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ABSTRACT

The spatial organization of the genome plays a cru-
cial role in the regulation of gene expression. Recent
experimental techniques like Hi-C have emphasized
the segmentation of genomes into interaction com-
partments that constitute conserved functional do-
mains participating in the maintenance of a proper
cell identity. Here, we propose a novel method, IC-
Finder, to identify interaction compartments (IC) from
experimental Hi-C maps. IC-Finder is based on a hi-
erarchical clustering approach that we adapted to ac-
count for the polymeric nature of chromatin. Based
on a benchmark of realistic in silico Hi-C maps,
we show that IC-Finder is one of the best methods
in terms of reliability and is the most efficient nu-
merically. IC-Finder proposes two original options:
a probabilistic description of the inferred compart-
ments and the possibility to explore the various hi-
erarchies of chromatin organization. Applying the
method to experimental data in fly and human, we
show how the predicted segmentation may depend
on the normalization scheme and how 3D compart-
mentalization is tightly associated with epigenomic
information. IC-Finder provides a robust and generic
’all-in-one’ tool to uncover the general principles of
3D chromatin folding and their influence on gene reg-
ulation. The software is available at http://membres-
timc.imag.fr/Daniel.Jost/DJ-TIMC/Software.html.

INTRODUCTION

The organization of eukaryotic DNA into a heterogencous
chromatin fiber contributes to gene regulation by con-
trolling the accessibility of promoter and regulatory se-
quences to the transcriptional machinery (1). Until re-
cently, this organization has been essentially studied lo-
cally by considering the genome as a unidimensional object
whose local structure is modulated by epigenomic informa-

tion like histone marks, DNA methylation or chromatin-
binding proteins (1). However, recent progresses of genome-
wide chromatin conformation capture techniques (Hi-C)
have suggested that, at higher scales, chromosomes are lin-
early folded into subnuclear 3D domains, the so-called
topologically-associating domains (TADs) (2), character-
ized by high contact frequencies within the domains and
partial insulation between adjacent consecutive domains.
Theses domains extend over few kilobases up to megabases
(3) and even larger in inactivated mammalian X chromo-
somes (4). TADs have been shown to be mainly conserved
across tissues and across neighbor species (2,3,5,6), and
small observed discrepancies are associated with develop-
ment and cell differentiation (5). TADs themselves orga-
nize into higher hierarchies of interaction compartments
up to chromosome territories that depend on the differ-
entiation states (7-9). Understanding the functional roles
of such—hierarchical—compartmentalization is challeng-
ing and remains under active investigation. However, en-
richment of architectural or insulator proteins like cohesin
or CTCF at TAD boundaries or the relative uniformity of
the epigenomic information within a domain (3,10,11), sug-
gest an important role in regulating gene expression like
promoting the promoter—enhancer interactions (12).
Different approaches have been developed to infer the
elementary segmentation of chromatin into TADs and its
higher order organization. An important family of meth-
ods relies on transforming the 2D information given by Hi-
C maps into a 1D signal and on identifying local extrema or
strong local variations that can be subsequently associated
with TAD boundaries (2,3,10,13,14). For example, Dixon
et al. derive a directionality index (DI) that estimates the
difference between upstream and downstream interactions
for a locus and that has maximal variation around bound-
aries (2). Recently, Shin ez al. base their approach (Top-
Dom) on finding the local minima of the average contact
frequency in the neighborhood of a locus (14). Other ap-
proaches use dynamic programming to optimally segment
chromosomes into TADs (3,9,15,16). For example, HiCSeg
applies 2D segmentation techniques originally used in im-
age processing to segment Hi-C map into diagonal units, the
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TADs (16). In addition to TAD calling, some methods al-
low also to capture different levels of organization (7-9,15).
For example, based on an approximation of a linear model
of contact enrichment, TADtree infers the best TAD hier-
archy and allows the detection of nested TADs (9).

The aforementioned approaches have allowed to get new
biological insights from Hi-C experiments, from the enrich-
ment of CTCF sites at TAD boundaries in mammals (2)
to the characterization of inter-TAD regions in drosophila
(6) or to the structural rearrangements of meta-TAD hier-
archical organization during murine neuronal differentia-
tion (8). However, they all suffer from one or several of the
following drawbacks: (i) the program is not publicly avail-
able; (i1) obtaining a good segmentation needs fine-tuning
of—sometime numerous—parameters that could be chal-
lenging for non-expert user; (iii) the method is computa-
tionally time demanding; (iv) prediction robustness is not
estimated; (v) the method infers TAD positions but not the
higher-order organization or vice-versa.

