
ARTICLE

Received 5 Jul 2016 | Accepted 4 Oct 2016 | Published 24 Nov 2016

Meta-adaptation in the auditory midbrain under
cortical influence
Benjamin L. Robinson1,2,*, Nicol S. Harper3,4,* & David McAlpine1,5

Neural adaptation is central to sensation. Neurons in auditory midbrain, for example, rapidly

adapt their firing rates to enhance coding precision of common sound intensities. However, it

remains unknown whether this adaptation is fixed, or dynamic and dependent on experience.

Here, using guinea pigs as animal models, we report that adaptation accelerates when an

environment is re-encountered—in response to a sound environment that repeatedly

switches between quiet and loud, midbrain neurons accrue experience to find an efficient

code more rapidly. This phenomenon, which we term meta-adaptation, suggests a top–down

influence on the midbrain. To test this, we inactivate auditory cortex and find acceleration

of adaptation with experience is attenuated, indicating a role for cortex—and its

little-understood projections to the midbrain—in modulating meta-adaptation. Given the

prevalence of adaptation across organisms and senses, meta-adaptation might be similarly

common, with extensive implications for understanding how neurons encode the rapidly

changing environments of the real world.
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T
o represent the world’s vast range of sounds, sights
and other sensations, neurons adapt their sensitivity to
accommodate current environmental statistics (such as

overall intensity or contrast), enabling them to code auditory,
visual and tactile objects with greater efficiency or precision1–15.
However, it takes time for sensory systems to assess these
statistics with precision and adapt to them (approximately half a
second in audition16), during which the neural representation,
and the organism’s survival, are potentially compromised. Given
the fundamental trade-off between adapting rapidly and adapting
precisely, we investigated whether sensory systems can exploit
prior knowledge of an environment to mitigate this conflict.

Employing a stimulus that alternates between loud and quiet
environments, we show that neurons in the auditory midbrain
adapt more rapidly each time the loud environment is
re-encountered, eventually doubling the speed at which they
adapt to it. This phenomenon, which we term meta-adaptation,
suggests that prior knowledge of an environment enables neurons
to assess features of that environment more rapidly. The existence
of such sensory memory is surprising; neurons in the auditory
midbrain are thought to retain sensory information over just
fractions of a second, two orders of magnitude shorter than the
learning effect we describe16. Given the extensive corticofugal
pathways between cortex and midbrain—the functions of
which are a matter of intense research interest17–25—we
assessed whether these pathways might play a role in the
generation of meta-adaptation in the midbrain. By reversibly
inactivating auditory cortex, using a well-described cryoloop
cooling method26,27, we find that acceleration of adaptation is
attenuated. We hypothesize that the meta-adaptation—the
acceleration of adaptation with experience—employs a cortical
memory trace of past environments to maximize the speed with
which midbrain neurons adapt to a change in the environment.

Results
The switching stimulus. We first ascertained whether adaptive
coding—the process by which neural coding becomes suited to
the stimulus statistics—is itself subject to adaptation. To do so, we
assessed the speed at which neurons in the auditory midbrain
(inferior colliculus (IC); Fig. 1a) adapt with increasing experience

of a sound environment. We generated two different
environments, loud and quiet, characterized by the most common
(80%) sound intensities spanning the ranges 69–81 or 45–57 dB
SPL (decibels sound pressure level), respectively. Each sound
environment comprised a continuous broadband noise whose
intensity was randomly selected every 50 ms from that environ-
ment’s distribution of sound intensities. The two environments
alternated every 5 s (Fig. 1b,c), to create a switching stimulus1, in
which each environment was presented on at least 24 occasions.
This was presented diotically (identically to both ears, via
calibrated headphones) to anaesthetized guinea pigs and the
responses of single neurons in the IC were recorded using
extracellular tungsten microelectrodes (see the ‘Methods’ section).
78 neurons were recorded from 14 guinea pigs.

Adaptation accelerates with increasing stimulus exposure.
In previous studies, using the same switching stimulus, we
demonstrated1,2 that most IC neurons (B98%) respond to a
transition to the loud environment by adapting their firing rates
(Fig. 1d) to accommodate the most commonly occurring sound
intensities. Specifically, we showed that switching from a quiet to a
loud environment elicits an exponential decay in a neuron’s firing
rate—from an initially high rate to a lower, steady-state rate
(B160 ms median time-constant, 74–204-ms interquartile range).
This adaptation of spike rate—associated with a shift of
neural firing-rate-versus-sound intensity (rate-intensity) functions
(Fig. 1e)—tended to position a neuron’s most intensity-sensitive
domain (typically the slope just above threshold), over the most
commonly occurring intensities1,2. At a population level, this
form of adaptation improves the coding precision of the most
common sound intensities2.

