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Abstract: Emerging data indicate that neurological complications occur as a consequence of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The blood–brain barrier (BBB)
is a critical interface that regulates entry of circulating molecules into the CNS, and is regulated by
signals that arise from the brain and blood compartments. In this review, we discuss mechanisms by
which SARS-CoV-2 interactions with the BBB may contribute to neurological dysfunction associated
with coronavirus disease of 2019 (COVID-19), which is caused by SARS-CoV-2. We consider aspects
of peripheral disease, such as hypoxia and systemic inflammatory response syndrome/cytokine
storm, as well as CNS infection and mechanisms of viral entry into the brain. We also discuss the
contribution of risk factors for developing severe COVID-19 to BBB dysfunction that could increase
viral entry or otherwise damage the brain.

Keywords: blood–brain barrier; SARS-CoV-2; COVID-19; brain; inflammation; thrombosis;
hypoxia; APOE

1. Introduction

The world is entering a new phase of the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) pandemic. The increasing availability of highly efficacious vaccines
will eventually begin to counter the rising numbers of coronavirus disease of 2019 (COVID-
19) cases, resulting in lives saved, disabilities prevented, and burdens on healthcare systems
mitigated. As we look forward to the future, we also reflect on the current tragedy of over a
million lives lost so far and the many more survivors of infection who face difficult recover-
ies. SARS-CoV-2 has proven to be an enigmatic virus, in that there is a wide array of clinical
presentations following infection, ranging from no symptoms to severe, life-threatening
disease and death. Further, although SARS-CoV-2 is predominantly a respiratory virus,
it can cause dysfunction of organs outside the lungs including the kidneys, heart, liver,
and brain [1–3]. Neurological complications of SARS-CoV-2 infection can be serious and
debilitating and have contributed to a decreased quality of life in a substantial portion
of the population in recovery from SARS-CoV-2 infection. Currently, there is evidence
that SARS-CoV-2 can contribute to neurological dysfunction through mechanisms that
include infection of CNS resident cells, which would involve viral entry into the brain,
and systemic activation of the immune system, which does not necessarily involve viral
entry into the brain, but rather pathophysiological interactions between the brain and
immune system. The vascular blood–brain barrier (BBB) is an important brain interface
that regulates the passage of substances between the blood and brain compartments and
has additional mechanisms for regulating neuroimmune communication. The BBB is thus
an important substrate for direct and indirect SARS-CoV-2 interactions with the brain. In
this review, we evaluate the participation of the BBB in SARS-CoV-2 infections that could
contribute to COVID-19-associated neurological dysfunctions.
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1.1. Structure and Functions of the BBB

The primary unit of the vascular BBB is the brain endothelial cell (BEC), and BECs
are associated with other cell types such as pericytes and astrocytes that support BBB
induction and maintenance (Figure 1). BECs have a specialized phenotype that contributes
to the regulation of substrate transfer into and out of the CNS. The barrier properties of
BECs are conferred, in part, through expression of tight junction protein complexes that
localize to endothelial cell–cell junctions and form a tight paracellular barrier that prevents
the diffusion of substances between cells. Tight junction protein complexes at the BBB
are comprised of occludens, claudins, and junctional adhesion molecules such as zonula
occludens [4,5]. Claudins are a large protein family of transmembrane proteins with four
membrane spanning domains. A recent comprehensive survey of claudin expression in
laser capture dissected brain microvessels from mice and humans showed that claudins 1–6,
9, 11, 12, 14, 15, 17, 20, 22, 24, and 25 were detected at the mRNA level, and that claudins 5
and 25 were the most abundant at the protein level [6]. Claudin 5 predominantly regulates
paracellular leakage at the BBB to molecules under about 800 Da [7]. Tight junctions limit
not only the paracellular diffusion of substances between endothelial cell junctions, but also
the lateral diffusion of membrane proteins. Therefore, tight junctions also confer polarity
to BECs. Tight junction proteins interact with the cytoskeletal components, adherens
junctions, and the extracellular matrix, and are regulated by a variety of physiological and
pathophysiological stimuli [4]. BECs also suppress their own formation of fenestrae and
vesicular structures such as macropinocytic vesicles. The lack of fenestrae and suppression
of macropinocytosis suppresses transcellular leakage of circulating substances into the
brain. The regulation of vesicular processes at the BBB is understudied, but recent works
have revealed key regulators of vesicle formation that are uniquely active in BECs. The
lipid transporter major facilitator superfamily domain containing 2A (Mfsd2a), for example,
prevents the formation of caveolin-1 vesicles by regulating the lipid composition of brain
endothelial cell membranes [8,9]. Other barrier properties of BECs are conferred through
expression of efflux transporters such as P-glycoprotein and metabolic enzymes which can
limit the CNS entry of xenobiotics and endogenous substrates [10,11].