Here, we introduce IC-Finder, a robust computationally-
efficient algorithm to segment Hi-C maps into interaction
compartments (IC) like TADs. The method is based on a
hierarchical clustering-like approach that depends on only
two intuitive parameters which do not need to be tuned
and whose default values have been learned in order to
give optimal results on a large variety of experimental Hi-
C data. Based on statistical resampling of the investigated
map, IC-Finder allows to quantify the reliability of the
predicted compartmentalization of genome. Moreover, the
program offers the option to infer higher-order levels of
chromatin organization. The source code is open-access,
user-friendly and is available at http://membres-timc.imag.
fr/Daniel.Jost/DJ-TIMC/Software.html. In order to vali-
date our approach and to compare IC-Finder with other
existing methods, we build a controlled benchmark of Hi-
C maps whose segmentation is known. We show that IC-
Finder is top-ranked with high sensitivity and specificity. As
illustrations of the method, we use IC-Finder to investigate
the effect of normalization schemes on the predicted seg-
mentation, and to quantify the correlation between epige-
nomic information and spatial chromatin compartmental-
ization at different organizational levels in human and fly.

MATERIALS AND METHODS
IC-Finder algorithm

IC-Finder takes as an input a Hi-C matrix C(i, j) (size N
x N) whose entries correspond to the contact frequencies
between loci 7 and ;.

Constrained hierarchical clustering. We aim to cluster loci
that are consecutive along the genome and that share the
same pattern of interactions (Figure 1A). In statistical
learning, a very useful and standard method of cluster anal-
ysis is the unsupervised hierarchical clustering approach
(HCA). HCA is an iterative method to group objects into
a hierarchy of clusters. At the beginning of the algorithm,
each column of the Hi-C map represents a cluster. Then,
the closest pair of clusters are merged together. This process
is reiterated until just one cluster is remaining. In standard
HCA, merging is authorized between any pairs of clusters.
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Here, to maintain the linear connectivity of the chromo-
some, we consider only pairs of nearest-neighbor clusters
along the genome. Closeness between clusters is defined by
a distance metric D and a linkage method S. D represents
the metric used to compute distances between columns of
the Hi-C map and S is the strategy chosen to compute dis-
tances between current clusters. After testing several com-
binations of metric and linkage, we find that the correlation
distance D, coupled to a weighted-mean linkage S, give
a good balance between specificity and sensitivity for the
predicted partitions (Supplementary Figure S2):

D.(u,v) =1— corr(u, v) )

ZMEU,UEV(N_ |Ll - Ul)ch(Z/l, U)
Zu,u(N_ |M - U|)2

Sum(U, V) = 2

with corr(u, v) the Pearson correlation between columns u
and vand U, V'two neighboring clusters. Hi-C maps contain
often many zeros. These empty bins may represent a lack of
information (due, for example, to unmappable reads) or an
actual absence of contacts. Being unable to distinguish be-
tween the two, we choose to ignore the rows and columns
containing >75% missing values among the 20 coefficients
surrounding the diagonal. These rows and columns are re-
moved before starting the segmentation process. Moreover,
if the number of non-zero rows is <10, we do not consider
such distance in the computation of linkage.

An important issue in HCA is to find a systematic cri-
terion to select the relevant segmentation among all the
hierarchical possibilities inferred by the method. Here, we
base our criterion on the observation that contacts in-
side a compartment should be homogeneous in a polymer
sense, meaning that contact frequencies between pairs of
monomers should only depend on the genomic distance be-
tween the monomers. Practically, at each step of the HCA,
we define a stopping rule to evaluate if the two selected clus-
ters have to be merged together: having a putative merged
cluster ¢(i, j), i.e. a submatrix of C(i, j) corresponding to the
two neighbor clusters, we compute the normalized matrix

i)
@I ==
with  &(k) = —Zg:"c(’; . 3)
|j—il=k

Then, we estimate the variance o of ¢,. In order to correct
for experimental noise in the data, we normalize o by the
median local variation of ¢, in the region close to the diag-
onal (for genomic distance between 3 and 40 bins). If oorm
< o_ (weak heterogeneity), the two clusters are merged to-
gether, if ohorm > 0+ (strong heterogeneity), the boundary
between the two clusters is fixed. To improve the predictions
and avoid numerous false positives (Supplementary Figure
S1B), instead of having only one threshold separating the
low and high variance region, we introduce a buffer zone
(0_ < Onorm < 04+) where additional tests are performed
(Supplementary Figure S1A). In this zone, a local direction-
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Figure 1. (A) Pipeline of the IC-Finder algorithm: a Hi-C map (left bottom) is transformed into a distance map (left top). Construction of the hierarchical
organization (right) is performed using agglomerative hierarchical clustering on the distance map. At a given stage of the clustering, a choice to stop
merging consecutive clusters is made regarding the heterogeneity oorm inside the candidate merged cluster. (B) Prediction robustness estimated using
Poisson resampling of the original map (left): probability p,; that two loci are predicted to ‘colocalize’, i.e. to belong to the same interaction domain
(right top) and the probability p, that a locus is predicted as a domain boundary (right bottom). (C) Different types of outputs given by IC-Finder: TAD
boundaries determined by the program in default mode, and p,, p, and TAD boundary for different hierarchy of folding when the corresponding options
are activated. Examples are given for the region 12-14.5 Mb of fly chromosome 3R (10).

