; MLS, macrolides, lincosamides, and streptogramins. (ii) The number of
reads used for mapping in each sample. (B) (Left) Overlap of genes found with at least 10 reads, a percent
coverage greater than or equal to 10%, and an average mapping quality of reads greater than or equal
to 11 in the 27 enriched and 6 shotgun samples. Between all samples, enriched or shotgun sequenced,
there were 89 genes with reads passing these filters; 13 overlapped, 57 were unique to the enriched
samples, and 19 were unique to the shotgun samples. (Right) Of the 19 genes identified only through
shotgun sequencing, only 4 of these genes are predicted to be targeted by probes.
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separately from the shotgun libraries with a stronger correlation (0.9957 compared to
0.8712 for the shotgun libraries; Fig. S8).

We then compared the overlap between all 27 enriched samples and the 6 shotgun-
sequenced samples and included genes found through shotgun sequencing without
any probes mapping. We found a total of 89 genes with at least 10 reads between all
libraries, of which 13 overlapped between methods, 57 were unique to the enriched
libraries, and 19 were unique to the shotgun libraries (Fig. 5B; Table S13). Of the 19
genes not found in any enriched library, only 4 were predicted to be targeted by
probes, while the remaining were not in CARD when the probes were initially designed
(n � 8 gene sequences) or had probes that were removed during design and filtering
(n � 7 gene sequences). Of the four genes with predicted probes, cfxA6 was present in
all enriched samples but was filtered out by mapping quality, vanSG was present in only
2/6 shotgun samples at less than 20% gene length coverage by reads, and cepA was
found in enriched samples but at less than 10 reads; finally, we identified novA in all
shotgun samples but in only a few enriched samples at less than 10 reads and less than
10% read length coverage. Despite the few (n � 4) genes that were missing from the
enriched samples, even a 200-fold greater sequencing depth of our shotgun libraries
could not provide results that match those shown by our enrichment data (Fig. S9).

Negative-control results. To track and measure the contamination in the labora-
tory environment at McMaster University within the Michael G. DeGroote Institute for
Infectious Disease Research, commercial kits, environment, and reagents, we included
negative controls consisting of a blank DNA extraction and negative reagent controls
in enrichments that we processed in a manner identical to that used for our samples
in phases 1 and 2. For phase 1 in both trial 1 and trial 2, we found a negligible amount
of library DNA in the blank after enrichment, and very few of the sequenced reads were
associated with the indexes used for the blank library (between 2.46% and 8.96% of
sequenced reads; Tables S2 and S11). Only the blank samples from phase 1, trial 1, and
phase 2, set 2, resulted in genes with at least 10 reads mapping (10 and 19, respectively;
Table S12).

DISCUSSION

Increased interest in targeted capture approaches has resulted in the design of
probe sets for the detection of viruses, bacteria, and, more recently, antibiotic resis-
tance elements (26–29). Although our study is not the first to employ targeted capture
for antibiotic resistance genes, we have focused on a rigorous probe design that
includes choosing an appropriate reference database, robust probe set validation, and
experimental considerations for enrichment, including reduced input library and probe
concentrations (25, 30–33). Our probe design and the application of in-solution tar-
geted capture ultimately result in a cost-effective alternative to shotgun sequencing for
identifying antibiotic resistance genes in complex environmental and clinical metag-
enomes.

TABLE 1 Comparing genes with reads for shotgun and enriched stool library pairsa

Set

Amt (ng)
Fold difference in
no. of reads
(enriched vs shotgun)

No. of genes:

Fold enrichment
(minimum–maximum)Probes Library

Found in
shotgun samples

Found in
enriched samples Overlapping

With probes missing
in enriched samples

1 200 100 389.70 18 49 9 1 1,054.92 (0–10,905.8)
100 200 82.24 20 25 7 5 1,171.32 (0–6,459.8)

2 400 200 154.93 27 55 12 4 879.87 (0–9,612.1)
100 100 80.73 23 61 11 1 868.16 (0–8,193.3)