Here, we assessed the neural population response to the loud
environment, defined as the average firing rate over the recorded
neural population in each 50-ms epoch since the start of the
loud environment, averaged over a number of presentations
(adaptation to the quiet environment was less pronounced1 and is
excluded from our analysis). Adaptation, in the form of a decay
in population firing-rate over time, is clearly evident in the
population response (Fig. 2a; 78 neurons, averaged over
presentations 11–24), and can be quantified in terms of an
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Figure 1 | Auditory midbrain responses to switches between sound-intensity environments. (a) Recording set-up. Electrode in IC. IC receives input from

ears via contralateral cochlear nucleus (CN), and, indirectly, ipsilateral CN (dotted line). Auditory cortex (AC) receives from IC via medial geniculate body

(MGB) and also gives bilateral feedback. Cooling loops (blue). (b) Section of broadband noise sound stimulus, quiet (grey) and loud (red) environments.

(c) Level distribution per environment type. (d) Firing rate over time of single neuron to stimulus. (e) Firing rate versus stimulus intensity of neuron per

environment. Superimposed thick lines represent high-probability regions of c.
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exponential decay with a time-constant (tadapt) of 337 ms
(exponential versus flat line, Poo0.0001, f-test). This is
slightly larger than, but of a similar order of magnitude to, the
time-constants we previously reported for individual IC neurons1.
To determine whether adaptive coding is influenced by
experience of the switching stimulus, we calculated the
time-constant of adaptation (of the population response)
for successive 5-s exposures to the loud environment (Fig. 2b,

exponential versus flat line; Po0.05 in all 5 cases, f-test).
Unexpectedly, we found that adaptation accelerates with
increasing presentations of the environment (Fig. 2c). This
increase in the rate of adaptation can itself be characterized by an
exponential (Fig. 2c, tmeta¼ 1.9 presentations of the environment,
exponential versus flat line; P¼ 0.013, f-test), and indicates
that the speed of adaptation of the population response increases
by a factor of B2, from 432 to 234 ms (Fig. 2d). We term this
higher-order adaptation ‘meta-adaptation’.

Meta-adaptation is inherently more challenging to measure for
individual neurons, since it ideally requires adaptation time-
constants to be assessed on a single-presentation basis (that is, in
response to individual exposures to the 5-s stimulus). Since neural
responses are intrinsically noisy, this limits the accuracy with which
these measurements can be made from single presentations, whilst
averaging responses of individual neurons over many presentations,
rather than over the neural population to one or a few
presentations, abolishes the temporal resolution required to observe
the effect. Despite this limitation, however, responses of a
proportion of neurons (15%; 12/78 neurons) were robust enough
to observe statistically significant meta-adaptation, measured using
the same methods as for the population (tmeta¼ 0.4–6.2, exponen-
tial versus flat line; Po0.05, f-test; Supplementary Fig. 1a,b).
Further, removing these neurons from the larger sample of neurons
had little effect on the meta-adaptation observed in the remaining
population response (Supplementary Fig. 1c); meta-adaptation was
significantly present (tmeta¼ 1.9 presentations, exponential versus
flat line; P¼ 0.04, f-test), and of only marginally less strength (tadapt

increased in speed from 404 to 234 ms with repeated exposures to
the loud environment). Thus, meta-adaptation is evident at the level
of single neurons, and in the population response, even when the
population response is analysed in the absence of the most-robustly
responding neurons in which it was evident on a single-neuron
basis. Finally, by examining the time-constant of adaptation for each
of the 78 neurons for every consecutive presentation of the loud
environment (Supplementary Fig. 1d), we find that the mean time-
constant over the neurons decreases as the number of presentations
increases, showing statistically significant decay (tmeta¼ 1.2
presentations, exponential versus flat line; P¼ 0.0067, f-test).

Persistence and possible function of meta-adaptation. How
persistent is meta-adaptation? Do neurons recover from their
meta-adapted state sometime after the end of the switching
stimulus, or is meta-adaptation an enduring change in brain
state? To answer this question, we took advantage of the fact that
we made successive recordings (from different neurons) in each
animal. If meta-adaptation reflects an enduring change in brain
state, occurring once only for each animal in response to our
stimulus, we would expect to observe it in only the very first
recording. We therefore re-analysed our data excluding data from
the very first neural recording to the switching stimulus in each
animal—if neurons recover from meta-adaptation, acceleration of
adaptation should still be apparent over the time course of the
responses to the remaining presentations of the switching sti-
mulus. Meta-adaptation was clearly evident in the neural popu-
lation response of the remaining 64 later-recorded neurons
(tmeta¼ 2.2 presentations of the environment, exponential versus
flat line, P¼ 0.012, f-test), with adaptation time-constants
decreasing from 426 to 235 ms over the course of the switching
stimulus. Hence, meta-adaptation recovered in the interval
between recordings (which were in the order of 5–20 min), and
therefore likely represents a form of sensory memory that fades
over time, rather than a persistent change in brain state.