ality index (2) is computed around the putative boundary

(B— 4
(B+ A)

with A4 (resp. B) the number of reads that map from a given
bin to the upstream (resp. downstream) part of the tested
region (Supplementary Figure S1A). The boundary will re-
main fix (i) if at least 2/3 of the DIs before (resp. after) it are
negative (resp. positive), (ii) if the variation of DI is positive
when crossing the boundary and (iii) if for at least 2/3 of
the bins, the relative variation 2(4 — B)/(A4 + B) is superior
to 0.1. Condition (iii) was included to increase algorithm
robustness regarding data noise. We optimize the value
of o_ and o+ on manually annotated segmentations of
small pieces of experimental Hi-C maps (chromosome 3R
of drosophila late embryos at 10kbp-resolution (10); chro-
mosome 12 of human IMR90 cell line at 40 kb-resolution
(2) and 50 Mb of chromosome 3 of human GM 12878 cell
line at 10kbp-resolution (3)) (Supplementary Figure S3 and
Supplementary data), to achieve the best correspondence
between IC-Finder predictions and the annotated ICs. Hi-C
data used for parameter inference and for testing IC-Finder
were downloaded from the Gene Expression Omnibus web-
site (17) with the accession numbers GSE34453 for (10),

DI =sign(B — A) 4)

GSE35156 for (2) and GSE63525 for (3). Note that the in-
ferred default values for o _ and o+ can be tuned by the user
to eventually improve the segmentation on specific genomic
regions.

IC-Finder options.

Prediction robustness. Numbers of observed contacts in
Hi-C experiments are often small (ranging from 0 to few
thousands for a 10-kb binning) and therefore they are
strongly subject to statistical errors. To estimate how this
uncertainty on the measurements propagates on the pre-
dicted segmentation, IC-Finder performs many resampling
of the original Hi-C map and run the clustering algorithm
on these new maps (Figure 1B). Combining these results
for many resampled maps (100 by default), we compute the
probability p,(i, j) for two loci to belong to the same inter-
action compartment and the probability p,(i) for a locus to
be at a boundary between two domains.

To resample an experimental map, we first multiply the
original input Hi-C matrix C(i, j) map by a constant factor
f=N./> :C(i, i+ 1) with N, the total number of counts on
the first diagonal in the raw data for the same genomic re-
gion (i.e. before any normalization process that might have
reshaped the Hi-C data). If unknown, by default, we assume
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N. =904 that represents the typical number obtained in re-
cent Hi-C experiments at a 10-kb binning (3,10). This step
is crucial to renormalize the data in terms of real counts.
Then, we model the contact frequencies of this modified
matrix as independent Poisson processes and for each pair
(7, j) of loci, we randomly generate a new contact frequency
from a Poisson distribution of average 1 C(i, j).

Hierarchical organization. Investigation of the hierarchi-
cal organization is performed by imposing o_ = o+ = o,
and by running the constrained hierarchical algorithm de-
scribed above for incremental o ,-values (by default o, = 5)
(Figure 1C).

Generation of the benchmark of simulated Hi-C maps

To optimize and test the algorithm, we de-
signed a set of simulated Hi-C-like maps whose
optimal—irreducible—segmentation is known. Re-
cently, we developed a polymer model that is able to
semi-quantitatively describe the formation and dynamics
of TADs observed in Hi-C maps based solely on the
epigenomic information (18-20). Using a version of this
model, we compute the average contact probability be-
tween any pairs of genomic loci for 100 randomly generated
epigenomic landscapes. We take care to choose interacting
parameters to reproduce the typical behavior observed in
experimental Hi-C maps (formation of TADs, long-range
interactions between TADs, average contact probability
scaling as s~! with s the genomic distance between two
loci). Our simulated maps were also resampled using a
Poisson-distribution to simulate local intensity variations
also observed in real maps (see Supplementary Figure S4).
The benchmark data are available in Supplementary Data.