Another critical function of the BBB is to provide the brain with nutritive and trophic
support from the circulation. However, many of the circulating substrates that are required
for proper CNS function cannot freely diffuse across BEC membranes, and so require
transporters at the BBB to permit their passage from brain-to-blood. Similarly, peptides
and proteins, including some cytokines and chemokines, utilize specialized transport
systems to cross the BBB and to a more limited degree cross by way of transmembrane
diffusion. Transport systems at the BBB include energy-independent systems such as
solute carriers, which facilitate transport of molecules such as glucose and amino acids
down a concentration gradient. Other transport processes are energy-dependent, and
involve vesicular mechanisms such as receptor-mediated transcytosis and adsorptive
endocytosis [12]. BBB transporters are important for relaying signals to the brain that
facilitate monitoring of physiological states such as inflammatory status [13]. In addition
to regulating transport, the BBB also functions as an important signaling and secretory
interface, which facilitates bidirectional communication between the brain and blood
compartments [13]. In a later section, we will discuss these aspects of BBB functions in
context of the passage of SARS-CoV-2 into the brain, as well as the neuroinflammatory
response to SARS-CoV-2 infections.
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CoV-2 on the BBB. (A) BBB disruption that occurs due to SARS-CoV-2 protein interactions with the brain endothelial cell 

can cause non-specific leakage of serum factors into the brain. (B) SARS-CoV-2 protein interactions with brain endothelial 

cells may cause the release of cytokines, proteases, or clotting factors into the blood or brain compartments, as well as (C) 

increased expression of cell adhesion molecules which could contribute to leukocyte trafficking. (iv) Proposed indirect 

effects of SARS-CoV-2 on the BBB. (D) SARS-CoV-2 infection can increase circulating concentrations of pro-inflammatory 

cytokines and clotting factors, and decrease oxygen levels which may induce (E) BBB disruption via paracellular or trans-
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Figure 1. Impact of SARS-CoV-2 on the BBB structure and function. (i) Model of the neurovascular unit showing brain
endothelial cells, pericytes, and astrocytes. (ii) Model of SARS-CoV-2 virion structure. (iii) Proposed direct effects of SARS-
CoV-2 on the BBB. (A) BBB disruption that occurs due to SARS-CoV-2 protein interactions with the brain endothelial cell
can cause non-specific leakage of serum factors into the brain. (B) SARS-CoV-2 protein interactions with brain endothelial
cells may cause the release of cytokines, proteases, or clotting factors into the blood or brain compartments, as well as (C)
increased expression of cell adhesion molecules which could contribute to leukocyte trafficking. (iv) Proposed indirect effects
of SARS-CoV-2 on the BBB. (D) SARS-CoV-2 infection can increase circulating concentrations of pro-inflammatory cytokines
and clotting factors, and decrease oxygen levels which may induce (E) BBB disruption via paracellular or transcellular
routes, (F) increased production and release of cytokines and proteases by the brain endothelium, and (G) upregulation of
brain endothelial cell adhesion molecules and leukocyte trafficking to the brain.

The phenotypic specialization of BECs depends on signals from their local environ-
ment, which includes signals from closely associated supportive cells such as astrocytes,
pericytes, neurons, microglia, oligodendrocytes, and others [13]. Collectively, BECs, their
associated cells, and extracellular matrix components that regulate BEC functions are
referred to as the neurovascular unit (NVU) [14,15]. Of the cell types that are considered
part of the NVU, pericytes are the most closely associated with BECs, being located pri-
marily around capillaries and post-capillary venules. Pericytes and BECs share a basement
membrane and cytoplasm through gap junctions. The predominant functions that have
been ascribed to pericytes at the BBB include induction and maintenance of the barrier
phenotype as well as regulation of microvascular tone [9,16,17]. The endfeet of astrocytes
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are also closely associated with BECs, and ensheath the brain microvasculature. Astrocytes
are important for inducing and maintaining the BBB phenotype and contribute to the regu-
lation of capillary tone through cross-talk with pericytes [18,19]. Astrocytes, pericytes and
other components of the NVU contribute to BBB functions under physiological conditions
and in inflammatory states, which has recently been reviewed [13]. We will consider in
later sections how SARS-CoV-2 infection could influence cross-talk among cells of the NVU
to modulate BBB functions.

1.2. Neurological Complications of SARS-CoV-2 Infection and BBB Involvement

A diverse range of neurological complications have been associated with SARS-CoV-2
infection, and our understanding of causal and mechanistic relations is evolving. Headache,
anosmia and dysgeusia are among the most prevalent neurological symptoms of SARS-CoV-
2 infection [20–22], and these symptoms typically resolve over time in most mild cases [23].
However, more serious neurological complications such as impaired consciousness, cere-
brovascular events, encephalopathy/encephalitis, acute disseminated encephalomyelitis,
Guillain-Barré syndrome, seizures, delirium, dementia-like syndrome, and psychiatric
disorders including psychosis, catatonia and mania have been reported [2,3,24,25]. There
is also a phenomenon of chronic sequelae of COVID-19 that affects a proportion of in-
fected individuals, currently termed “Long COVID” or “Long-haul COVID” that includes
neurological symptoms [26,27]. Recent work that evaluated anxiety and depression and
fatigue/muscle weakness 6 months post-infection found that disease severity increased
the risk for the persistence of these outcomes. Female sex was also associated with greater
risk for prolonged symptoms of anxiety and depression [28]. Notably, most of the current
information available on the onset and prevalence of neurological symptoms of COVID-
19 is limited to hospitalized patients and comprehensive evaluation of non-hospitalized
patients currently is limited or lacking.

The neurological manifestations of SARS-CoV-2 infection could be attributed to direct
effects of the virus on the nervous system, para- or post-infectious disease mediated by the
immune system, coagulopathies, and/or complications of critical illness [3,29]. In each of
these scenarios, unique aspects of BBB involvement can be considered and we will explore
these factors in later sections of the review.