What is the functional relevance, if any, of an accelerating rate
of adaptation? Does it accelerate the adjustment of rate-intensity
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Figure 2 | Meta-adaptation in the auditory midbrain. All plots for loud

environment. (a) Average firing-rate over time of a neural population of 78

IC neurons (from 14 guinea pigs), averaged over presentations 11–24. Line,

exponential fit tadapt¼ 337 ms (exponential versus flat line, Poo0.0001,

f-test). (b) Exponential fits after different numbers of presentations

(exponential versus flat line; Po0.05 in all 5 cases, f-test). (c) Adaptation

time-constant versus presentation number. Line, exponential fit tmeta¼ 1.9

presentations (exponential versus flat line; P¼0.013, f-test). (d)

Bootstrapped initial (red, median tadapt¼432 ms over 10,000 bootstraps)

and steady state (black, median tadapt¼ 234 ms) adaptation time-

constants, 95% confidence intervals. (e) For the same population of 78

neurons the average rate-intensity functions for the high-probability sound

levels at times from environment onset, before meta-adaptation. A

five-point average was used for display. (f) As e but after meta-adaptation.

The grey shaded region indicates the standard deviation in the population

response to a given level. (g) The neural population coding precision (d0)

versus time since environment onset, before (red), after (black)

meta-adaptation. All d0 normalized to the maximum of the black line.
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functions to improve coding precision of common sound levels?
To address this question, we examined the change in the average
rate-intensity function of the neural population (78 neurons) over
the 5-s time course of the loud environment, before and after
meta-adaptation was complete (for highly probable intensities
only; see the Methods section). Before meta-adaptation, the
population rate-intensity function did not adapt to its settled state
until at least 1,200 ms following the switch to the loud
environment (Fig. 2e). Once meta-adaptation was complete,
however, the rate-intensity function largely settled to its final
configuration some 200 ms following the switch (Fig. 2f).
This dependence of the rate at which rate-intensity functions
settled to their final, adapted state was also apparent at the
single-neuron level, in the 12 neurons for which meta-adaptation
could be measured from single-trial responses (Supplementary
Fig. 2a–d), and in the population response (66 neurons) when
these 12 neurons were removed from the analysis (Supplementary
Fig. 2e,f).

We quantified the functional effects of meta-adaptation by
calculating the d0 (a measure of coding precision28–32) of
the population (78 neurons) rate-intensity function for the
highly probable intensities as a function of time (Fig. 2g),
corroborating the change we observed in the rate-intensity
functions. The d0 measure is high when the slope of the function
is steep, consistent intuitively with a smaller change in the coded
variable eliciting a larger change in the firing rate. Likewise, d0 is
smaller when the variability is high (see the ‘Methods’ section).
Whilst coding precision before meta-adaptation clearly increases
over the first 1,500 ms or so of the 5-s exposure, the adaptation of
coding precision following meta-adaptation occurs so rapidly that
it cannot be fully captured by our measure (that is, within
B300 ms). This suggests that meta-adaptation enables the brain
to converge rapidly to a more-precise neural representation of the
most common sound intensities. Further, coding precision during
the steady state (41,500 ms) is slightly higher following
meta-adaptation than before, largely due to the relatively
steeper population rate-intensity function. Thus, before
meta-adaptation occurs, neural firing rates, rate-intensity
functions and coding precision all appear to adapt slowly,
whereas after meta-adaptation they adapt quickly.

Cooling cortex attenuates meta-adaptation. The relatively long
time course of meta-adaptation in the IC is somewhat surprising,
given the relatively short time course over which IC neurons are
thought to integrate information1,16. We hypothesized, therefore,
that meta-adaptation in the auditory midbrain might be mediated
by cortical feedback. Corticofugal pathways are extensive in
humans, and other mammals, and are thought to play a role in
adjusting neural sensitivity and plasticity of receptive fields,
although their exact function in hearing and other senses remains
to be determined17–25. To assess the possible role of
feedback from both cortices, we inactivated auditory cortex
bilaterally by means of localized cooling (using a cryoloop), whilst
simultaneously recording responses of IC neurons (52 neurons)
to the switching stimulus. Before applying our localized cooling
method to this question, we performed extensive calibration
experiments, measuring the temperature at different depths from
the cortical surface with thin insulated-thermocouple probes
(Supplementary Fig. 3a,b), and using electrodes placed either
within auditory cortex itself (Supplementary Fig. 3c), or just
inferior to cortex (Supplementary Fig. 3d), to ensure that our
cooling was sufficient to inactivate auditory cortex, whilst
avoiding inactivating subcortical structures by direct cooling
(see the ‘Methods’ section). Neural responses after cessation of
cooling were seen to recover in a subset of midbrain neurons

which could be held for long enough after cessation of cooling
(Supplementary Fig. 4).

Before cortical cooling, meta-adaptation was present (exponential
versus flat line P¼ 0.0092, f-test) in the 52 neuron population
response, and to a similar degree (tadapt decreased from 472 to
243 ms) to that observed for the larger population of IC neurons
(78 neurons). Surprisingly, cooling auditory cortex substantially
increased the time-constant of adaptation in IC neurons from 243
to 443 ms, a value statistically indistinguishable (by bootstrap
confidence intervals) from the 472 ms observed before
meta-adaptation had occurred in this population (Fig. 3a), suggest-
ing that cortical cooling attenuates meta-adaptation. To confirm
that cortical cooling inhibits the generation of meta-adaptation, we
initiated the switching stimulus in the cooled state for 29 of the 52
neurons. In contrast to when the cortex is active, the time-constant
of adaptation during cortical cooling does not significantly change
with repeated exposure to the loud environment (exponential
versus a flat line; P¼ 0.054, f-test), this despite meta-adaptation
being present before cooling for the same population of 29 neurons
(exponential versus flat line, P¼ 5.4� 10� 4, f-test). The
non-significant fit of the exponential function in the cool state
(Supplementary Fig. 5) was also slower (tmeta 3.7 versus 3.0
presentations) and shallower (47 versus 35% drop to steady state)
than in the warm state for the same 29 neurons. This does not
preclude the possibility that some meta-adaptation, of a degree
undetectable by our particular tests, might be generated intrinsically
within the IC itself, or from some other input.