Statistical comparison between two partitions

Given two partitions P, and P; of the same ensemble, the
domain true positive rate TPRy, or sensitivity, of P, against
P, is defined as the probability that two loci belong to the
same domain in P,, knowing they are clustered in P;:

D i<y OiiMi
Zi<j i j

where 8; ; = 1 (0) if i, j belong (or not) to the same cluster
in P,, and the same for v ; but regarding P,. If known from
the resampling option, & and m could be replaced by prob-
abilities of being in the same compartments. The domain
false discovery rate FDR,; of P, against P, is defined as the
probability that two loci do not belong to the same domain
in P;, knowing they are clustered in P,

2icy O (1 =mij)
Zi<j ‘Siui

Identically, we define the boundary true positive rate TPR,;,
as the probability that a locus is a boundary in P, (&1 bin)
knowing it is a boundary in P, (idem for the boundary false
discovery rate FDRp).

TPRi(Py||P) = )

FDRy(Py||P) = (6)
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Epigenomic colocalization score

For a given locus i, we define S the proportion of epige-
nomic state p at the corresponding locus (0 < S < 1). For
a pair of epigenomic state (p, v), the epigenomic colocal-
ization score C, , is defined as

1 Z,‘#/ S#S;pd(iv 1)

C,v = . (7)
a Ny Zi;ﬁj pa(i, j)

LSS

i#]

with p,(i, j) the probability that i and j are predicted to be-
long to the same IC. Eq. 7 represents the average value of
S S} for colocalized loci normalized by the corresponding
value along the genome (N, ). C,., > 1 (resp. <1) indicates
that association of loci having the p and the v epigenomic
states are enriched (resp. depleted) in IC.

RESULTS
A robust algorithm to partition Hi-C maps

Description of the method. 1C-Finder is a program that
allows to segment Hi-C maps into interaction compart-
ments (IC) (Figure 1A, see Material and Methods for details
on the algorithm). Given a matrix of interaction frequen-
cies extracted from a Hi-C experiment, IC-Finder infers the
boundaries between consecutive IC along the genome. The
algorithm is based on three statements: (i) the 3D chromatin
organization is hierarchical; (ii) genomic loci belonging to
the same IC should have similar patterns of interactions
with the rest of the genome; and (iii) due to the intrinsic
polymeric nature of chromatin, intra-IC interactions should
be homogeneous in a polymer sense, meaning the contact
frequency between two intra-IC loci should depend only
on the genomic distance between them. Following state-
ments (i) and (ii), we base IC-Finder on a constrained ag-
glomerative hierarchical clustering-like algorithm: starting
with each locus in its own cluster, the algorithm iteratively
merges together pairs of clusters that, at the current step,
have the most correlated patterns of interaction. To avoid
the formation of non-consecutive domains, we constrain
the next candidates to be nearest-neighbor along the lin-
ear genome. Statement (iil) suggests that the heterogene-
ity of interactions inside a cluster (oorm) should be a good
variable to guide our choice of an optimal partition of the
constructed hierarchical tree. Practically, this choice is per-
formed ‘on the fly’ during the algorithm by computing,
at each step, oporm inside the putative cluster formed by
the two candidates: for weak o,om, the two clusters are
indeed merged together; for strong oorm, the clusters are
not merged together and the boundary between them is
maintained along the rest of the algorithm; for intermedi-
ate ohorm values, additional tests based on the directionality
index are performed to avoid false positive decisions and to
insure a good compartmentalization (Supplementary Fig-
ure S1). Threshold values that define this buffer zone have
been learned from various manually-annotated experimen-
tal Hi-C maps (Supplementary Figure S3) to optimally im-
prove the predictions of IC-Finder. While with the default
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threshold values IC-Finder gives excellent results for all sort
of Hi-C maps (see below), IC-Finder offers the option to
manually tune these parameters to eventually optimize the
segmentation based on a user-defined criterion.

A Matlab/GNU Octave routine for IC-Finder is
available at http://membres-timc.imag.fr/Daniel.Jost/DJ-
TIMC/Software.html and in the Supplemental Data.

Test of reliability and comparison with other methods. We
test the reliability of IC-Finder on a controlled benchmark
of 100 simulated Hi-C maps that we designed to have the
same properties of real Hi-C maps and for which we know
the target segmentations (Supplementary Figure S4, see
Materials and Methods). Note that this benchmark was not
used to calibrate the default parameters of the algorithm.
For each map, we compute the domain and boundary true
positive rate (TPR) and false discovery rate (FDR) of our
prediction compared to the target segmentation. A perfect
match between the two would lead to TPR = 1 and FDR =
0. In Figure 2A and B, we plot contour lines that encompass
98% of the 100 (TPR,FDR)-points, showing that our algo-
rithm with default parameters performs extremely well with
high sensitivity and low false discovery rate. Moreover, IC-
Finder almost perfectly predicts the distribution of domain
size (Figure 2C).