3 100 100 66.67 19 57 9 2 732.16 (0–6,962.7)
25 50 88.26 22 58 9 2 690.19 (0–7,319.6)

aWe mapped the full number of reads from shotgun and enriched pairs to the sequences in CARD using the rgi bwt tool. The results for the samples were filtered for
genes with at least 10 reads, those to which probes mapped (only for the enriched samples), an average read mapping quality of �11, and an average read length
coverage of �10%. Filtered genes and their normalized read counts (RPKM) from each enriched sample/shotgun sample pair were combined to compare and
determine the fold enrichment.
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Reference database for probe design and analysis. CARD was chosen as the
reference database for our probe design (v1.0.1) and analysis (v3.0.0) due to its rigorous
curation of antibiotic resistance determinants. We excluded some genes (e.g., gyrA,
EF-Tu genes, etc.) that are likely to be found as homologs across many families of
bacteria and that would likely have overwhelmed the probe set and sequencing effort
with abundant, nonmutant antibiotic-susceptible alleles. Instead, we chose CARD’s
protein homolog model (v1.0.1, n � 2,010 genes) to focus our approach on genes that
are likely to be acquired (i.e., genes associated with mobile genetic elements) and those
that are unique to individual families of bacteria. Therefore, although we were unable
to detect resistance conferred by SNPs in chromosomal metabolic genes, our probe set
was capable of capturing the vast majority of resistance elements and those that were
at a higher risk of being mobile. In future probe designs, the protein variant model of
CARD (v1.0.1, n � 77 genes; v3.0.0, n � 141 genes) can be targeted using probes
specific to the regions of a gene associated with a given set of SNPs, but they will need
to be carefully tested in silico to ensure that they do not enrich unintended targets.
Given that in certain populations (e.g., metagenomes) these variant sequences may be
less abundant than their susceptible counterparts, careful and rigorous analysis will
need to be implemented to identify the relevant variants (i.e., RGI developments).

To address our probe set’s compatibility with a frequently updated database, we
chose a more recent version of CARD (v3.0.0, n � 2,238 genes) for comparative analysis
with our bait set designed in 2015. Since the design of our probes against v1.0.1 of
CARD, the database has been updated and includes 264 additional genes. Despite
these changes, our probe set targeted the majority (2,021/2,238) of known antibiotic
resistance gene sequences from CARD (v3.0.0). In reality, the probes should target
sequences with up to 15% nucleotide sequence divergence from a reference sequence,
suggesting a wider applicability and target capacity toward newly characterized mem-
bers of AMR gene families, which often differ from other members by only a few
nucleotides. Of the 264 genes added to CARD (v3.0.0), our existing probes capture 75
of these genes that are sufficiently similar to other targeted members of the same AMR
gene family (e.g., genes for aminoglycoside acetyltransferases, chloramphenicol acetyl-
transferases, and beta-lactamases [blaACT, blaCARB, blaCMY, blaLEN, blaNDM, blaOXA, blaPDC.

blaSHV, blaTEM, blaVEB]). Of the remaining genes, the sequences of 60 have been newly
identified since 2015, and the other genes, although mentioned in the literature prior
to 2015, were added due to increased efforts of curation of CARD.

Other approaches targeting ARGs have included probes for species identifiers,
plasmid markers, and biocide or metal resistance (27–29). These probe sets range in
target capacity from 5,557 genes (3.34 Mb) (28) to over 78,600 genes (88.13 Mb) (27)
and comprise up to 4 million probes (29). Other strategies involve designing one probe
per gene, tiling probes across a gene without overlap (1� coverage), or interprobe
distances of up to 121 nucleotides (28, 29). Our approach is more conservative in
probe design (1.77 Mb for 2,021 genes), but the dense tiling allows for more probes per
gene (99.16% of genes had greater than 10 probes) and an increased depth of probe
coverage (average, 9.47 times). We believe that the design approach increases the
specificity, sensitivity, and likelihood of capturing rare DNA molecules common in
complex metagenomes (34). We also performed extensive filtering of candidate probes
against the human genome and other eukaryote, archaeal, and weakly matching
bacterial sequences to provide a probe set that is bacterial ARG specific and avoids
off-target hybridization. Focusing on one highly curated database of antibiotic resis-
tance determinants (CARD) increases the likelihood of capturing bona fide sequences
that are associated with known resistance and reduces the overall cost of the probe set
and sequencing effort. When updates to CARD are released or if additional markers are
of interest, probes can easily be designed and added to the existing probe set.

Experimental considerations in targeted capture methods. For our trials, we
tested amounts of inputs (25 ng to 400 ng) significantly smaller than the amount
recommended by the manufacturer (up to 2 �g of DNA for metagenomic samples),
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setting our method apart from other methods for the targeted capture of AMR genes
(27, 28). Others have looked at reducing the amount of input DNA from the manufac-
turer’s recommended amount of 3,000 ng to 500 ng and saw no significant differences
in results (35). Despite a 16-fold reduction in the DNA input amount (25 ng versus the
recommended 2,000 ng), we saw no visible differences in the order of genes captured
in the stool sample, and the normalized read counts were comparable among the
different library and probe amounts, suggesting that our approach is robust to tre-
mendous fluctuations yet still identifies all antibiotic resistance genes in samples with
a low DNA yield (e.g., clinical and environmental samples). Furthermore, a lower input
concentration of probes also reduces the cost per reaction.