We also examined the effect of cortical cooling on how quickly
coding precision adapts during the loud environment (Fig. 3b, 52
neurons for cool, 78 neurons for warm, rescaled appropriately),
using the standard d0 measure28–32 on the population
rate-intensity function for the most common sound intensities
only. Coding precision in the cooled state improves slightly over
the first 600 ms of the stimulus (Fig. 3b, blue line), more slowly
than in the warm meta-adapted state (black line), but faster than
before meta-adaptation (red line). However, coding precision in
the cooled state remains only marginally more precise than before
any adaptation has occurred in the warm, pre-meta-adaptation
state (start of black line). This suggests that cooling the cortex not
only attenuates meta-adaptation, but also limits the capacity of
adaptive phenomena to improve the precision of neural coding.
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Figure 3 | The effect of cooling the auditory cortex on midbrain

adaptation. All plots for loud environment. (a) For average population

response of the 52 of the 78 IC neurons for which cortical cooling was

performed, the bootstrapped initial (red, median tadapt¼472 ms over

10,000 bootstraps) and steady state (black, median tadapt¼ 243 ms) time-

constants of adaptation before cooling, and bootstrapped time-constant of

adaptation after cooling (blue, median tadapt¼443 ms). (b) Neural

population coding precision (d0) versus time since environment onset,

before (red), and after (black) meta-adaptation, and after cooling (blue),

95% confidence intervals. The blue line is calculated from the population

rate-intensity function of the same 52 neurons in a, the red and black lines

used all 78 neurons. All d0 normalized to the maximum of the black line.
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Models of estimation of the mean sound intensity. Our data
suggest that adaptation in the auditory midbrain is not a static
phenomenon but, instead, accelerates with experience, and that
this acceleration of adaptation is reduced or absent in the absence
of feedback from auditory cortex. To understand the implications
of these findings, we posit a model that accounts for the data. We
hypothesize two distinct functional methods by which the brain
might rapidly estimate the overall mean sound intensity of an
environment (that is, its mean intensity over a long duration,
such as seconds) to adapt to it, and hence to reach a state
of more precise coding. The first of these two methods, the
‘weighted-average method’, rapidly estimates the overall mean as
the exponentially decaying, weighted-average of the intensities
over the very recent past (a ‘sample mean’)1,33. Although
this method requires no learning about particular previous
environments, the precision of the estimate can be relatively poor.
Consider estimation of the mean of the loud environment of the
switching stimulus following a switch from the quiet environment
(being statistically stationary, each environment has a particular
fixed overall mean). For a weighted average with a time-constant
of 500 ms, such as before meta-adaptation, the estimate of the
overall mean of an environment varies substantially depending on
the recent history. The root-mean-square (RMS) error of the
estimated mean relative to the true overall mean settles at B3 dB
about 1 s into the switch period (Fig. 4a, see the ‘Methods’
section). A faster time-constant of 250 ms, such as we observed
after meta-adaptation is complete, enables more rapid estimation
of the mean, but shows even less accuracy (B5 dB RMS error),
and would render adaptive coding ineffective: deviations of just
twice the RMS error magnitude encompass the entire neural
dynamic range for sound intensity of most IC neurons.

A more rapid and precise method, however, by which the overall
mean intensity might be estimated would be to incorporate prior
knowledge about different environments: to recognize when an
environment is re-encountered and then recall its overall mean
intensity. For our switching stimulus, with its quiet and loud
environments—each with a distinct overall mean—the task then
becomes one of deciding which environment is currently
experienced, given the past few sound intensities. We term this
method the ‘recall method’, and it can be functionally (black box)
modelled in terms of a hidden Markov model25 employed to
recognize rapidly the remembered environments, given the recent
sound input (Fig. 4b; see the ‘Methods’ section). The overall mean
intensity is then estimated by weighting the remembered overall
mean intensity for each environment by the posterior probability
that either environment is currently encountered. By this method,
the overall mean intensity is rapidly and precisely assessed, as
compared with the apparently simpler, but ultimately slower and
less-precise, reliance on calculating the short-term sample mean
employed by the weighted-average method (Fig. 4a). A potential
disadvantage of this recall method is that it requires previously
learning the statistics of the environments, but the ultimate
outcome—more rapid and precise adaptation to previously
experienced environments—has obvious benefits for listening
performance. We propose, therefore, that on first encountering a
novel sound environment, the auditory brain exploits a mechanism
that estimates the short-term sample mean and that this reflexive,
but slow, adjustment of neural firing rates is implemented by, or at,
the level of the midbrain. We further propose that, however, over
time the different statistical environments encountered are
learned at a cortical level and, via the corticofugal pathway, this
learning accelerates adaptation in the midbrain. In this
framework, when cortical input is lacking, midbrain neurons
revert to a simple averaging of sound intensity with little capacity
to adapt more quickly to previously encountered sound
environments (Fig. 4c).

