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Abstract: Temperature is an important determinant of bacterial growth. While the dependence of bacterial growth on different
temperatures has been well studied for many bacterial species, prediction of bacterial growth rate for dynamic temperature
changes is relatively unclear. Here, the authors address this issue using a combination of experimental measurements of the
growth, at the resolution of 5 min, of Escherichia coli and mathematical models. They measure growth curves at different
temperatures and estimate model parameters to predict bacterial growth profiles subject to dynamic temperature changes. They
compared these predicted growth profiles for various step-like temperature changes with experimental measurements using the
coefficient of determination and mean square error and based on this comparison, ranked the different growth models, finding
that the generalised logistic growth model gave the smallest error. They note that as the maximum specific growth increases the
duration of this growth predominantly decreases. These results provide a basis to compute the dependence of the growth rate
parameter in biomolecular circuits on dynamic temperatures and may be useful for designing biomolecular circuits that are
robust to temperature.

1 Introduction
Environmental conditions affect almost all physical and biological
processes. Ensuring robustness in performance during varying
environmental conditions can be an important requirement in these
processes. An example of this is robustness of oscillation period to
temperature in designed circuits such as synthetic gene oscillators
[1, 2]. Failing to respond to non-optimal temperature can cause cell
death [3] as well as alter functional properties of biomolecular
systems [4]. For this reason, to achieve desired performance of a
synthetic circuit outside laboratory controlled environment, it is
important to design temperature robustness. The performance of
these designed gene circuits is largely affected by growth rate of
the host organism such as bacteria [5–7]. Thus, bacterial growth
rate is an important parameter and it is necessary to understand
how this parameter depends on temperature. This can provide us
important insight regarding role of temperature in these processes
as well as can help design techniques to enhance robustness to
temperature variations. In general from a mechanistic point of view
how temperature dependence of different rates in a biomolecular
system effect the final output is unclear [8]. However,
phenomenological models have been used extensively in the
context of food microbiology to predict bacterial growth when the
temperature is fixed or changing [9–11].

Logistic growth models and its variants such as Richards
model, the Gompertz model are widely used in describing bacterial
growth [12]. In the classical logistic model the instantaneous
population growth rate is proportional to both instantaneous
population size and resource availability. Based on this, a
generalised logistic growth model has been proposed where both
instantaneous population size and resource availability can have
scaling factors other than unity [13, 14]. The classical logistic
model has also been updated in various articles, most notably by
adding an additional multiplicative term representing the
‘physiological state’ of growth [15] or adding a multiplicative term
representing very low rate of growth during lag phase [16]. Apart
from logistic models, growth of bacterial culture has also been
modelled by Monod relating population growth with concentration
of nutrient [17]. All these models, often termed as primary models,
are nonlinear in nature and have various parameters such as
maximum specific growth rate, carrying capacity and lag time

which may depend on environmental conditions such as
temperature.

The maximum specific growth rate of bacteria has claimed to
be related to temperature according to Arrhenius equation and this
relation has been studied in case of thermophilic Bacillus [18].
Ratkowsky et al. [19] proposed a square root law of temperature
dependence of bacterial growth rate for temperature up to optimal
temperature of growth and later modified this rule for the entire
biokinetic temperature range [20]. Temperature dependence of
these parameters has been compared using different models based
on Arrhenius or square root law and especially the modified
Ratkowsky model was found to be best for modelling temperature
dependence of growth rate [21]. Ratkowsky and Arrhenius models
are algebraic in nature and generally termed as secondary models.
These secondary models of growth rate are used to predict bacterial
growth when temperature is varying dynamically [22–24]. While
temperature dependence of the parameter maximum specific
growth rate has been much studied in literature, characterising the
temperature dependence of other parameters in growth models
should also be important. It has been proposed that the primary
differential equation models can also be used as dynamic growth
models when the temperature is changing, by replacing the
constant model parameters as temperature-dependent parameters
determined from fixed temperature experiments [25]. Additionally,
there may also be trade-offs in bacterial growth profile occurring
due to variation in temperature [26].

There are at least three interesting aspects of predicting a
temperature dependent bacterial growth profile. One, it is possible
to model bacterial growth using various standard models, but they
may have different predictive capabilities when temperature
changes. Two, effect of temperature changes can be different on
various growth model parameters. Three, there may exist trade-offs
in bacterial growth while the temperature is changing. Given these,
prediction of bacterial growth subject to dynamic temperature
changes is important to understand.