Reproducibility, sensitivity, and performance with clinical isolates. The sensi-
tivity of our probe set was tested using individual bacterial genomes and mock
metagenomes, wherein the percentage of total DNA represented by probe-targeted
antibiotic resistance genes ranged from 0.0015% to 0.97%. A successful enrichment in
our trials was considered when greater than or equal to 90% of the probe-targeted
regions with 10 or more reads were captured. When tested individually, enrichment
was able to successfully capture all probe-targeted ARGs (100% with more than 10
reads) in the four bacterial species tested, with �85% of sequenced reads mapping to
the targeted regions (�1%) of the genome. With the mock metagenomes, the probe-
targeted regions of each isolate represented a smaller proportion, and there were 11
cases in which enrichment was not successful under the above-described criterion. In
7 instances, the given isolate represented less than 10% of the total pool, and many of
the probe-targeted regions that were missing were short (�200 bp), and less than 5
probes for these regions were designed (see Table S4 in the supplemental material).
One particular predicted resistance gene that was not captured in 2 cases, fosA2
(ARO:3002804) in K. pneumoniae C0050, retained good probe coverage, despite a low
percent identity (71.32%) to the CARD reference sequence. The poor performance in
enrichment may suggest the limit of sequence similarity (�30%) that can be captured
by probes designed against a single reference sequence. In addition, the high GC
content of certain genes in the K. pneumoniae isolates and of many regions of the P.
aeruginosa isolates (average GC content, 67%) likely reduced the capture efficiency in
the more complex pooled samples, resulting in less than 10 reads for targeted genes.
The conditions of hybridization may need to be further optimized for targets with
higher GC contents. Regardless of this limitation, the enriched data provide significantly
more read coverage for antibiotic resistance genes at a lower depth of sequencing than
shotgun sequencing of these mock metagenomes.

Standardization and controls in metagenomics. Standardization (including re-
producibility) in enrichment studies remains sorely lacking. In this study, we attempted
to reduce bias and assess enrichment by using the same DNA extract, library prepara-
tions, and enrichment in triplicate. Even among replicate libraries and shotgun se-
quencing runs, the differences in the number of genes identified at various sequencing
depths highlight the inherent variability in metagenomics (Fig. S8). The positive control
(E. coli C0002), processed alongside the other samples, ensured that our methodology
and probes were performing optimally at the time of hybridization. We also introduced
negative controls to measure the extent of exogenous DNA contamination, which is
ubiquitous in all laboratory settings and reagents (36, 37). Between 86.07 and 100% of
the sequenced reads from our negative controls had corresponding index sequences
from experimental samples, suggesting that DNA exchange among samples during
enrichment or cross-contamination is the primary concern with our method (Tables S2
and S11). Notably, the genes identified in the results for the blanks not arising from
cross-contamination and also found in the enriched and shotgun results are commonly
associated with bacteria identified in negative controls in microbiome studies (mainly
Escherichia coli) and encode efflux systems or other intrinsic resistance determinants
(mdtEFHOP, emrKY, cpxA, acrDEFS, pmrF, eptA, tolC). The two genes that were unique to
the results for the blanks [drfA17 had 11 reads with 85.86% coverage; aph(3�)-Ib had 16

Targeted Sequencing of Antibiotic Resistance Genes Antimicrobial Agents and Chemotherapy

January 2020 Volume 64 Issue 1 e01324-19 aac.asm.org 11

https://aac.asm.org


reads with 57.46% coverage] are associated with mobile genetic elements in Entero-
bacteriaceae, and the latter has previously been associated with laboratory reagent
contamination (38, 39). Despite the use of standard methods to control for contami-
nation (i.e., filter pipette tips, PCR cabinets, and sterile DNA- and RNA-free consum-
ables), we still found limited contamination, likely stemming from reagents and/or the
surrounding laboratory environment, further highlighting the importance of negative
controls in all targeted capture experiments and meticulous reporting and publishing
of a laboratory-based resistome (Table S6) (36, 37, 40).