Discussion
We investigated whether adaptation time-scales are fixed and
independent aspects of the adaptation process of sensory systems,
or are themselves subject to adaptation over time. The time-scale
of adaptation in the auditory system—and sensory systems more
generally—has been the subject of increasing research interest as
the crucial role of adaptation in neural coding and sensory
processing has become apparent. We have demonstrated that
functional adaptation to stimulus statistics, which improves
neural coding of sound level in the auditory midbrain,
accelerates each time an environment is re-encountered. This
meta-adaptation is mediated by the corticofugal system, and
constitutes a novel form of sensory memory, enabling
increasingly repeated environments to be encoded more precisely
with increasing speed.

Our data—consistent with previous findings that adaptation in
the IC occurs on the order of hundreds of milliseconds to
changes in the mean sound intensity, as well as to higher-order
statistics such as the variance and kurtosis,—suggest two new
and surprising features of the time course of adaptation.
First, adaptation time-scales appear not to be fixed and invariant
but are, rather, themselves subject to an adaptive process over
time, such that adaptation speeds up with repeated stimulus
presentations. This acceleration of adaptation results in a more
rapid improvement in neural coding of sound levels as the brain
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recalled by the cortex, a faster method that allows for faster adaptation.

Cooling the cortex attenuates this phenomenon.
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accrues past experience of the sounds. This longer-term change,
which occurs on the order of tens of seconds, may be related to
the studies of Ulanvosky et al.13, who showed that, in auditory
cortex, several adaptive processes occur concurrently, identifiable
by different time-scales, encompassing hundreds of milliseconds
and tens of seconds, or to the long-term adaptation of Dean et al.1

in IC. However, unlike these studies, which describe this timescale
as a form of spike-rate adaptation itself, we have uncovered a
change in the rate of adaptation—adaptation of adaptation
itself—a qualitatively different phenomenon which we term meta-
adaptation.

Second, we find that acceleration of adaptation in IC neurons is
reduced or abolished when auditory cortex is inactivated by
cooling, suggesting that meta-adaptation in the auditory midbrain
is influenced by feedback from the auditory cortex. These findings
suggest a function for the corticofugal pathways in influencing
neural coding of the unfolding sensory environment, expanding
the temporal sensitivity—the neural memory—of midbrain
neurons, and rendering them sensitive to stimulus repetitions
across tens of seconds. This function complements an increasing
number of functions recently suggested for this seemingly
important pathway including, for example, the re-learning of
auditory sensory information following altered sensory input, or
in other sensory systems, changes to the representation of visual
stimuli22,24. These findings also suggest a more complex view of
the auditory midbrain than is often imagined, as a site where
neurons integrate short-term stimulus data from ascending
inputs with longer-term sound history provided by ‘top–down’
influence from auditory cortex.

That meta-adaptation occurs in the midbrain, and that it is
influenced by the activity of the auditory cortex—a processing
stage in which sensory integration appears to unfold over an
appropriate timescale—raises the question as to what stimulus
features (or response features) are responsible for eliciting it. Is it
the number of presentations of the quiet, or the loud
environment, or the number of transitions between the two, or
the cumulative number of evoked action potentials, or—perhaps
most consistent with our model hypotheses—the total duration of
time (or number of 50 ms epochs) for which the loud
environment is experienced? We also cannot say for certain
what is the role of meta-adaptation in neural coding, although we
speculate with our model that it might be a mechanism to ensure
more rapid adjustment to an efficient and precise neural code for
the current sound environment by recalling the environment’s
statistics from previous encounters. It is possible that some
environments might be easier to recognize and recall than others,
and therefore might evoke meta-adaptation more quickly, or to a
greater degree, hence providing a test of the model. Distinguish-
ing two environments with less-overlapping sound-intensity
distributions than we employ here, for example, might generate
meta-adaptation more rapidly and powerfully, as it would be
easier to determine from hearing the intensities of a few epochs
which environment was currently experienced. These and several
other questions will form the subject of future research into the
nature of meta-adaptation.

These findings provide an experimental basis by which to motivate
models of neural function in changing environments, and have
implications for neural diseases, such as tinnitus, autism and
schizophrenia, that involve ‘top–down’ processing, aberrant auditory
experience and estimation of the changing statistics of an environ-
ment34–36. We speculate that, as with adaptation, meta-adaptation
may be ubiquitous across sensory systems and brain centres.