Here, we aim to predict bacterial growth curve for different
temperature variations (Fig. 1). For this, we experimentally
measured growth curves of E. coli MG1655 in the temperature
range 29 − 37°C, a typical choice of organism and temperature
range in the context of biomolecular circuit design, and used
standard mathematical models of growth such as the logistic
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growth model (also called Verhulst–Pearl model [27]) and its
variants such as Richards model [28], Gompertz model [29], a
generalised logistic growth model [13] and Monod's bacterial
growth model [17]. We fit the growth curves to these models for
each temperature to estimate the corresponding parameters finding
that all models give a good fit to the data based on the coefficient
of determination (R2) and mean square error (MSE) in estimation
with the generalised logistic growth model giving the best fit.
Based on these parameter estimates, we predict the bacterial
growth curve for dynamic temperature changes and experimentally
verify the predictions, finding a good fit when the temperature is in
the exponential phase of the bacterial growth. We note how the
maximum growth rate increased with temperature in the
temperature range considered, and was accompanied by a decrease
in the duration of time for which the growth rate was near this
maximum. These results should help investigation of temperature
robustness in biomolecular circuit design and may help in
analysing the dependence of bacterial growth to temperature that is
important in the industry of food processing.

2 Methods
E. coli MG1655 is used in this study as it is the typical organism of
choice for biomolecular circuit design. The growth rate was
estimated using its optical density at 600 nm. The strain was grown
overnight in Luria Bertrani (LB) media (HiMedia) at 37°C and
subsequently diluted 1:50 in the same media. Effect of temperature

on bacterial growth rate in minimal media is briefly discussed and
compared with LB media in Appendix 10.3. Measurements were
performed in 96 well sterile tissue culture plates (Tarsons) and at
different temperatures. A total of 200 μl of the diluted culture was
placed in a well and five such wells were measured. Measurements
were taken in a platereader (Biotek Synergy H1) with double
orbital shaking at 282 cpm for a total of 8 h at 5 min intervals. A
well using just LB media was used to estimate background and this
was subtracted from each measurement. The temperatures
considered were 29, 30, 31, 32, 33, 34, 35, 36, and 37°C. The
process was repeated for three separate days for each temperature.
The data were analysed in MATLAB. In particular, the MATLAB
nonlinear least square solver lsqcurvefit was used to estimate
parameters.

To analyse the statistical variability, the percentage of variation
in 5 well measurements for each day and temperature are
calculated by the mean of the coefficient of variation (standard
deviation/mean) for each time point and found to be at most 7.5%
(Table 1). Possible biases in bacterial growth experiments in plates
include edge effects which are thought to be minimised in Biotek
Synergy H1 microplate reader because it has both top and bottom
heaters. Batch effects are minimised by doing the experiment from
the same strain of E. coli MG1655 in similar ambient conditions in
same laboratory and the medium used (LB) is manufactured in the
same batch by HiMedia.

3 Estimation of growth parameters and their
temperature dependence
We experimentally measure the growth curves of E. coli MG1655
in the temperature range 29 − 37°C in 1°C increments (Fig. 2,
described in Section 2 on Methods). These data were fit to the
standard growth models such as the Verhulst–Pearl model,
Richards model, Gompertz model, a generalised logistic growth
model, and Monod's bacterial growth model. The equations for
these models are shown in Appendix 10.1. We used nonlinear least
squares to estimate the parameters at each temperature. These are
plotted in Fig. 3. For the Verhulst–Pearl model, Richards model,
and the Gompertz model, the integrated form is used for parameter
estimation. For the generalised logistic growth model and Monod's
model, as no explicit solution available, the solution is numerically
integrated and used for parameter estimation.

We observe that all models give a high goodness of fit based on
the coefficient of determination, R2 (R2 > 0.95, Table 2, defined in
Appendix 10.2). The generalised logistic growth model gives the
best fit (lowest MSE and highest R2, Table 2) possibly because all
other logistic models can be a special case of this model. We
observe that the parameter representing maximum specific growth
rate (r) increases with increasing temperature (Fig. 3b) for all the
models used and the parameter signifying carrying capacity (K)
remains almost constant to this temperature range (Fig. 3c). Other
parameters have an increasing or decreasing dependence on
temperature (Fig. 3d).