2. Mechanisms of SARS-CoV-2 Infection and Tissue Tropism
2.1. Virus Structure

Coronaviruses are large, enveloped, positive-stranded RNA viruses that can infect a
wide array of mammalian and avian species. There are currently seven coronaviruses that
can infect humans (HCoV), and the betacoronaviruses MERS-CoV, SARS-CoV-1, and SARS-
CoV-2 can cause severe disease in humans. Other coronaviruses HCoV-229E, OC43, NL63,
and HKU1 generally cause mild upper-respiratory tract illness including the common
cold [30]. SARS-CoV-2, like other coronaviruses, possesses four main structural proteins:
nucleocapsid (N) protein, membrane (M) glycoprotein, small envelope (E) glycoprotein,
and the spike (S) glycoprotein, and the arrangement of these in the virion are shown
in Figure 1. These proteins are responsible for virion assembly, virus–host cell receptor
binding, and release of viral particles from the host cell [31]. The heavily phosphorylated
N protein is found encapsulating the positive-sense, single-stranded RNA genome and has
roles related to viral replication [32]. The M glycoprotein is the most abundant protein and
spans the membrane bilayer, leaving a short NH2 domain outside the virus and a long
COOH terminus in the viral particle [33]. M protein can bind to the other SARS-CoV-2
structural proteins, and contributes to stability of the virion. For example, binding with M
helps to stabilize N proteins and promotes completion of viral assembly by stabilizing the
N protein-RNA complex inside the virion [34]. Found in the viral membrane, the E protein
is the smallest and has roles in viral maturation and production [35,36]. E glycoprotein
binding with M and N glycoproteins helps to facilitate the virus-like particle formation.
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Perhaps the most well-studied and characterized SARS-CoV-2 protein is the S glyco-
protein, which initiates viral infection by interacting with host receptors and proteases [37].
S is a transmembrane protein which forms the spike-like projections that protrude from
the virus. S consists of a short cytoplasmic region, a transmembrane domain, and two
extracellular subunits, S1 and S2. These subunits are produced through proteolytic cleavage
by the host cell enzyme furin during intracellular processing. The S1 subunit contains
the receptor-binding domain (RBD) and is responsible for the determination of the host
virus range and cellular tropism, whereas the S2 subunit makes up the stalk of the spike
molecule, and functions to mediate virus fusion in host cells. The RBD of the S protein has
been an important target for SARS-CoV-2 therapies and vaccines [38].

2.2. Host Receptors and Other Factors That Mediate SARS-CoV-2 Entry into Cells

The initial steps of SARS-CoV-2 infection involve receptor binding and fusion of the
viral lipid envelope with cellular membranes. Recent reports have shown that the host
receptor that is primarily responsible for binding SARS-CoV-2 is angiotensin-converting
enzyme 2 (ACE2), which is also the receptor for SARS-CoV-1 [39–41]. To engage the
ACE2 receptor, the RBDs of S1 undergo hinge-like movements to form a concave surface
which allows for binding with the N-terminal alpha helix of ACE2. The domains are held
together primarily through polar interactions, with a robust network of hydrogen bonds
and salt-bridges [42]. Fusion of the viral and host membranes is facilitated by cleavage
of the S protein into its subunits, S1 and S2. Cleavage at two sites, S1/S2 and S2′, on
the S protein are required for fusion. These cleavages are mediated by furin at the S1/S2
site, and type II transmembrane serine protease (TMPRSS2) at the S2′ site [43–45]. Other
host proteins may further influence the infectivity of the virus. For example, Neuropilin-1
(NRP-1) binds S1 following furin cleavage, which promotes viral entry and infection [46].
Cathepsin B/L was shown to facilitate S cleavage and promote infection [41]. Other host
proteins have been reported to facilitate SARS-CoV-2 entry, including basigin, although
its role in binding S is controversial [47,48]. SARS-CoV-2 S protein can also bind sialic
acids which are often important in the glycation of the cell glycoproteins used by viruses
to bind to cells; however it is not known to what extent this interaction contributes to
infection [49]. The cell-type specific expression of proteins and other molecules that are
involved in SARS-CoV-2 binding and fusion are likely to contribute to tissue tropism [50],
which is discussed in the next section.