Methods
Sound stimuli and neural recordings. All experiments were carried out in
accordance with the Animal (Scientific Procedures) Act of 1986 of Great Britain

and Northern Ireland. All procedures were reviewed and approved under UK
Home Office Licence (covered by both Project and Personal licenses). Young adult
pigmented guinea pigs (Cavia porcellus; weight 350–550 g) of both sexes were
anaesthetized with urethane and placed in closed-field auditory apparatus as
previously described2. Stereotaxic craniotomies were performed over the right IC
and the auditory cortices bilaterally. Sounds were generated digitally, converted to
analogue signals, attenuated and amplified before being presented to within a few
millimetres of the tympanic membranes via loudspeaker units. Extracellular
recordings were made from single neurons in right IC and AC, using glass-coated
tungsten electrodes. Sound-responsive neurons were first detected by presenting
broadband noise or tones whilst advancing a single electrode through the IC, until
a single neural unit could be isolated. All neurons responsive to broadband noise
were presented with the switching stimulus.

Subsequent to isolation, the frequency tuning and other basic aspects of the
neural response were characterized using our standard methods1. After that the
response was recorded to a ‘switching stimulus’1. This consisted of a continuous
broadband noise stimulus (50–25 kHz bandwidth) presented for 10–30 min, in
which the sound intensity was adjusted every 50 ms (an epoch) to a new value
chosen randomly from one of two defined distributions. The distributions were
discretized in 2 dB steps, spanning from 21 to 85 dB SPL. Each distribution contained
a region of highly probable levels (the stimulus ‘high-probability region’) over either
51±6 dB SPL (‘quiet’) or 75±6 dB SPL (‘loud’), from which levels were selected with
an overall probability of 0.8. The two sound level distributions were alternated in
time, such that sound intensities were chosen from one distribution for 5 s before
switching to the other. Thus each switch period consists of a half-period long
presentation of the quiet environment, followed by a half-period long presentation of
the loud environment. At least 24 switch periods were played (lasting 4 min),
precisely how many depending on how long the neuron could be isolated for. The
switching stimulus was played in one of three ways: when recording from a neuron
for which no cooling was performed, it was played once (26 neurons); when cooling
was performed it was either played continuously before and throughout the cooling
process (23 neurons), or it was stopped before cooling and then restarted when the
cortex was cooled (29 neurons). The level sequence differed in each switch period
(Fig. 1), and for the whole switching stimulus there were two different overall
intensity-sequences (‘seeds’), a neuron being presented with just one seed or the
other. The interval between recordings from individual neurons, during which time
further neurons were being sought, was 5–20 min. Short bursts of broadband noise
(50 ms duration) were presented during this ‘search’ phase.

Cortical inactivation by cooling. We modified a proprietary cryoloop cooling
system previously described26 to accommodate two 4 mm diameter cryoloops
which could be placed into craniotomies and apposed to auditory cortices
bilaterally. Bilateral cooling avoids the limitations of many studies of the
corticofugal pathway that tend to leave the contralateral pathway intact, with the
likelihood of incomplete removal of descending inputs. Cooled methanol was
passed through the cryoloops and pump speed controlled manually to achieve
desired temperatures. To assess the effect of cortical inactivation on midbrain
adaptation one of two protocols were performed as mentioned above. For some
neurons (23 neurons), B10 min of adaptation stimulus was presented, then
cortical cooling was rapidly induced and maintained for 10 min once steady-state
had been reached. Cooling was then discontinued, and in some cases recordings
continued for a further 10 min once cortex had returned to pre-cooled
temperatures. For other neurons (29 neurons), to control for possible long-term
effects of presenting continuous sound stimuli, a discontinuous stimulus protocol
was used, in which stimuli were not presented during the cooling or rewarming
transitions, but only once steady states had been reached in each of the warm, cool
and re-warm states.

Before these experiments, we conducted extensive calibration and control
experiments including recording temperatures at multiple cortical and subcortical
depths to ascertain the spread of cooling through the brain, as well as recording in
IC whilst cooling non-auditory cortex overlying IC, to ensure that our data could
not be explained by a direct temperature effect on IC. Drawing on previous
reported cryoloop experiments in the same species and using the same cryoloop
design23 to ensure appropriate cyroloop dimensions and correct placement on
auditory cortex, we performed our calibration experiments in several individual
animals. These calibration data are based on the previous finding26,27 that
inactivation of full-thickness cortex with a cryoloop occurs when cortical
temperature reaches 20 �C. We therefore measured cortex temperature at a
variety of depths from the surface for different cryoloop temperatures, and
defined the (surface) loop temperature necessary to achieve a specific
temperature 2 mm below the cortical surface (that is, roughly the full thickness of
cortex in this species) of 20 �C. The temperature change at a depth of 2 mm
when loop temperature is 15 �C, demonstrates that full thickness cortex
(2 mm deep) is cooled to 20 �C when surface loop temperature is 15 �C
(Supplementary Fig. 3b).