Next, we compare the performance of IC-Finder with
other existing programs that also segment Hi-C data
into TADs (Armatus (15), Directionality Index (DI) (2),
HICSeg (16), Insulation method (13), TADtree (9) and
TopDom (14)) over our designed benchmark. For each
method (except IC-Finder and Armatus), we manually tune
the—sometime various—parameters to optimize the seg-
mentation (see Supplementary Figure S5). We observe that
IC-Finder and TopDom give similar results and outperform
the other methods in term of reliability (Figure 2A, B, C
and E). In terms of numerical efficiency, IC-Finder is faster
that any other methods for large maps (Figure 2D) with
often orders-of-magnitude differences. For example, on a
3GHz computer, it takes 4 min to segment the whole hu-
man genome (at a 40 kb resolution) with IC-Finder, while
it takes 6 min with TopDom and >3 h with DI.

As a second comparative test, we run IC-Finder on the
same—experimental Hi-C—examples used by the other
methods to illustrate their predictive power in their respec-
tive publication (Mouse ES cells and human IMR90 cell line
from (2)). Locally, all the methods show significant inconsis-
tency between them (Figure 3A and Supplementary Figure
S7). IC-Finder is closer to TopDom with a better correspon-
dence at the domain scale than at the boundary scale. This is
a consequence of the important noise present in the studied
maps (see below) that leads to a fuzzier definition of bound-
aries (on less noisy data like the benchmark dataset, both
methods have a very good correspondence). At the global
scale, IC-Finder and TopDom give also similar results with
comparable domain size distributions (Supplementary Fig-
ure S6B and D), while Armatus has the tendency to find lots
of small domains and the Directionality Index to segment
maps into bigger domains (see examples on Supplementary
Figure S6A and C).

As a final test, we evaluate the consistency of the pre-
dicted TADs on biological Hi-C replicates. We use data
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from Ulianov et al. (6) where two replicates have been pro-
duced for each of four different drosophila cell lines (S2,
KC, BG3 and OSC). For a given method (IC-Finder, Top-
Dom, Armatus or DI), in each cell line, we compare the pre-
dictions obtained for the two replicates by computing the
TPR/FDR between the two segmentations (Figure 3B). We
find that IC-Finder, TopDom and Armatus give strongly
consistent predictions with high TPR and low FDR in all
the cell lines (see examples on Supplementary Figure S§A).
The directionality index leads to more replicate-dependent
partitions, suggesting that DI is more sensitive to noise than
the other methods. Predicted domain sizes distributions are
also very similar between the two replicates for all investi-
gated methods except for DI (see examples on Supplemen-
tary Figure S8B). Interestingly, the comparison between cell
lines shows that TAD positions are very conserved among
different cell types in drosophila (Supplementary Figure S9)
(6), confirming observations in mammals that TADs are el-
ementary functional units of organization that may played
key roles in regulating gene expression (2,3,5,12).

IC-Finder option 1: improving the prediction reliability. Hi-
C experiments may integrate many sources of errors that
may affect the resulting Hi-C maps. Among them, sampling
errors due to the finite number of cells used in the exper-
iments combined to the weak efficacy of the whole Hi-C
protocol are likely to represent an important source of noise
in the map, especially for bins with low number of contacts.
This rises the question of the robustness of the predicted
segmentation regarding such uncertainties. IC-Finder of-
fers the option to quantify the reliability of its prediction by
performing a statistical resampling of the input Hi-C map
(see Materials and Methods). In particular, it estimates the
probability that two loci are predicted to belong to the same
topological domain and the probability for a locus to be
predicted as a boundary between two domains (Figure 1B).
While computationally more time-demanding, this option
gives a much more clear and reliable picture of the compart-
mentalization of a map and allows to quantify how precise
are the predictions given by IC-Finder. For example, while
the interaction compartment (a) in Figure 1C is well de-
fined, the position of its left boundary is fuzzy. This is of
course crucial when comparing chromatin folding observ-
ables like the position of the IC boundaries or the colocal-
ization of loci in the same IC with other epigenomic or ge-
nomic information that are position-dependent.

IC-Finder option 2: inferring the hierarchical organization
of chromatin. In addition to the elementary partition of
chromosome into topologically-associating domains (2,3),
Hi-C experiments have clearly revealed the existence of
higher-order organization levels highlighting the hierarchi-
cal 3D folding of chromatin: consecutive TADs may be or-
ganized into larger interaction compartments that them-
selves may form larger clusters (7-9). By varying the thresh-
old separating the regions of lowly and highly heteroge-
neous clusters used to define boundaries between adjacent
ICs during the clustering algorithm (see above), IC-Finder
offers the option to access such higher layers of organiza-
tion. Figure 1C illustrates the hierarchical segmentation in-
ferred by IC-Finder for the region 12-14.5 Mb of fly chro-
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mosome 3R in late embryos (10). Of course, options 1 and
2 could be coupled in order to get a full reliable picture of
the hierarchy of chromatin folding (Supplementary Figure
S10).