2.3. Tropism of SARS-CoV-2: Evidence for Direct Infection of the CNS and Implications for Disease

Data in humans and animal models suggest that SARS-CoV-2 primarily infects cells
in the respiratory tract but can also spread to other organs. RT-qPCR based methods
that detect viral mRNA are the most sensitive methods used to detect the presence of
SARS-CoV-2 in tissues, and viral mRNA has been detected outside of the respiratory tract
including in the conjunctiva, heart, immune cells, blood and plasma, stool and rectal swabs,
urine, kidney tissue, semen, breast milk, cerebrospinal fluid, and in brain biopsies [51].
Table 1 summarizes the studies that have attempted to detect SARS-CoV-2 in human brain
tissue and CSF, and associated neuropathological findings. Importantly, the detection of
viral mRNA does not necessarily indicate the presence of infectious virus, and detection of
infectious virus outside the respiratory tract has been more limited to stool and urine in
humans [51]. Since ACE2 is thought to be the predominant receptor that mediates binding
of SARS-CoV-2 to cells, it has been predicted that ACE2 expression is a determinant of
SARS-CoV-2 cellular tropism. This prediction is supported, in part, by findings in ACE2
transgenic mice. Wild-type mouse strains are poor hosts for SARS-CoV-2, however, mice
that overexpress a human form of ACE2 develop productive infections and clinical dis-
ease [52]. ACE2 is highly expressed on human lung alveolar epithelial cells and intestinal
enterocytes, nasal and oral mucosa, and on arterial and venous endothelial cells and arterial
smooth muscle cells in organs such as the lungs, intestines, skin, spleen, and brain [53].
Further, SARS-CoV-2 viral-like particles have been detected inside endothelial cells by
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electron micrographs of autopsied patient tissues, and in at least one instance cell mem-
brane blebs containing viral-like particles were observed in brain endothelial cells [54,55].
However, it is not clear whether the presence of virus inside the endothelial cell reflects
viruses that are replicating or viruses that have only entered tissues. In vitro, it has been
shown that SARS-CoV-2 can infect human blood vessel organoids in an ACE2-dependent
manner [56]. A survey of primary human endothelial cells from tissues including brain
found that SARS-CoV-2 did not infect endothelial cells, which was attributed to the absence
of ACE2 expression in vitro. Endothelial cells that overexpressed ACE2 via lentiviral vec-
tors could support a productive infection [57], further indicating that SARS-CoV-2 infection
of endothelial cells is ACE2-dependent.
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Table 1. Summary of studies investigating SARS-CoV-2 neurotropism and associated pathologies in humans.

Tissue Examined Subject/Cohort Description Post-Mortem Interval Method of SARS-CoV-2
Detection in CNS Detection Information Associated Pathologies Ref

CSF
Multiple, systematic review Not reported qPCR

Detected in 4/18 subjects Not reported [51]
Brain Biopsies Detected in 8/34 subjects

Brain tissue
Case report, 74-year-old Hispanic

male with Parkinson’s disease; PCR
positive NP swab. Febrile,

hypotensive,
thrombocytopenic, declining SpO2,

elevated CRP, D-dimer, ferritin

Not reported

Transmission electron
microscopic detection of

viral-like particles

Detection of viral-like
particles in frontal lobe,
inside endothelial cell

vesicles, and blebbing from
endothelial membrane.

Additionally, in neurons.
Vacuolization of neuronal cytoplasm [55]

Brain tissue qPCR Detected

CSF (post-mortem) qPCR Not detected

CSF

13 subjects with severe SARS-CoV-2,
NP swab confirmed and presenting
with pneumonia, seizures and/or

encephalopathy

N/A, subjects were alive qPCR (LOD 181 copies/mL)
SARS-CoV-2 not detected in

CSF, but verified in NP
swabs, some taken on same

day.

No pleocytosis in CSF except in once
case of hemorrhage. 9/11 examined
had abnormal MRI/CT, evidence of
subcortical hypoxic/ischemic injury

[58]

CSF, brain CT/MRI

58 patients with NP swab confirmed
SARS-CoV-2 and neurological
manifestations, 47 had acute

respiratory failure

N/A, subjects were alive qPCR (LOD 500 copies/mL) SARS-CoV-2 detected in 4/58
subjects; 3 below LOD

In CSF: 10 had increased WBCs, 19
had elevated albumin quotient, 21
had elevated IgG, 5–7 had elevated

IL-6 and TNF-a. 36/53 subjects
evaluated had CT/MRI abnormalities.

[59]

Post-mortem FFPE and
frozen brain tissues

43 patients confirmed with NP swab,
age range 51–94. 40 had chronic

medical conditions, 13 had
pre-existing neurological disease, 12
died in ICU; deaths were primarily

from viral pneumonia

0–9 days (3.3 mean) qPCR,
S and N histochemistry

9/23 total had RNA detected;
9 in frozen frontal lobe, 4 in

FFPE medulla oblongata.
16/40 had S and/or N

detected in medulla
oblongata and along cranial
nerves; 14/16 S+, 7/16 N+.
21/40 had RNA or protein
detected; Of 16 brains with

RNA and protein measured,
8 had both, 4 had protein

only, 4 had RNA only.

Brain edema (53%), Arteriosclerosis
(100%), Gross macroscopic

abnormalities (30%), Fresh ischemic
lesions of cerebral arteries (14%), no

cerebral bleeding/small vessel
thrombosis, astrogliosis in olfactory

bulb, basal ganglia, brainstem,
cerebellum, microgliosis in brainstem

and cerebellum, HL-DR in subpial
and subependymal regions.

[60]

Post-mortem FFPE brain
sections

Three subjects who died of severe
COVID-19; respiratory failure, on

ventilator, PCR positive postmortem
lung. All had comorbidities

(hypertension, obesity, or kidney
transplantation)

Not reported S1 histochemistry

S1 detected in cortical
neurons and endothelial cells;

positive viral staining
detected around infarcts in

one patient

No leukocyte infiltration in regions
with S1 staining [61]
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Table 1. Cont.