Following this calibration procedure, we then confirmed cortical inactivation for
this temperature using multi-unit recordings via electrodes placed stereotactically
down through auditory cortex. Neuronal activity recorded at a depth of 2,100mm
below the surface of auditory cortex, that is, at the deepest extent of layer VI,
typically ceased entirely after B5 min of cooling (Supplementary Fig. 3c). Five
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minutes after the pump controlling the flow of coolant is switched off, neuronal
activity returns. However at 2400mm below the surface, several hundred
micrometers deeper than then deepest extent of cortex, neuronal activity does not
cease completely even after cooling for more than 10 min, suggesting that cooling the
surface of the cortex to 10 �C is sufficient to cool full-thickness cortex but does not
inactivate neurons even a small distance below the deepest levels of the cortex
(example neuron, Supplementary Fig. 3d). This was further tested by cooling the
loop to 5 �C and recording from the same neuron. At this lower temperature, the
neuron was indeed inactivated, suggesting that whilst cooling the cortical surface to
10 �C does not inactivate subcortical structures, 5 �C at the cortical surface is
sufficiently low to do so. These measurements were obtained from an animal
weighing 510 g (weights of guinea pigs employed in these experiments ranged from
350–700 g). Similar findings were made in several electrode tracks within the AC in
three different animals. Having established the principle that, in accord with
previously published data, cooling full thickness cortex to 20 �C or lower was
sufficient for neuronal inactivation, we did not record AC neuronal activity routinely
in every experiment, but did record loop temperature.

Data analysis. For each neuron we constructed peri-stimulus-time-histograms
(PSTHs) for each consecutive presentation of the ‘loud’ environment, using time bin
size of 50 ms, matching the epochs of the stimulus (Fig. 1). As we needed to measure
responses in short time windows given limited data, we then averaged over all the
neurons to provide the population PSTH for each consecutive presentation of the
loud environment. Then we averaged the population PSTHs over presentations 11–
24 (Fig. 2a). We also averaged over the population PSTHs for sets of three con-
secutive 5 s presentations of the loud environment, to produce a series of PSTHs as a
function of presentation number, where the presentation number is the first pre-
sentation of the set of three (Fig. 2b,c). Single exponential decay constants were fit to
these PSTHs over the 2.5 s following the switch, giving a time-constant tadapt of the
change in firing rate (Fig. 2a,b). The fit was performed by minimizing mean squared
error over time bins t (50 ms bins), between the estimated firing rate ŷ(t)¼ aþ b
exp(-t/tadapt) and the true firing rate y(t), using minFunc (ref. 37). The parameters a,
b and tadapt were randomly reinitialized and fit 100 times and the best fit taken.
Goodness-of-fit was assessed against a similarly fitted flat line ŷ(t)¼ a using the
f-test. Time-constants of adaptation were thus derived for successive presentations
of the loud environments (Fig. 2c). This analysis provided a series of time constants
and was the first stage of the analyses for the full data set (78 neurons), the
first-recording-excluded data set (64 neurons), the no-single-neuron-fit data set
(66 neurons), the cooled data set (52 neurons) and the started-while-cooled data set
(29 neurons). As an aside, note that the longer time-constants in the time-constant
succession, over the range from presentation 11 to 24 (Fig. 2c), are similar
to the time-constant found using all data from switches 11 to 24 (Fig. 2a). This
suggests that the longer time-constants (Fig. 2c) dominate in determining the
many-presentation-averaged time-constant (Fig. 2a).

To assess how the time course of adaptation might itself change over
successive presentations of the loud environment, an exponential decay curve
t̂adaptðnÞ ¼ ameta þ bmetaexp ð� ðn� 1Þ=tmetaÞ was fit (again using mean squared
error, minFunc (ref. 37), and reinitialization 100 times) to the adaptation time-
constant tadapt(n) versus presentation number n relationship, with subscript ‘meta’
denoting that this is meta-adaptation. Only the first and then every third
presentation set was used in the fitting to avoid using overlapping data. Goodness-
of-fit was again assessed against a similarly fitted flat line t̂adaptðnÞ ¼ ameta using the
f-test. Hence this provides a curve describing the meta-adaptation (Fig. 2c) from
which the initial time-constant (ametaþ bmeta) and steady-state time-constant
(ameta) could be taken. Measuring adaptation and meta-adaptation in single
neurons was performed in exactly the same way as for the population response, but
using the PSTHs of single neurons, rather than the PSTHs averaged over the neural
population (Supplementary Fig. 1).

For the neural population response, the above procedure was also bootstrapped
by selecting a set of neurons with replacement from the population and fitting
their adaptation and then meta-adaptation, and repeating this 10,000 times
(1,000 for the 64 neuron analysis). The bootstrapping provided a distribution of
possible values of the initial and steady-state time-constants of the meta-adaptation
for which confidence intervals could then be assessed. This bootstrapping was
performed for all neurons for which responses had been recorded to the stimulus
(Fig. 2d, 78 neurons). For this analysis in the cooled condition, as the exponential
fit was not significant versus a flat line for the case where the stimulus was
started in the cooled state (Supplementary Fig. 5, 29 neurons), the adaptation
time-constant for the cooled state was assessed as the single number provided from
the flat line fit, and included flat line fits (over 24 presentations) for neurons
(23 neurons) under the cooled condition where the switching stimulus was played
continuously during cooling (Fig. 3a, 52 neurons).