Enrichment in the gut microbiome. Our enrichment of resistance genes in the
human gut microbiome samples resulted in a higher average percentage on target
(50.69%) compared to that obtained by other published capture-based methods,
30.26% (range, 20.27% to 41.83%) (27) and a median of 15.8% (range, 0.28% to 68.2%)
(28), highlighting the increased specificity of our probe design. Overall, our probe set
and method identified a greater diversity of antibiotic resistance genes in the human
gut microbiome, despite having been sequenced at a 66- to 389-fold lower depth than
the shotgun-sequenced correlate. With a reduced depth of sequencing, it is evident
that enrichment offers more valuable information in terms of both the number of genes
with reads as well as the depth and breadth of coverage of those genes (Fig. 5).

Although shotgun sequencing can provide additional information on other func-
tions and genes of interest, our targeted capture provides a more robust and a more
reproducible profile of antibiotic resistance genes from metagenomes at a fraction of
the sequencing cost. Only a few genes were absent in the enriched libraries but present
in the shotgun libraries. In the case of novA, which has a 70.51% GC content, there was
a gap in the tiling of probes across the gene, and the hybridization conditions were
perhaps not sufficient to capture this gene by our method. Additional probes or denser
tiling along high-GC-content (�65%) sequences may facilitate successful capture.
Another gene that we could not identify, the variant of the vanS (GC content, 36.7%)
sensor from vancomycin resistance gene clusters, was covered by less than 20 reads in
the shotgun samples, suggesting a very low abundance in the metagenome. Finally,
the beta-lactamase genes cepA and cfxA6 had been excluded from the enriched results
after filtering due to low mapping quality or less than 10 reads. The low mapping
quality suggests that reads are mapping to other beta-lactamase genes in the reference
database.

All current methods to detect antibiotic resistance genes have limitations. Culturing,
although time-consuming, remains the standard for diagnosing infections through the
identification of both the pathogen and its susceptibility to a panel of antibiotics. Other
biochemical techniques have been developed but are often organism specific and
require additional assays for confirming ARGs (41). When studying the microbiome and
the resistome of various environments, a culture-based approach is not feasible and,
thus, high-throughput methods are needed (19). Sequencing-based approaches (i.e.,
PCR-based assays, microarray-based assays, and in-solution targeted capture) and
quantitative PCR (qPCR) methods offer selective and sensitive means to identify a larger
contingent of antibiotic resistance genes than other methods but can be (or are
designed to be) heavily biased or selective. While PCR is highly sensitive, many panels
for AMR genes target only a range of between 200 and 400 genes (42). As we have
shown here, probe-based hybridization methods enable the detection of over 2,000
ARGs in a single assay.

Compared to the other probe sets designed for AMR (27–29), ours offers a highly
curated specific set of probes with a high coverage of ARGs and works exceptionally
well on samples with low inputs. We have also included crucial controls to validate our
findings. Whereas shotgun sequencing requires millions of reads to detect a few
antibiotic resistance genes, we have shown that targeted capture can detect the same
genes and more with �50-fold less sequencing effort. A reduced amount of sequenc-
ing allows more samples to be processed per individual sequencing run, reducing
sequencing costs overall and increasing throughput. One limitation to targeted ap-
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proaches is that the probe design relies on known reference sequences, while shotgun
sequencing can reveal additional information not captured by the probes, but at an
added cost (depth). All sequencing-based methods are limited in the inability to
characterize completely novel antibiotic resistance determinants, whereas a functional
metagenomics approach is ideal in this regard (19).

In conclusion, we have rigorously measured the performance of our probe design
and methods to satisfy many of the parameters in targeted capture routinely discussed
(43). The sensitivity and specificity of our probe set are evident from the consistently
high percentage of reads on target and the high recovery of probe-targeted sequences
representing �0.1% of the total DNA. Our approach results in the uniform recovery of
ARGs across bacterial genomes and is reproducible between library preparations. We
believe that our targeted capture serves a critical role in the surveillance and detection
of ARGs across complex environmental settings, hospitals, and clinics. Profiling of these
resistomes will provide invaluable information that can be used to target antibiotic and
resistance inhibitor discovery but that at the same time can be used to keep abreast of
the rapidly shifting rise of local and global antibiotic resistance.

MATERIALS AND METHODS
Nucleotide probe design and filtering to prevent off-target hybridization. Our reference for

probe design was the protein homolog model of antibiotic resistance determinants (n � 2,129) from
CARD (v1.0.1, released 14 December 2015) (11). Using PanArray (v1.0) software, we designed probes with
a length of 80 nucleotides across all genes with a sliding window of 20 nucleotides and acceptance of
1 mismatch across probes (32). To prevent off-target hybridization between the probes and nonbacterial
sequences, the candidate set of probe sequences (n � 38,980) was compared against the human
reference genome and GenBank’s nonredundant nucleotide database through BLAST (blastn) analysis
(44, 45). Probes with high sequence similarity (�80%) and probes with high-scoring segment pairs (HSPs)
of greater than 50 nucleotides of a possible 80 were discarded (human genome sequences, n � 158;
eukaryotic sequences, n � 1,617; viral sequences, n � 774; archaeal sequences, n � 30). Probes with HSPs
of less than 50/80 nucleotides to bacterial sequences were additionally discarded, resulting in a set of
32,066 probes. The candidate list was further filtered to omit probes that had bacterial HSPs that had
�95% identity, resulting in a candidate list of 21,911 probes.