Tissue Examined Subject/Cohort Description Post-Mortem Interval Method of SARS-CoV-2
Detection in CNS Detection Information Associated Pathologies Ref

FFPE brain tissue sections

18 subjects with PCR-confirmed
COVID-19 age 48–90. Neurologic

sequalae: myalgia (3), headache (3),
loss of taste (1). Co-morbidities:
diabetes (12), hypertension (11),

cardiovascular disease (5),
hyperlipidemia (5), chronic kidney

disease (4), prior stroke (4), dementia
(4), anaplastic astrocytoma (1)

20–102 h

qPCR for SARS-CoV-2
nucleocapsid mRNA and

histochemistry for N protein:
frontal lobe/olfactory nerve
and medulla for all patients;
cingulate/corpus collosum,
hippocampus, occipital lobe,

basal ganglia, thalamus,
cerebellum, midbrain, pons
were additionally tested in

two subjects

Equivocal detection (<5
copies/cm3) in 5/10 and

4/10 sections from the two
subjects with 10 regions

assessed; in 16 subjects with 2
regions assessed, 5 subjects

had > 5 copies/cm3, 8
subjects had equivocal

detection, and 3 subjects had
no detectable mRNA.

N protein not detected.

All subjects had evidence of acute
hypoxic changes in the cerebrum and

cerebellum, no microscopic
abnormalities of olfactory

bulb/olfactory tracts, neuronal loss in
hippocampus, cerebrum and
cerebellum but no thrombi or

vasculitis. Perivascular lymphocyte
foci detected in 2/18 subjects.

[62]

Post-mortem FFPE and
frozen brain tissue

19 patients confirmed with NP swab,
age range 5–73 5–368 h qPCR, RNAscope SARS-CoV-2 not detected

Out of 19: Vascular pathology (11),
perivascular infiltrates (13), acute

hypoxic/ischemic neuronal damage
(6), no path findings (2)

[63]

CSF, brain CT/MRI

Case report, 55-year-old previously
healthy woman with PCR-confirmed
COVID-19, pulmonary ground glass
opacities. Found unresponsive in bed
without hemodynamic or respiratory

issues.

N/A, patient survived and
was discharged. qPCR

CSF was collected on day 9,
12, 14, and 26 from first
symptoms, SARS-CoV-2
detected only on day 14
(cycle threshold = 34.29)

CSF day 9: no pleocytosis, but
elevated albumin. CSF day 12: no
pleocytosis, albumin normal, IgG
elevated without autoantibodies.

Elevated GFAP, NFL, tau, and IL-6.
CSF day 14: further increases in NFL
and tau and reductions in GFAP and
IL-6, increases in CSF total protein,

and appearance of oligoclonal bands.
CT and MRI: symmetrical

hypodensities in thalami that
progressed to midbrain; acute

necrotizing encephalitis

[64]
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Recent investigations support that SARS-CoV-2 can enter and infect the brain, and
our understanding of how this occurs, what proportion of COVID-19 cases are affected,
and the clinical relevance of CNS viral entry is evolving. COVID-19 patients who present
with neurological symptoms often do not have detectable virus in their CSF, despite
having other CSF and MRI brain abnormalities [58,59,65]. However, SARS-CoV-2 has
been detected in brain tissue [51,60–62], and in one instance was detected in brain tissue
and not CSF [55], suggesting that an absence of detection in CSF does not necessarily
rule out brain infection. Mouse models that support SARS-CoV-2 infection and clinical
disease through transgene-driven expression of human ACE2 can support productive
brain infections [61,66], and ACE2 expression in the brain may contribute to severe clinical
symptoms [61]. These results are summarized in Table 2. In a mouse with detectable SARS-
CoV-2 neuroinvasion, meningeal inflammation and parenchymal infiltration of leukocytes
was apparent, as was microgliosis. The same study reported that mouse brains without
detectable SARS-CoV-2 neuroinvasion appeared to be normal [66]. Studies evaluating the
cellular localization of SARS-CoV-2 signal in the brain have reported the presence of virus
in endothelial cells and neurons [53,55,56,61,67], whereas infection of glial cells such as
astrocytes and microglia has not been observed in vivo. Evidence supports that SARS-
CoV-2 infection can cause damage and apoptosis of endothelial cells and neurons [61,68].
In ACE2-overexpressing mice, SARS-CoV-2 infection was limited to neurons and not
evident in brain endothelial cells, although neurovascular abnormalities appeared in
proximity to infected brain regions [61]. SARS-CoV-1 is also predominantly neurotropic
in ACE2 overexpressing mice, and induces neuronal apoptosis without evidence of much
gliosis, although elevations in pro-inflammatory cytokines in the brain are detected [69].
Importantly, ACE2 gene expression in mice driven by an ectopic promoter such as K18
should be carefully interpreted. In another mouse model where human ACE2 was knocked
in under control of the mouse ACE2 promoter, virus was detected in brains by PCR but
it was not determined whether this was replicative virus or whether the mice had brain
pathology [70]. In summary, there is evidence of brain SARS-CoV-2 entry and infection,
which could contribute to neuronal and endothelial damage and loss.
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Table 2. Summary of studies investigating SARS-CoV-2 neurotropism and associated pathologies in mice.

Model Tissue Examined Method of SARS-CoV-2 Detection Detection Information Associated Pathologies Ref

K18-hACE2 1.5 × 106

PFU intranasal

Whole brain homogenate qPCR Yes- day 2, 4 and 7 post-infection all
mice

[61]
Whole brain homogenate Viral titers Yes- day 2, 4 and 7 post-infection all

mice

iDISCO cleared brains Immunolabeling of N protein/ light
sheet microscopy

Yes- Forebrain neural cells, sensory
cortex, dentate gyrus, globus
pallidus, cortical layer IV, not

cerebellum, not endothelium day 7
post-infection

Remodeling of vasculature found
in proximity to virus

K18-hACE2 2.5 × 104

PFU intranasal

Whole brain homogenate qPCR Yes- day 2, 4, and 7 post-infection all
mice

[66]

Whole brain homogenate Viral titers Yes- day 7 for 4/10 mice tested, but
not on day 2 or 4.