Rate-intensity functions for individual neurons (Fig. 1e, Supplementary Fig. 2)
were constructed by finding the average response (Fig. 1d) for a given sound level
(Fig. 1b) for either the loud environment presentations or the quiet environment
presentations. Rate-intensity functions for the neural population response are the
average of all the single-neuron rate-intensity functions in the population.
Rate-intensity functions for the neural population response and for single neurons
were measured for the loud environment in different states of adaptation and
meta-adaptation (Fig. 2e,f, Supplementary Fig. 2). In each case the population

rate-intensity function was measured as the adaptation progressed by using data
from consecutive spans over the duration of the presentations. Rate-intensity
functions were measured using just data from either the first three presentations
(Fig. 2e, Supplementary Fig. 2a,c,e) or presentations 10–24 (Fig. 2f, Supplementary
Fig. 2b,d,f). Most of the rate-intensity functions were only calculated over the
high-probability region as data were limited particularly for the early spans over the
presentations. These rate-intensity functions were displayed after a 5-point moving
average (which was not used in the calculations in the next paragraph). The
variance on population rate-intensity function (Fig. 2f) was calculated separately
for each seed, and then the average taken weighted by the relative occurrence of the
seeds. The standard deviation was then calculated as the square root of this
variance. Then a five point moving average was applied for display.

Measuring the relative discrimination capacity of the neural population
rate-intensity function, as a function of adaptation state, and for different states of
meta-adaptation, could be done over the high-probability region of the stimulus, as
in this region there was sufficient data. Assuming that the overall spike rate
represents the current sound level, a relative measure of how well the neural
population could discriminate nearby sound levels was calculated (Figs 2g and 3b).

The formula28–32 for this measure (d0), was d0 ¼ mu � mlð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 s2

u
þs2

l

� �r
. Here mu

is the spike rate averaged over the upper three sound-levels of the high-probability
region and ml is the spike rate averaged over the lower three sound-levels of the
high-probability region. For steady-state rate-intensity function in the meta-adapted
state, there is enough data to calculate the s.d. on the spike rate (Fig. 2f), and it is
approximately proportional to the square root of the spike rate. Thus for all our
calculations of d0 , which we only use as a relative measure, we set s2

u to mu, and s2
l

to ml. d0 was calculated for consecutive 400 ms spans over the duration of the switch
period, using data from the first three switch periods (Figs 2g and 3b, red lines),
switch periods 10–24 (Figs 2g and 3b, black lines) or switch periods 1–24 during the
cooled state (Fig. 3b, cyan line). When comparing d0 in the cool state (Fig. 3b, cyan
line, 52 neurons) with d0 in the warm state (Fig. 3b, red and black lines, 78 neurons),
mu and ml were appropriately rescaled to account for the differing neural population
sizes. Restricting the warm state d0 analysis to the 52 neurons that were used for the
cool state d0 analysis also produced qualitatively similar results.

Modelling. The weighted-average method estimates the fixed mean sound
intensity IL of the loud environment using a weighted sample of recent sound
intensities. This estimate ÎðtÞ at time epoch t is provided by a simple convolution
ÎðtÞ ¼

P1
m¼0 x t�mð ÞwðmÞ. Here integer t indicates the 50 ms epoch, where t¼ 0

is the first epoch of the loud environment presentation, and thus negative t will be
the quiet environment and 0 and positive t the loud environment, and x(t) is the
sound intensity in dB at epoch t. The sampling window w(m) has the form
w(m)¼ exp(�m/t)/Z, where Z ¼

P1
m¼0 expð�m=tÞ is the normalizing

denominator, and t is the time-constant of decay (in epochs) set to match values in
the physiology. The RMS error (Fig. 4a, dotted and dashed lines) of the estimate
of the mean ÎðtÞ with respect to the true mean IL of the loud environment, is given

by RMSE tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ

PN
n¼1 Îðt; nÞ� IL
� �2

q
, where n denotes different switch

periods of the loud environment (N¼ 1,000 switch periods were used in the
models).

The recall method is modelled using a hidden Markov model. The hidden
Markov model has two states; the state in a 50 ms epoch indicates whether it
believes it is in a loud or quiet environment. The sound levels decompose into just
three relevant observations; whether the observed sound level lies within
high-probability regions of the loud or quiet distributions or elsewhere. The model
(Fig. 4b) ignores long-term time structure of the switching stimulus and assumes
state transitions follow a Bernoulli process with a mean transition interval of 100
epochs. From previous experience of the switching stimulus, the model is taken to
have learned the appropriate transition probabilities and output probabilities to
describe the switching stimulus (shown in Fig. 4b), as well as the mean intensity of
the loud environment and of the quiet environment. Given these probability values
of the model, and the recent sound level observations, the model can estimate, at
time t since the start of a presentation, the probability pL(t) of being in the loud
environment and pQ(t)¼ 1-pL(t) of being in the quiet environment (the posterior
state probabilities)38. The estimate of the mean sound level at time
t is then given by ÎðtÞ ¼ pLðtÞILþ pQðtÞIQ, where IL and IQ are the mean intensity
of loud and quiet environment, values memorized from experience. The RMS error
of this estimate of the mean (Fig. 4a, solid line) is then calculated as for the
exponential averaging model.

Data availability. All neural response and cryoloop temperature data which
support this study are available from the corresponding author upon request.
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