Optimizing probe density and redundancy. Probe sequences, along with 1 to 100 nucleotides
upstream and downstream of the probe location on the target gene, were sent to Arbor Biosciences (Ann
Arbor, MI) for probe design. These sequences are contained within the open reading frame of the target
gene and allow probe sequences to be modified, if needed (i.e., polynucleotides at the termini), ensuring
that the desired probe coverage of the target genes is attained. An additional 80 nucleotide probes were
created across the candidate probe and flanking sequences at a tiling density of four times, resulting in
226,440 probes. Sequences with 99% identity over 87.5% of their length were collapsed using the
USEARCH program (settings, usearch -cluster_fast -query_cov 0.875 -target_cov 0.875 -id 0.99 -centroids),
resulting in a set of 37,826 final probes (46). Filtering against the human genome was performed by a
method similar to that described above; no probes were found to be similar. Arbor Biosciences (Ann
Arbor, MI) synthesized this final set of 37,826 80-nucleotide biotinylated single-stranded RNA probes by
use of the custom myBaits kit (catalog number 300248; Arbor Biosciences, Ann Arbor, MI).

Probe assessment and predicted target genes. To predict the genes that can be targeted by the
probes, a Bowtie2 program (the settings used included bowtie2 --end-to-end -N 1 ‘-L 32’ -a) (47)
alignment was performed to compare the set of 37,826 probe sequences to the 2,238 nucleotide
reference sequences of the protein homolog models in CARD (v3.0.0, released 11 October 2018). The
alignment file was manipulated through the use of samtools and bedtools to determine the number of
instances that a probe mapped to a nucleotide sequence in CARD, the fraction of each gene sequence
covered by probes (length coverage by probes), and the depth of coverage by probes of each gene
(bedtools genomecov, bedtools coverage -mean) (48, 49). The GC content of the probe sequences and
the nucleotide sequences in CARD was calculated using a Python3 script from https://gist.github.com/
wdecoster/8204dba7e504725e5bb249ca77bb2788. The melting temperature (Tm) was determined using
the OligoArray function melt.pl (settings, -n RNA, -t 65 -C 1.89e�9) (50). We used Prism (v8) software for
macOS (GraphPad Software) to generate the plots shown in Fig. S1 in the supplemental material.

Bacterial isolates, samples, and DNA extraction. Clinical bacterial isolates were obtained from the
IIDR clinical isolate collection, which consists of isolates from the core clinical laboratory at the Hamilton
Health Sciences Centre (Table S1). Genomic DNA was isolated from a cell pellet using the PureLink
genomic DNA mini kit (catalog number K182002; Invitrogen, Carlsbad, CA). If DNA was not isolated on
the same day, we stored the cell pellets at �80°C. While genomic DNA from all other isolates was
extracted only once, DNA from a cell pellet of Pseudomonas aeruginosa C0060 was additionally extracted
using a varied genomic lysis/binding buffer (30 mM EDTA, 30 mM Tris-HCl, 800 mM guanidine thiocya-
nate, 5% Triton X-100, 5% Tween 20, pH 8.0). We obtained a human stool sample from a healthy
volunteer for the purpose of culturing the microbiome with consent from the Hamilton Integrated
Research Ethics Board (HiREB approval number 5513-T). DNA was extracted on the same day following
a modified protocol described elsewhere (51). Briefly, samples were bead beaten and centrifuged, and
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the supernatant was further processed using a MagMax Express 96-well deep well magnetic particle
processor from Applied Biosystems (Foster City, CA) with a multisample kit (catalog number 4413022; Life
Technologies). DNA was stored at �20°C until it was used for library preparation.