Applications of IC-Finder

Impact of Hi-C map normalization scheme. In addition
to sampling errors, Hi-C protocols may give rise to many
systematic biases, including the distance between restric-
tion enzyme cut sites or the GC content of reads, that may
strongly affect the measured contact frequency (21). Along
the years, several strategies have emerged to remove these
systematic biases and normalize the data (21-26). Among
them, we can distinguish two families: (i) parametric ap-
proaches that explicitly model these biases (21,22); and (ii)
renormalization approaches that assume that every frag-
ment should be observed the same number of times (23-26).
Applications of these schemes to raw Hi-C data may lead to
quantitative differences in the contact maps (Figure 4C).

In this section, we ask how the normalization process
affects the detection of TADs or ICs and if the different
schemes lead to consistent results. We test three normaliza-
tions that we applied to drosophila Hi-C experiments (10)
(Yaffe from (21), Khalor from (23) and ICE from (25)) and
compare them to segmentations obtained for raw data. Sta-
tistical analysis of the obtained segmentations shows that
~70% of the boundaries found in the raw data are conserved
after normalization and conversely about 30% of the pre-
dicted frontiers from normalized maps are not present in
the raw data (Figure 4A). Systematic biases observed in raw
Hi-C maps lead to more irregular interaction patterns along
the diagonal (Figure 4C) which propagate into the compart-
ment detection that predicts lots of small domains (Figure
4B). Normalization schemes regularize the maps leading to
larger domains. Within a normalization family, segmenta-
tion results are highly consistent (see ICE Il Khalor in Figure
4A) with similar numbers and sizes of domains (Figure 4B).
Between families, results are also generally consistent, even
if we observe small discrepancies (Figure 4A), due mainly to
the prediction of more small domains with the Yaffe method
(Figure 4B).

Correlation with epigenomic information. In this section,
we study how epigenomic information might be associ-
ated to 3D compartmentalization. In particular, we ask if
interaction domains are homogeneous in terms of epige-
nomic content and if domain boundaries are enriched in
specific epigenomic states. We address these questions for
drosophila late embryos and human GM 12878 cell line. For
these strains, we take Hi-C maps for every chromosome re-
spectively from Sexton et al. (10) and Rao et al. (3). We then
run IC-Finder on these contact maps with the resampling
option using the default parameters, i.e. inferring the ele-
mentary segmentation into TADs, and using option 2 (o, =
5), i.e. accessing a higher degree of hierarchy (Supplemen-
tary Figure S10). Recently, from Chip-Seq data of various
histone marks obtained in human, drosophila and worm,
Ho et al. showed that the local epigenomic information
could be characterized by 16 different epigenomic states and
their local repartition along the genome could be inferred
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using HMM methods (11). These states correspond to
enhancers, active genes, polycomb-repressed regions, con-
stitutive heterochromatin or null—low signal—chromatin
(see legend in Figure 5A and D). We collect these epige-
nomic patterns for our two species of interest (at https:
/Iwww.encodeproject.org/comparative/chromatin/) and sta-
tistically compare them to the 3D segmentation. Note that
centromeric and pericentromeric regions, mainly composed
by constitutive and null heterochromatin, were not consid-
ered in our analysis.

To investigate if 3D compartments present a uniform
epigenomic content, we ask if two different genomic
regions in the same compartment have the same—or
different—epigenomic states. Practically, for every pair of
epigenomic states (p, v), we estimate C, ,, the so-called
epigenomic colocalization score, that quantify if a locus of
epigenomic state p (chosen among the 16 possible states)
tends to be significantly more (C,, , > 1) or less (C,, » <
1) colocalized with other loci of state v than expected (see
Materials and Methods for the mathematical definition of
Cy,., ). Figure 5A and D shows the C, , matrices obtained
for the 16 epigenomic states with the default parameters,
i.e. at the TAD level. We observe that the diagonal ele-
ments of the matrices (C,,, ,) are all higher than 1 implying
that neighbor genomic regions with the same epigenomic
state tend to share the same TAD. Standard agglomera-
tive hierarchical clustering (correlation distance, mean link-
age) of the C, , matrices shows that groups of states are
strongly colocalized and interactions between these groups
are depleted in TADs (Figure 5B and E, left). This strongly
suggests that the internal epigenomic composition of TAD
is relatively homogeneous in such groups. In flies, we find
six families: an active cluster grouping promoter and tran-
scription states, an enhancer cluster, an active intron-rich
cluster (Transcription 5° 2 and Gene, H4K20mel states),
a Polycomb-repressed cluster, a null—low-signal—cluster
and a heterochromatin cluster. In human, only four fam-
ilies are emerging: an active cluster, an enhancer cluster,
a Polycomb-repressed cluster and a heterochromatin/low
signal cluster. These families are highly similar between
the two species, while some exceptions are present high-
lighting specificities in the epigenomic regulation in each
species. For example, the presence of H4K20mel in introns
of long active genes in drosophila while it is associated with
polycomb-repressed genes in human (11). Interestingly, we
observe that the epigenomic colocalization score between
active and repressed families is lower in fly than in human,
suggesting that insulation of active and repressed families
is stronger in fly and that the fly 3D organization is slightly
more correlated to epigenomic information.