FFPE Brain sections qPCR (non-fixed side)
Sections from brains with high or
low/no viral load compared for

pathologic changes

No/low SARS-CoV-2 brains had
minimal/no brain pathology,

SARS-CoV-2 infected brains had
meningeal inflammation,

leukocyte extravasation to
parenchyma and microglia

activation

hACE2 humanized
mouse 4 × 105 PFU

intranasal
Whole brain homogenate qPCR Yes- day 6 post-infection all mice,

absent in control mice [70]
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3. Mechanisms of BBB Dysfunction in SARS-CoV-2 Infection
3.1. Direct Interactions of SARS-CoV-2 with Brain Endothelial Cells and Other Constituents of
the NVU

As described in the previous section, evidence suggests that SARS-CoV-2 might infect
brain endothelial cells, and so dysfunction to the BBB could occur in response to infection
or other direct interactions of SARS-CoV-2 or its components with the BBB. Some of these
aspects of SARS-CoV-2 mediated brain endothelial dysfunction are illustrated in Figure 1.
Presently, neurons are the only other NVU component that have been shown to be infected
with SARS-CoV-2 and neuronal infection has been associated with neurodegeneration
and neurovascular remodeling [61]. It has not yet been determined whether SARS-CoV-2
infects, binds, or directly alters function of non-endothelial NVU components. A recent
study using primary human in vitro BBB models has shown that components of the SARS-
CoV-2 spike protein, including S1, S2, and the receptor binding domain can all cause BBB
leakage in the absence of toxicity [71]. Induction of BBB leakage occurred in response to
glycosylated and non-glycosylated forms of S1 and S2 [71]. Infection of primary human
endothelial cells that overexpressed ACE2 with SARS-CoV-2 induced the overexpression of
clotting factors, adhesion molecules, and pro-inflammatory cytokines as well as formation
of multinucleate syncytia and endothelial cell lysis [57]. Together, these data suggest that
SARS-CoV-2 infection and contact with viral proteins could contribute to brain endothelial
dysfunction and damage.

3.2. Indirect Effects of SARS-CoV-2 Infection on the BBB
3.2.1. Inflammation

SARS-CoV-2 infection causes a systemic inflammatory response that results in the
elevation of pro-inflammatory cytokines, chemokines, acute phase proteins, complement,
and modification of leukocyte profiles in the brain and blood [72–74]. The BBB has the
ability to respond to signals from the immune system that arise from the brain and blood
compartments and can also regulate the transit of immune signals across compartments.
Therefore, aspects of BBB dysfunction that may occur in response to SARS-CoV-2 infection
could depend on interactions with the immune system in addition to or independently of
interactions with the virus and its components. Figure 1 depicts mechanisms by which
inflammatory factors, as well as related processes of hypercoagulation and hypoxia (de-
scribed below) can contribute to BEC dysfunction. We have previously described immune
functions and interactions of the BBB as five axes. These include (1) modulation of BBB
leakage and (2) regulation of BBB transport functions and secretions by the immune system,
(3) BBB transport and uptake of immunoactive substances, (4) BBB secretion of immunoac-
tive substances, and (5) immune cell trafficking [13,75]. In this section, we will discuss
what is known and what remains to be learned about the involvement of neuroimmune
axes of the BBB in SARS-CoV-2 infections. We will also discuss how thrombotic-related
complications may contribute to SARS-CoV-2- mediated BBB damage.

Systemic inflammation is a feature of SARS-CoV-2 infection. Elevations in plasma
cytokines including IL-1β, IL-1RA, IL-7, IL-8, IL-9, IL-10, bFGF, GCSF, GM-CSF, IFN-γ,
IP-10, CCL2, CCL3, CCL4, PDGF, TNF-α, and VEGF have been reported in COVID-19
cases requiring hospitalization for pneumonia, and IL-2, IL-7, IL-10, G-CSF, IP-10, CCL2,
CCL3, and TNF-αwere shown to be higher in patients admitted to the ICU [72]. IL-6 and
D-dimer were also shown to be greater in COVID-19 non-survivors vs. survivors [73],
and higher levels of the acute phase proteins CRP and SAA in plasma have been associ-
ated with more severe disease and poorer outcomes in patients with COVID-19 [76,77].
Elevated cytokines have also been detected in the CSF of COVID-19 patients with neu-
rological presentation [78–80], indicative of neuroinflammation. Cytokines, chemokines,
and acute phase proteins are involved in the 5 neuroimmune axes [13,75,81]. For example,
cytokines like IL-1β, IL-6, TNF-α, IFN-γ, chemokines like CCL2, and the acute phase
protein CRP can cause BBB disruption and can modulate the functions of BBB transporters
like P-glycoprotein and can influence adsorptive transcytosis which is one mechanism by
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which HIV-1 can cross the BBB [13,75,82,83]. Cytokines and chemokines including TNF-
α, IL-1α, IL-1β, IL-1RA, IL-6, CCL2, and CCL11 are also substrates for transport across
the intact BBB, and G-CSF, IL-6, IL-13, TNF-α, CXCL1, CCL2, CCL3, CCL4, CCL5, and
CCL11 can be secreted by BECs and other cells of the NVU [13,75]. Leukocyte trafficking
to the brain and CSF has been observed in SARS-Cov-2 infections and may be higher in
fatal cases [84]. Vascular BBB involvement has been implicated, based on observations
of infiltrating perivascular macrophages and CD3+ and CD8+ T-cells in the perivascu-
lar spaces adjacent to endothelial cells [63]. Markers of reactive gliosis have also been
observed in proximity to brain endothelial cells in post-mortem COVID-19 brain tissue,
suggesting that neuroinflammation may contribute to brain microvascular injury [63]. The
CNS perivascular infiltration of immune cells and reactive gliosis that has been observed
in some cases of SARS-CoV-2 infection also suggests changes in other non-endothelial
components of the NVU. Immune cell trafficking across the BBB involves leukocyte inter-
actions with and modifications of the basement membrane to permit entry into the brain
parenchyma [85,86], although modifications of NVU basement membranes in vivo during
diapedesis are generally not well-studied [86] and have not been evaluated in context of
SARS-CoV-2 infection. SARS-CoV-2 can cause pericyte loss in the lungs in patients who
develop severe COVID-19, which may precede vasculopathy [87]. Pericyte loss in the CNS
has not yet been evaluated in SARS-CoV-2 infections.