Isolate genome sequencing. Library preparation for genome sequencing of the clinical bacterial
genomes was completed by the McMaster Genomics Facility in the Farncombe Institute at McMaster
University (Hamilton, ON, Canada) using the Nextera XT DNA library preparation kit (catalog number
FC-131-1024; Illumina, San Diego, CA). Libraries were sequenced using an Illumina HiSeq 1500 or Illumina
MiSeq v3 platform and v2 (2 � 250-bp) chemistry. Paired sequencing reads were processed through a
Trimmomatic (v0.39) trimmer to remove adapters, checked for quality using the FASTQC program
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and de novo assembled using SPAdes
(v3.9.0) software (52, 53). The Livermore metagenomics analysis toolkit (LMAT; v1.2.6) was used to
identify the bacterial species and screen for contamination or a mixed culture, while the Resistance Gene
Identifier (RGI; v4.2.2) from CARD was used on the contigs obtained with SPAdes software to identify
perfect (100% match) and strict (�100% match but within CARD similarity cutoffs) hits to CARD’s curated
antibiotic resistance genes (54).

Trials for enrichment. We performed two phases of experiments. The first was with genomic DNA
from cultured multidrug-resistant bacteria (phase 1), and the second was with metagenomic DNA from
a human stool sample (phase 2). The two trials in phase 1 differed in their library preparation methods,
as described below (the major difference being the library fragment size obtained by sonication). In both
trials, we tested genomic DNA from isolates individually (Escherichia coli C0002, Pseudomonas aeruginosa
C0060, Klebsiella pneumoniae C0050, and Staphylococcus aureus C0018) (Tables S1 and S3). In addition,
various nanogram amounts (based on the absorbance; Thermo Fisher Nanodrop spectrophotometer
[Waltham, MA]) of each genome were combined prior to library preparation to create mock metag-
enomes, referred to as pool 1 (with the genomes of strains C0002, C0018, C0050, and C0060), pool 2 (with
the genomes of strains C0002, C0018, C0050, and C0060), and pool 3 (with the genomes of strains C0002,
C0018, C0050, C0060, Klebsiella pneumoniae C0006, Staphylococcus aureus C0033, Escherichia coli C0094,
and Pseudomonas aeruginosa C0292). The amounts of the genome of each isolate in each pool varied
between trials (Table S4). Phase 2 consisted of 3 replicates, referred to as set 1, set 2, and set 3, wherein
a DNA extract from one individual human stool sample was split evenly into each set. From these
aliquots, we generated 9 individually indexed sequencing libraries and performed capture with various
library and probe ratios (Table S3). In all trials and sets, a blank DNA extract was carried throughout
library preparation and enrichment, while an additional negative reagent control was introduced during
enrichment.

Library preparation for enrichment sequencing. Library preparations were performed in a PCR
clean hood, using bleached equipment, and the equipment was UV irradiated before use to prevent
nonendogenous DNA contamination. Trial 1 library preparations were performed through the McMaster
Genomics Facility using the NEBNext Ultra II DNA library preparation kits for Illumina (catalog number
E7645L; New England BioLabs, Ipswich, MA). Based on absorbance and fluorometer values (QuantiFluor;
Promega, Madison, WI), we sonicated approximately 1 �g of individual bacterial genomic DNA or pools
of genomic DNA to 600 bp and prepared dual-index libraries with a size selection for 500- to 600-bp
inserts. Postlibrary quality and quantity verification was performed using a high-sensitivity DNA kit for the
Agilent 2100 bioanalyzer (catalog number 5067-4626; Agilent Technologies, Santa Clara, CA) and
quantitative PCR using a Kapa SYBR Fast qPCR master mix for Bio-Rad machines (catalog number SFBRKB;
Sigma-Aldrich, St. Louis, MO), primers for the distal ends of Illumina adapters, and the following cycling
conditions: (i) 95°C for 3 min, (ii) 95°C for 10 s, (iii) 60°C for 30 s, (iv) a repeat of steps (ii) and (iii) for 30
cycles total, (v) 60°C for 5 min, and (vi) hold at 8°C. We used Illumina’s PhiX control library (catalog
number FC-110-3001; Illumina, San Diego, CA) as a standard for quantification.

In trial 2, the same genomic DNA, except for that of P. aeruginosa C0060, which was reisolated, was
used for library construction through a modified protocol (see the supplemental material) (55). Briefly, we
performed blunt-end repair, adapter ligation, library size selection, and indexing PCR on �200 ng of
sonicated DNA (250 to 300 bp). The McMaster Genomics Facility performed library quality control as
described above.