4 Prediction of bacterial growth for temperature
changes
To understand the predictive capability of these models, here we
used them to predict growth curves when the temperature changes
with time. For this, we simulated the models with parameters
estimated above in such a way that the parameters at a specific
time duration corresponded to the temperature at that time
duration. This is similar to the previous ways of predicting growth,
when temperature changes that were used in other contexts [22, 30,
31]. We performed this procedure for various step changes in
temperature as well as for a staircase variation in temperature. To
test these predictions, we performed experiments where the
growing bacteria were subjected to temperature changes as in the
simulations.

We first compared the predicted growth for a step change in
temperature using two sets of parameter with the growth predicted
with one parameter set corresponding only to the initial
temperature (Fig. 4). We find that the predicted growth profile is

Fig. 1  How to predict bacterial growth profile while temperature is
varying with time ?

 
Table 1 Mean of coefficient of variation for bacterial growth
data recorded in the temperature range 29 − 37°C in LB
media
Temperature, °C Day 1, % Day 2, % Day 3, % Mean
29 3.8 4.5 7.5 5.3
30 2.6 1.8 1.6 2
31 4.5 2.7 1.9 3
32 3.6 2.6 2.5 2.9
33 1.6 2.5 2 2
34 3.7 4.6 1.4 3.2
35 5.9 1.1 3.3 3.4
36 5.4 6.9 5.7 5.6
37 2.3 1.2 2.4 2

 

Fig. 2  Bacterial growth for E. coli MG1655 for different temperatures in
LB media
(a) Bacterial growth at 29°C in five different wells repeated for three days, (b) Mean
bacterial growth with daily variation in the temperature range from 29 − 37°C
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closer to experimental one while using two sets of parameters for
prediction when the step change is applied at t=120 min (Fig. 4a).
When step change is applied at t=240 min, these two predictions
are not significantly different (Fig. 4b), perhaps because at this
time, bacterial growth is in the saturation region. The absolute error

in prediction ( xi − x^i ) in both the cases (Figs. 4c and d) shows that
the prediction using two sets of parameters is effective when step is
applied at 120 min, during the exponential phase.

Fig. 3  Different models for bacterial growth fitted to data
(a) Comparison of different growth models fitted to experimental bacterial growth data at 29°C, (b) Estimated maximum specific growth rate for different models at individual
temperatures, (c) Estimated carrying capacity for different models at individual temperatures, (d) Estimated values of different model parameters other than the maximum specific
growth rate and carrying capacity at individual temperatures

 
Table 2 Mean of coefficient of determination (R2) and MSE between experimental data and different growth models at
individual temperatures
Temperature, °C Verhulst–Pearl Richard Gompertz Generalised logistic Monod

R
2 MSE R

2 MSE R
2 MSE R

2 MSE R
2 MSE

29 0.980 0.0276 0.987 0.0225 0.978 0.0290 0.994 0.0147 0.983 0.0240
30 0.987 0.0232 0.990 0.0201 0.983 0.0264 0.996 0.0125 0.987 0.0227
31 0.987 0.0254 0.988 0.0237 0.965 0.0393 0.995 0.0154 0.985 0.0259
32 0.988 0.0235 0.989 0.0221 0.983 0.0275 0.995 0.0139 0.986 0.0241
33 0.985 0.0241 0.985 0.0241 0.981 0.0272 0.993 0.0160 0.978 0.0281
34 0.985 0.0254 0.985 0.0250 0.982 0.0282 0.993 0.0161 0.977 0.0303
35 0.973 0.0314 0.978 0.0289 0.978 0.0289 0.985 0.0224 0.957 0.0387
36 0.984 0.0245 0.985 0.0244 0.980 0.0278 0.994 0.0148 0.976 0.0294
37 0.983 0.0248 0.983 0.0247 0.979 0.0277 0.993 0.0153 0.974 0.0299

 