Notably, the study of neurological changes as they relate to inflammatory changes
in plasma, CSF, and brain tissues in SARS-CoV-2 cases has mostly been limited to more
serious cases requiring hospital admission. However, the BBB may also be involved in
symptom presentation in mild cases of SARS-CoV-2 infection. A common symptom of
SARS-CoV-2 infection is fever, which occurs in a large percentage of all SARS-CoV-2
infections [88]. Induction of fever depends on the synthesis of prostaglandin E2, which
is mostly derived from BECs following an inflammatory insult [89]. Sickness behaviors,
which are adaptive neurobehavioral responses to infection, are also cytokine-dependent
and involve neuroimmune communication pathways that may or may not involve the BBB.
For example, IL-1 induces endothelial PGE2, which then through the HPA axis induces
symptoms of discomfort and malaise [90]. Blood-borne IL-1α impairs memory processing
by crossing the BBB preferentially at the posterior division of the septum [91]. Pathways
that circumvent the BBB involve cytokine interactions with vagal nerves in the periphery,
which then communicate signals to the brain. Cytokines in blood can also signal to the
brain through circumventricular organs, which are areas of the brain with leaky vasculature
and connect to the rest of the brain by afferent and efferent projections [92]. Inflammation-
related depressive-like behaviors, which can persist after sickness behaviors resolve [93],
depend in part on overproduction and transport of kynurenine across the BBB [94].

3.2.2. Clotting and Thrombosis

COVID-19 is also associated with high rates of thrombosis and thrombotic-related
complications, including strokes, which can occur even in healthy young people without
prior comorbidities [95]. Post-mortem analysis of brains from COVID-19 subjects showed
a very high prevalence of acute hypoxic/ischemic damage [62]. High rates of coagu-
lation abnormalities have been reported in COVID-19 patients [96], including cerebral
microemboli [97], and the summation of clinical results support that SARS-CoV-2 infection
increases the risk of immune-activated, complement-mediated thrombotic microangiopa-
thy (TMA) [98]. TMA results from endothelial cell damage to small blood vessels, and
leads to hemolytic anemia, thrombocytopenia, and can cause organ damage [99]. Neu-
rologic imaging of SARS-CoV-2 patients with abnormal mental status and evidence of
upregulated coagulation factors showed abnormalities that were consistent with TMA [96].
The complement pathway has been implicated in TMA that arises from SARS-CoV-2 in-
fection, with unregulated formation of the C5b9 membrane attack complex identified as
a potential driver [100]. Although C5b9 has not yet been evaluated in brains of subjects
with SARS-CoV-2, it has been associated with brain injuries such as traumatic brain injury
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and subarachnoid hemorrhage [101,102]. Increases in other factors that are involved in clot
formation and degradation such as thrombin, [103,104] fibrinogen, [105,106] and the plas-
min system, [107,108] can cause BBB disruption. Elevated prothrombin time and levels of
fibrin degradation products have been reported in blood samples taken from SARS-CoV-2
patients, with non-survivors showing amplified levels compared to survivors [109,110].

3.2.3. Hypoxia

Moderate to severe levels of hypoxia can occur as part of the clinical presentation
of COVID-19. Moreover, asymptomatic patients without respiratory distress can present
with significantly reduced oxygen levels [111]; this “silent hypoxemia” was identified early
during the initial Wuhan outbreak [112], and is correlated with poor outcomes [113]. Thus,
many clinicians and researchers suggest hypoxia is a marker of COVID-19 severity [114].

Hypoxia has profound effects on the BBB. Numerous in vitro and in vivo studies show
that oxygen deprivation induces BBB disruption, which may be a trigger for subsequent
CNS disease [115]. Hypoxia induces paracellular permeability, dysregulation of tight junc-
tion protein expression levels, and can induce basement membrane breakdown [116–119].
Furthermore, hypoxia can increase the non-specific vesicular transport in brain endothelial
cells, as shown by increased blood-borne proteins in the brain [120–122]. In neonatal stroke
models, it has been shown that BBB and white matter damage depends on interactions of
IL-1 with the BBB and can be inhibited by antibodies that block IL-1 brain entry [123–125].