Library preparation from a human stool sample. We divided one DNA extract from a donor stool
sample into three 50-�l aliquots of approximately 3,150 ng each (based on QuantiFluor fluorometer
results). DNA was sonicated to 600 bp and split into 9 individual library reaction mixtures (350 ng in 5.55
�l). We prepared dual-index libraries (NEBNext Ultra II DNA library preparation kits for Illumina [catalog
number E7645L; New England BioLabs, Ipswich, MA]) with a size selection for 700- to 800-bp library
fragments and 6 (set 1), 7 (set 2), or 8 (set 3) cycles of amplification. The McMaster Genomics Facility
performed library quality control (with an Agilent 2100 bioanalyzer and by quantitative PCR, as described
above). We generated positive-control libraries using Escherichia coli C0002 genomic DNA (40 ng of
sonicated DNA) and a negative control with a blank DNA extract.

Targeted capture of bacterial isolates. We performed enrichments in a PCR clean hood, with a
water bath, thermal cyclers, and heat blocks being located nearby. The probe set was provided by Arbor
Biosciences (Ann Arbor, MI) and diluted with deionized water. For enrichment of bacterial genomes in
trial 1, we used 100 ng of probes and 100 ng of each library, following the instructions in the myBaits
manual (v3; Arbor Biosciences, Ann Arbor, MI), at a hybridization temperature of 65°C for 16 h (see the
methods in the supplemental material for more details). After hybridization and capture with Dynabeads
MyOne streptavidin C1 beads (catalog number 65001; Thermo Fisher, Waltham, MA), the resulting
enriched library was amplified through 30 cycles of PCR (cycling conditions are described in the
supplemental material) using Kapa HiFi HotStart polymerase with library-nonspecific primers (Kapa
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library amplification primer mix [10�]; catalog number KK2620; Roche Canada). A 2-�l aliquot of this
library was amplified in an additional PCR for 3 cycles (under the same conditions described above) and
then purified. We performed the capture in trial 2 in the same manner described above for trial 1 but
applied 17 cycles of amplification postcapture (see the PCR conditions in the supplemental material). The
McMaster Genomics Facility performed library quality control as described above. The libraries were
pooled in equimolar amounts and sequenced to an average of 94,117 clusters by use of an Illumina
MiSeq sequencer (v2; 2 � 250-bp reads). Preenrichment libraries for the mock metagenomes were
sequenced in a separate Illumina MiSeq (v2; 2 � 250-bp reads) run from the enriched libraries to an
average of 93,195 clusters each. From both trial 1 and trial 2, negative controls consisting of blank
extractions carried through library preparation and enrichment were sequenced on separate individual
Illumina MiSeq (2 � 250-bp) runs. After demultiplexing of the blank, all possible index combinations were
retrieved to identify potential cross-contamination of libraries as well as exogenous bacterial contami-
nation.

Targeted capture of the stool sample. Based on qPCR values and the average fragment sizes of
each library generated from the human stool DNA extract, we combined various nanogram amounts of
library (50, 100, 200 ng) and probes (25, 50, 100, 200, 400 ng) for enrichment (Table S3). Along with the
negative-control (blank) library, we introduced additional negative controls during enrichment, using
distilled H2O to replace the volume normally required for library input. We performed enrichment
following the instructions in the myBaits manual (v4; Arbor Biosciences, Ann Arbor, MI) at a hybridization
temperature of 65°C for 24 h. After hybridization and capture with Dynabeads (MyOne streptavidin C1
beads; catalog number 65001; Thermo Fisher, Waltham, MA), the resulting enriched library was amplified
through 14 cycles of PCR using Kapa HiFi HotStart ReadyMix polymerase with library-nonspecific primers
and the same conditions described above (see the enrichment methods in the supplemental material).
The resulting products were purified using Kapa Pure beads (catalog number KK8000; Roche Canada) at
a 1� volume ratio and eluted in 10 mM Tris, pH 8.0. Purified libraries were quantified through qPCR using
10� SYBR Select master mix (catalog number 4472942; Applied Biosystems, Foster City, CA) for Bio-Rad
Cfx machines, Illumina specific primers (a 10� primer mix from Kapa; catalog number KK4809; Roche
Canada), and Illumina’s PhiX control library (catalog number FC-110-3001; Illumina, San Diego, CA) as a
standard. Cycling conditions were as follows: (i) 50°C for 2 min, (ii) 95°C for 2 min, (iii) 95°C for 15 s, (iv)
60°C for 30 s, and (v) a repeat of steps (iii) and (iv) for 40 cycles total. We pooled the enriched libraries
in equimolar amounts based on qPCR values, and the McMaster Metagenomic Sequencing facility
performed library quality control as described above. Finally, we sequenced the enriched libraries
(average, 97,286 clusters) and the preenrichment libraries (average, 5,325,185 clusters) with an Illumina
MiSeq sequencer (v2; 2 � 250 bp). The negative controls consisting of blank extractions carried through
library preparation and enrichment were sequenced on separate individual Illumina MiSeq (2 � 250-bp)
runs. After demultiplexing, all possible index combinations were retrieved.