Fig. 4  Predicted bacterial growth with and without using two sets of parameters of Verhulst–Pearl model for a step change in temperature. Blue line
represents experimental growth with daily variation, red line signifies prediction with model parameters corresponding to lower temperature only and green
line represents prediction using model parameters corresponding to both lower and upper temperature before and after application of step for
(a) Step change in temperature from 29 − 33°C at 120 min, (b) Step change in temperature from 29 − 33°C at 240 min, (c) Absolute error in prediction when step is applied at 120 
min, (d) Absolute error when step is applied at 240 min
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Next, we measured the growth curves for a step change in
temperature from 29 to 33°C (Fig. 5a), from 33 to 37°C (Fig. 5b),
and from 30 to 37°C (Fig. 5c), for steps applied at 120 min as well
as for a temperature change applied in a staircase fashion from 29
to 31°C to 33 to 35°C with steps applied at 90, 150, and 210 min,
respectively (Fig. 5d). We compared these to the mathematical
predictions. We found that the coefficient of determination between
the computational prediction and experimental measurement is
high (≥ 0.95, Table 3) except two cases using Monod's model. The
MSE in estimation is the lowest for the generalised logistic growth
model in the case of changing as well (Table 3).

We conclude that this approach provides good predictive results
to investigate the temperature dependence of growth rate in these
contexts.

5 Empirical model of parameter variation with
temperature
To predict bacterial growth subject to dynamic temperature
variations, it is convenient to model parameter variations as
function of temperature as suggested in [25]. For this, we can
formulate empirical models from the parameter estimates obtained
in Section 3. To illustrate this, we choose parameter estimates of
the generalised logistic growth model at 30, 32, 34 and 36°C to be
known. The parameters K (carrying capacity) and α remain almost
constant when the temperature varies and are set to the mean

estimate at 30, 32, 34 and 36°C, that is 0.8 and 1.294, respectively.
To obtain an empirical model for the rest of the parameters we fit a
quadratic polynomial ( f (T) = p1T

2 + p2T + p3) to the known
estimates for each parameter using MATLAB fit command
(Table 4). We note that the quadratic polynomial model assumed in
this case is purely empirical and a similar square-root model was
proposed by Ratkowsky et al. to model variations in maximum
specific growth rate with temperature [19]. Alternatively,
Arrhenius equation gives the temperature dependence of chemical
reaction rates and reaction rate has been replaced in this equation
by bacterial growth rate to find its temperature dependence in
various literature. This assumption has drawn criticism because
bacterial growth involves several enzymes and substrates and a
single rate determining equation may not be correct [19]. In our
case the Arrhenius equation for temperature dependence of growth
rate (r = Ae− E /RT ) has a poorer fit (R2 = 0.770) compared to this
empirical quadratic polynomial model (R2 = 0.884, Table 4).

Next, we verify the predictive capability of these secondary
empirical models by comparing the prediction with measured
growth curves for a step change in temperature from 29 to 33°C
(Fig. 6), from 33 to 37°C (Fig. 6b), and from 30 to 37°C (Fig. 6),
for steps applied at 120 min as well as for a temperature change
applied in a staircase fashion from 29 to 31°C, from 31 to 33°C,
and from 33 to 35°C with steps applied at 90, 150, and 210 min,
respectively (Fig. 6d). For this, we solve the differential equation
of generalised logistic growth model (Appendix 10.1) replacing the

Fig. 5  Predicted bacterial growth for dynamic variation in temperature
(a) Experimental and predicted bacterial growth using different models when a step change from 29 − 33°C in temperature is applied at 120 min, (b) Experimental and predicted
bacterial growth using different models when a step change from 33 − 37°C in temperature is applied at 120 min, (c) Experimental and predicted bacterial growth using different
models when a step change from 30 − 37°C in temperature is applied at 120 min, (d) Experimental and predicted bacterial growth using different models when temperature is varied
in a staircase fashion from 29 − 31 − 33 − 35°C at 90, 150 and 210 min, respectively

 
Table 3 Mean of coefficient of determination (R2) and MSE between experimental and predicted bacterial growth profiles for
different growth models subjected to dynamic temperature variation
Step/staircase, °C Verhulst–Pearl Richard Gompertz Generalised logistic Monod