To investigate if domain boundaries are enriched in spe-
cific epigenomic states, for each genomic locus of a given
epigenomic family found previously, we compute the rela-
tive distance to the nearest TAD boundary: a distance of 0
(resp. 0.5) means that the locus is at the boundary (resp. in
the middle) of an IC. Figure 5C and F (left) shows the cumu-
lative distribution functions (CDF) of these distances for ev-
ery family. If the CDF of a given epigenomic family is below
(resp. above) the black dashed curve closed to the bound-
ary (distance 0), it means that this family is less (resp. more)
found at domain boundaries than expected (Supplementary
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Figure 4. (A) Domain (squares) or boundary (stars) true positive rate as a function of the false discovery rate between segmentations obtained from two
different Hi-C normalization scheme. (B) Distribution of domain size predicted by IC-Finder for the different schemes. The total number of domains is
given in the legend. (C) Examples of predicted segmentations for a genomic region of chromosome 3L of drosophila (10). Top: Hi-C map and boundaries
predicted by default. Bottom: probability p,; for two loci to be predicted as belonging to the same topological domain (IC-Finder option 1).

Figure S11). In general, we observe that active families are
enriched at the boundaries of domains while inactive fam-
ilies are more enriched in the core of the TADs. With the
notable exception that in flies the heterochromatin family is
enriched at the boundaries illustrating the scattering of con-
stitutive heterochromatin into small domains (Supplemen-
tary Figure S12) in this organism (except at the centromeres
and for pericentromeric regions that were not considered
in our study) (10). As previously, the correlation between
epigenomics and TAD localization (enrichment or deple-
tion at the boundaries) is more pronounced in drosophila.
To investigate if higher degrees of organization are also
correlated to epigenomics, we compute the epigenomic
colocalization score and the distribution of relative distance
for the six or four families found at the TAD Ilevel but at
a higher hierarchy (Figure 5B and E, right and Supple-
mentary Figure S10B and D). In fly, we observe a strong
loss of colocalization for active families while facultative
(polycomb-repressed) and constitutive heterochromatin are
still self-enriched in IC. Strikingly, except the Heterochro-
matin family that remains isolated in small ICs, other fami-
lies are now poorly insulated from each other by interaction
compartments (C,, , = 1), suggesting that at this degree of

organization, small active TADs have merged with larger
inactive TADs into big compartments that are less epige-
nomically defined (Supplementary Figure S10B). Bound-
aries of such ICs are still enriched in active genes but less
than at the TAD level, suggesting a weak loss of associa-
tion between active genes and boundaries at this upper level
of hierarchy. In human, at this level of hierarchy, families
remain partly self-colocalized and insulated, while bound-
aries are only weakly enriched in active families. Interest-
ingly, while the epigenomic colocalization score slightly de-
creases for inactive families, it weakly increases for active
families. This suggests that at this hierarchy, IC compart-
ments are better associated with active chromatin (Supple-
mentary Figure S10D).

DISCUSSION AND CONCLUSION

In this article, we have presented a new method, IC-Finder,
that allows to extract from Hi-C contact maps, a 3D seg-
mentation of the genome into interaction compartments.
Numerous recent experimental evidences have enlightened
the functional role of these ICs that may constitute insulated
neighborhoods and may help maintaining a proper gene ex-
pression pattern, by either promoting or repressing long-
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range contacts between enhancers or silencers and promot-
ers (27,28). A prerequisite to better understand the mecha-
nisms behind the formation and control of ICs is therefore
to properly identify them. Consequently, several methods
have already been developed in the past years (3,9,14-16).
A main originality—and strength—of IC-Finder is that
it has been designed under the assumption that Hi-C maps
reflect the underlying polymeric nature of chromatin (29).
This was motivated by our recent work on chromatin fold-
ing where we showed that experimental data in fly are
compatible with a block copolymer model when mapping
blocks with the epigenomic information (18-20). This led
us to propose a hierarchical clustering approach whose
stopping criterion accounts for such polymeric proper-