Analysis of bacterial isolate sequencing data. In order to identify probe-targeted regions and
coordinates that overlap predicted resistance genes based on RGI results for the individual bacterial genomes,
we aligned our probe set to the draft reference genome sequence using the Bowtie2 (v2.3.4.1) program (47).
We used the Skewer (v0.2.2) program (skewer -m pe -q 25 -Q 25) to trim sequencing reads (enriched or
shotgun) and the bbmap (v37.93) program tool dedupe2.sh to remove duplicates and mapped the reads to
the bacterial genomes using the Bowtie2 (v2.3.4.1) program (settings, –very-sensitive-local, unique sites only)
(https://github.com/BioInfoTools/BBMap) (47, 56). Aligned reads were filtered based on mapping quality
(�41 MAPQ) and length (�40 bp) using various tools: samtools (v1.4), bamtools (v2.4.1), and bedtools
(v2.27.1) (48, 49, 57). We determined the number of reads mapping to the reference genome overall and
the number of reads mapping within a predicted probe-targeted region using genomic coordinates and
bedtools (intersectBed) (50). The percent length coverage and the average depth of coverage of each
probe-targeted region with at least one read were determined using bedtools coverage (settings,
-counts, -mean and default function) (49). We normalized the read counts by the number of reads
mapping per kilobase of targeted region per the total number of reads mapping to a particular genome.
The number of genes with at least 1, 10, or 100 reads was counted, and their percent length coverage
by reads was determined.

Analysis of stool sample sequencing data. We processed the enriched and shotgun reads for the
human stool sample as described above for the bacterial isolates. Subsampling of reads was performed using
the seqtk (v1.2-r94) program (settings, seqtk sample -s100; https://github.com/lh3/seqtk). We used the bwt
feature in RGI (the beta version of v5.0.0; http://github.com/arpcard/rgi) to map trimmed reads, using the
Bowtie2 (v2.3.4.1) program, to the sequences in CARD (v3.0.0), generating alignments and results without
any filters (47). We parsed the gene mapping and allele mapping files to determine the number of genes
in CARD with reads mapping (at least 1, 10, and 100 reads) under various filters. After plotting the
mapping quality for each read in every sample across the 3 sets, we chose an average mapping quality
(mapq) filter of 11. We assessed a percent length coverage filter of a gene by reads of 10, 50, and 80%
and chose the most permissive (10%) for comparison between the shotgun and enriched samples. These
low thresholds were necessary for analyzing the shotgun data to obtain any reasonable results at all.
Finally, we used a filter to check for the probes mapping to the reference sequences in most compar-
isons, except to identify genes in the shotgun samples that would not be captured by our probe set. We
repeated the same analysis process for the negative-control (blank) libraries. In phase 2, set 1, there were
very few reads associated with the blank library after enrichment, so we used the raw sequencing reads
for analysis. For the blank in set 2, we omitted deduplication, and we could not identify any reads
associated with the blank indexes after sequencing for set 3. Read counts were normalized using the all
mapped reads column in the gene mapping file and the reference length (in kilobases) along with the
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total number of reads per kilobase per million (RPKM) available for mapping. Hierarchical clustering was
performed using the Gene Cluster (v3.0) and Java Tree View (v1.1.6r4) (http://bonsai.hgc.jp/~mdehoon/
software/cluster/software.htm) programs, log transformation, and clustering arrays with an uncentered
correlation (Pearson) and average linkage. For rarefaction analysis, we first aligned trimmed reads against
the sequences in CARD (v3.0.0) using the Bowtie2 program, followed by filtering for a mapping quality
of �11 (47). This file, along with an annotation file for CARD, was analyzed with the AmrPlusPlus
rarefaction analyzer (http://megares.meglab.org/amrplusplus) (58), with subsampling every 1% of total
reads and a gene read length coverage of at least 10%. The average number of genes identified after
rarefaction was plotted and fit to a logarithmic curve to allow for simplified extrapolation. We generated
heat maps and figures in Prism (v8) software for macOS (GraphPad Software).

Data availability. Raw sequencing reads (FASTQ) for the IIDR clinical isolate collection bacterial
isolate genome assembly were deposited in NCBI under BioProject accession number PRJNA532924. All
metagenomic sequencing results, enriched or shotgun, were deposited in NCBI under BioProject
accession number PRJNA540073. The probe set sequences and annotations are available at https://card
.mcmaster.ca/download.
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