R
2 MSE R

2 MSE R
2 MSE R

2 MSE R
2 MSE

29–33 0.959 0.046 0.966 0.041 0.962 0.044 0.970 0.039 0.949 0.048
33–37 0.975 0.034 0.975 0.033 0.973 0.035 0.985 0.026 0.883 0.079
30–37 0.972 0.036 0.970 0.037 0.976 0.033 0.976 0.033 0.910 0.071
29–31–33–35 0.972 0.035 0.987 0.024 0.978 0.03 0.988 0.023 0.966 0.038

 

Table 4 Empirical model for temperature variation in the parameters r (maximum specific growth rate), β and γ of generalised
logistic growth model with R2 and MSE goodness of fit metrics. Parameters K = 0.8 and α = 1.294 are constant
Parameter p1 p2 p3 R

2 MSE
r −0.0001 0.0072 −0.1074 0.884 0.001
β 0.0406 −2.676 46.6 0.852 0.136
γ 0.0544 −3.363 56.26 0.992 0.099
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constant parameters with these empirical models. We find that the
predicted bacterial growth matches well with experimental growth
curves with R2 > 0.92.

6 Trade-off in bacterial growth
Trade-off mechanisms in bacteria are important to understand their
diversity and competition [26]. Here, using the temporal data
measured, we investigate possible trade-off in bacterial growth
when temperature is varied which may arise due to fixed resources.
For this, we compute specific growth rate curves for each
temperature from first difference of experimental measurements,
xi + 1 − xi /xiΔt, where xi is the bacterial growth measured at ith

instant and Δt is the interval between two successive
measurements. These curves are found to be pulse-shaped
(Fig. 7a). The height and width of these pulse-shaped curves
signify the maximum specific growth rate and duration of
maximum growth, respectively. The duration of maximum growth
is defined as the time required to reach maximum growth rate from
50% of maximum growth rate and then again fall to 50%. We find
that the maximum specific growth rate increases with temperature
whereas the duration of maximum growth decreases (Fig. 7b).
Additionally, the time to reach 50% of maximum growth rate for

the first time has a decreasing trend as temperature increases
(Fig. 7c). This observation is similar to the conjecture of Baranyi
and Roberts [15] that the maximum specific growth rate and lag
time is inversely proportional. In case of dynamic temperature
variation, such as in applying a step change in temperature,
maximum specific growth rate increases with corresponding
decrease in duration for maximum growth (Fig. 7d, Table 5). 

7 Discussion
As the growth rate is an important parameter in the functioning of
natural and designed biomolecular circuits, investigating its
dependence on temperature is an important problem in designing
and assessing temperature robustness in biomolecular circuits.
Bacterial growth rate is closely related to the performance of these
synthetic constructs, and characterising dependence of bacterial
growth rate on dynamic temperature changes is a first step towards
this goal. Here, we use, experimental measurements of growth of
E. coli MG1655 taken in temperature range 29 − 37°C, a typical
choice of organism and temperature range in such contexts, and a
set of existing models of growth rate – Verhulst–Pearl model,
Richards model, Gompertz model, a generalised growth model,
Monod's bacterial growth model – to present three main results.

Fig. 6  Predicted bacterial growth using empirical models of parameter variations with temperature. Experimental and predicted bacterial growth when a
step change from
(a) 29 − 33°C in temperature is applied at 120 min, (b) from 33 − 37°C in temperature is applied at 120 min, (c) from 30 − 37°C in temperature is applied at 120 min and, (d) When
temperature is varied in a staircase fashion from 29 − 31 − 33 − 35°C at 90, 150 and 210 min, respectively

 

Fig. 7  Trade-off between maximum specific growth rate and duration of maximum growth
(a) Specific growth rate curves in the temperature range from 29 to 37°C. Growth rate is calculated from the mean of first difference of growth data and smoothened using MATLAB
smooth function, (b) Maximum specific growth rate and duration of maximum growth in the temperature range, (c) Time required to reach 50% of maximum growth for the first time
as temperature is varied, (d) Change in the specific growth rate curve as step temperature is applied from 29 to 33°C at 120 min
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First, we extract parameters from these models using the
experimental data at different temperatures. Secondly, we use these
parameters to predict the growth curve of bacteria subject to
different temperature changes and verify the prediction
experimentally, finding that all models give reasonably good
results, with the generalised model being the best among those for
the observed data. Thirdly, we note that the increase in maximum
growth rate as temperature is increased in the range 29 − 37°C is
simultaneous with a decrease in the duration for which this
maximum growth rate persists.