ties. The method depends on only two contrast parame-
ters whose default values have been assigned by a learn-
ing approach on a restricted experimental set. Importantly,
we were able to test the reliability and the performance
of IC-Finder on a benchmark of in silico Hi-C maps that
we built by simulating contact frequency of block copoly-
mers with different epigenomic segmentations. As com-
pared to other works, this confers the advantage of test-
ing and comparing methods on realistic maps with known
segmentations. Particularly, we showed that IC-finder (with
the default—untuned—parameters) not only outperforms
all the other published methods (except TopDom (14)) in
identifying the ICs but is numerically more efficient espe-
cially for large maps and offers unique integrated options
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to investigate the hierarchical chromatin folding and to ac-
counts for experimental uncertainties.

Indeed, since experimental maps are inherently noisy, in
particular due to finite sampling errors, inferred ICs and
their boundaries should be preferentially defined in a statis-
tical sense. We addressed this issue by proposing a resam-
pling method that improves the reliability of our inference
scheme. IC-finder is the first segmentation method that al-
lows to estimate the robustness of its prediction regarding
the experimental errors. We believe this option should be
generalized to other works on IC segmentation to provide
a more robust and fair - probabilistic rather than determin-
istic - description of ICs and their boundaries.

It is already clear from a visual inspection of Hi-C maps
that there is not a uniquely-defined segmentation but rather
a full hierarchy of organization into ICs: several consecu-
tive small ICs may be clustered to form larger ICs. Inter-
estingly, such hierarchy is a hallmark of the folding proper-
ties of a block copolymer as illustrated by the in silico con-
tact maps (Supplementary Figure S4): due to the specific at-
tractions that promote internal folding, epigenomic blocks
constitute the first—irreducible- layer of organization; how-
ever, the existence of specific long-range interaction be-
tween ICs may induce the formation of complex—higher
order—patterns. A consequence of this hierarchy is that
there exist many possible—ordered—choices of segmenta-
tions for the same map. By default, IC-Finder identifies one
level of the hierarchy that, we expect, corresponds to the
finest-grained segmentation given the experimental noise.
However, it offers the option to investigate the higher de-
grees of organization by tuning the contrast parameters that
control the merging of consecutive putative ICs into the al-
gorithm. In this way, it is similar to TADtree (9) or Armatus
(15) which also allow to uncover the hierarchical properties
of chromatin folding.

As an application of IC-Finder, we compared the seg-
mentations of Hi-C maps obtained before and after differ-
ent normalization procedures (21,23,25). We found that al-
most 30% of ICs are not conserved between raw data and
any normalization scheme and we revealed a slight but sig-
nificant discrepancy between the different normalization
approaches. This confirms that normalization is a key is-
sue when analyzing Hi-C maps and that any segmentation
should be conditioned to the used normalization.

We finally asked whether the segmentation obtained in fly
and human cells is related or not to the segmentation into
chromatin states obtained recently by a HMM approach
(11). Despite some species specificity, our results clearly
demonstrate that ICs in fly and in human are preferentially
associated with specific groups of epigenomic states among
which the enhancer, the active, the PcG and the heterochro-
matin epigenomic family. This further confirms the view
that the hierarchical folding of the genome results partly
from the specific ‘like-like’ clustering of chromatin states
and can thus be well described by a block copolymer frame-
work (18,19,30). However, recent studies in human (3) have
revealed that IC might also result from the active process of
loop extrusion that produces different patterns of interac-
tions as the one expected by a copolymer model (28,31). Im-
provement of the IC-Finder approach would thus require to
also account for this active folding mechanism. More gener-

PAGE 10 OF 11

ally, it is likely that the progresses in experimental Hi-C tech-
niques would reveal higher-complexities at smaller scales in
the organization of the—putatively assumed—irreducible
ICs. This will prompt us to renew our parameter learning
process and as mentioned just before probably complement
our strategy of segmentation based on a refined theoretical
chromatin folding prior.

In conclusion, IC-Finder, based on
mechanistic—polymeric—folding principles, is the first
IC calling method to allow within the same, user-friendly,
publicly-available and numerically-efficient software, to
infer robustly the elementary segmentation of a Hi-C
map without the need of parameter tuning, to investigate
the different degrees of chromatin organization, and to
estimate the prediction robustness regarding experimental
errors. It represents a valuable ’all-in-one’ tool to investi-
gate the relation between the spatial organization of the
genome and its link to epigenome and gene regulation.
In particular, it might be used to build predictive models
relating epigenomic information and 3D features like IC
boundaries or long-range contacts (32-34).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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