The model-based prediction has proven to be beneficial for
most dynamical systems and the dependence of these models on
environmental factors is important to understand. Here, we have
studied temperature dependence of different growth models and
used this a priori information to predict bacterial growth profiles
subjected to arbitrary temperature variations. This framework
should help in prediction of growth while there is dynamic
temperature variations.
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10 Appendix

10.1 Growth models

Different logistic [13] and bacterial growth models used are

(i) Verhulst–Pearl model:

N˙ (t) = rN(t) 1 −
N(t)
K

,

⇒ N(t) =
N(0)K

N(0) + (K − N(0))exp( − rt)
.

(1)

(ii) Richards model:

N˙ (t) = rN(t) 1 −
N(t)
K

β

,

⇒ N(t) =
N(0)K

[N(0)β + (Kβ − N(0)β)exp( − βrt)]
1/β

.
(2)

Table 5 Mean of maximum specific growth rate and duration of maximum growth computed from experimental measurements
for constant and step change in temperature at 120 min
Temperature, °C (Constant or step change) Maximum specific growth rate, min–1 Duration of maximum growth, min
29 0.0119 154.93
30 0.0137 151.56
33 0.0153 127.98
37 0.0195 95.99
29–33 0.0131 133.88
33–37 0.0170 121.25
30–37 0.0159 116.20
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(iii) Gompertz model:

N˙ (t) = rN(t) log
K

N(t)

γ

,

⇒ N(t) = Kexp − (γ − 1)rt + ln
K

N(0)

1 − γ 1/ 1 − γ

.

(3)

(iv) Generalised logistic growth model:

N˙ (t) = rN(t)α 1 −
N(t)
K

β γ

, (4)

(v) Monod's bacterial growth model:

N˙ (t) = N(t)
rS(t)

Ks + S(t)
,

S˙(t) = −
1
Γ

dN(t)
dt

.

(5)

Here, N(t) is the population concentration at time t, the parameters
r and K are maximum specific growth rate and carrying capacity,
respectively. In the Monod's model, S(t) is the nutrient
concentration at time t. The carrying capacity in Monod's model is
given by K = ΓS0 + N0, where S0 and N0 are initial concentrations
for the nutrient and bacterial population, respectively.

10.2 Coefficient of determination (R2) and MSE

Coefficient of determination: Let the data be a sequence of real
numbers, xi and the estimate is x^i, i = 1, 2, …, n. The mean of the
observed data is, x̄ = 1/n∑i = 1

n
xi. The coefficient of Determination

(R2) is defined as [32]

R
2 = 1 −

RSS
TSS

, (6)

where the residual sum of squares, RSS = ∑i = 1

n (xi − x^i)
2 and total

sum of squares, TSS = ∑i = 1

n (xi − x̄)2.
Mean square error: The MSE is defined as

MSE =
1
n

∑
i = 1

n

(xi − x^i)
2
. (7)

10.3 Temperature dependence of bacterial growth in minimal
media

The strain was grown overnight in LB media at 37°C and
subsequently diluted 1:50 in M9 minimal media supplemented with
0.2% casamino acid, 0.4% glucose, 100 mM thiamine, 1 M
MgSO4, 1 M CaCl2 and the growth measurements are taken at 29,
33, and 37°C and the same is repeated for two days. For
comparison, the same culture is grown together in LB media as
well (Figs. 8a and b). We find that the maximum specific growth
rate obtained from the first difference of growth data is lower, and
the duration of maximum growth is higher in minimal media as
compared to LB media (Figs. 8c and d). The tradeoff between
maximum specific growth rate and duration of maximum growth is
similar. Effect of temperature is magnified compared to LB media
in the sense that overall growth is slower.

Fig. 8  Bacterial growth for E. coli MG1655 for different temperatures in LB media and M9 minimal media
(a) Bacterial growth at 29°C in five different wells repeated for two days, (b) Mean bacterial growth with daily variation at 29, 33, and 37°C. Specific growth rate curves at 29, 33,
and 37°C. Growth rate is calculated from the first difference of mean growth data and smoothened using MATLAB smooth function for (c) LB media, (d) M9 minimal media
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