During hypoxic conditions, the transcription factor hypoxia-inducible factor-1 (HIF-1)
is activated [126]. This leads to an increase in HIF-1α protein levels which promotes cell
survival in a variety of different mechanisms including upregulation of HIF-1α dependent
genes which promote glucose transport and oxygen delivery. Furthermore, HIF-1α can
increase angiogenesis by amplifying levels of vascular endothelial growth factor (VEGF, the
major pro-angiogenic factor) and inducible nitric oxide (NO) synthase, which are respon-
sible for stimulating the survival, proliferation, and vascular permeability in endothelial
cells. These cellular response mechanisms aim to adapt tissues to the hypoxic environment.
For example, hypoxia and low glucose levels can facilitate upregulation of P-glycoprotein
levels in brain endothelial cells, possibly due to upregulation of HIF-1 [127,128]. How-
ever, the accompanying pathophysiological mechanisms increase BBB permeability and
cerebrovascular oxidative stress that, under chronic conditions, can irreversibly damage
the neurovascular unit [129]. It is important to note that other underlying mechanisms of
SARS-CoV-2 infection, including hypoxia-induced increase in HIF-1α, can exacerbate the
massive cytokine release [130].

4. Mechanisms of SARS-CoV-2 Transit across the Vascular BBB: Lessons from
Neurotropic Viruses

As discussed above, SARS-CoV-2 and its interactions with the CNS are of critical
importance to the immediate outcome of COVID-19 cases and also likely its long-term
sequelae. However, little is known at this writing regarding the mechanisms by which
SARS-CoV-2 accesses the brain and so this section of the review will rely heavily upon
extrapolating the general principles of viral uptake by the CNS.

Most viruses are apparently unable to cross the mammalian brain barriers or to gain
access to the nervous system. There are, however, significant exceptions where viruses
both gain entry to the nervous system and that entry is the basis for or a contributor to
their effects on nervous system function. In some cases, the CNS effects of a virus are
minor, in other cases the CNS effects are part of a larger syndrome (e.g., HIV-1), and in
still other cases the CNS effects can produce a syndrome so significant as to define the
virus’ worst outcomes (rabies, measles). Where SARS-CoV-2 lies on this spectrum is yet
to be determined.

Although there is a highly informative “classical” literature regarding the mechanisms
by which viruses can enter the brain, the total literature on this topic is surprisingly small.
Although key viruses have been studied in one regard or the other, most viruses, including
those that produce significant CNS effects, remain unstudied. For example, the search
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terms “virus” plus “blood-brain barrier” finds less than 3000 total publications, of which
199 publications were in 2020. A total 81 publications were on “coronavirus” of which 53
of those were published in 2020. This state of the literature means that whereas specific
statements can be made about the actions of a virus, its antithesis often cannot be. For
example, whereas it may be known that a specific virus can cross the vascular BBB, it may
be unknown whether it crosses the choroid plexus. Below, we list some of the general
tenets as currently understood of how viruses enter the brain.

4.1. Viral Entry by Retrograde Nerve Transmission

Some viruses enter the brain by infecting peripheral nerves and then spreading to the
brain by a process termed retrograde nerve transmission. Rabies is perhaps the best known
virus to enter brain by retrograde nerve transmission, and does so by infecting motor
neurons at neuromuscular junctions [131]. Alpha herpes viruses also enter the nervous
system through retrograde nerve routes, infecting autonomic and sensory neurons [132].
Evidence suggests that a gastrointestinal reovirus can enter the brain via the vagus nerve, a
cranial nerve and so part of the CNS [133]. Viruses that enter brain directly from the nasal
passages use the olfactory nerve which extends beyond the cribriform plate into the nasal
passages and the trigeminal nerve which projects to the walls of the nasal passages. Chou
and Dix state that these pathways are “considered of only secondary importance” and “is
limited primarily to infections acquired under unusual circumstances”. The coronavirus
mouse hepatitis virus can enter brain by way of the olfactory and trigeminal nerves [134].

4.2. Viral Entry across Brain Barriers

Prior to the work of Bodian [135] on poliovirus, impermeability of the brain barriers
was thought to prevent hematogenous spread of virus to the CNS. The hematogenous
route is now considered the main pathway for viral entry into the CNS. The best studied
of the brain barriers are the vascular BBB and the choroid plexus, although some work
exists for viral entry at the meningeal barriers. Some viruses are endotropic, such as some
togaviruses, and so are able to first infect the endothelial cells comprising the BBB with
subsequent dissemination into brain. Likewise, viruses can infect the choroid plexus [136].
Some coronaviruses or their viral products have been found in brain and have presumptive
evidence of entry at the BBB [137,138] and meninges [139]. Some viruses cross the BBB as
free viruses and others cross by way of infected immune cells. These two pathways are
not mutually exclusive, as exemplified by HIV-1 [140]. Some coronaviruses, e.g., MERS-
CoV-2 and SARS-CoV-1, can infect immune cells [22,141], which has led to speculation that
SARS-CoV-2 may enter the brain via infected immune cells [22]. When infected immune
cells cross the BBB, they do so by a highly regulated mechanism that involves intercellular
crosstalk between the immune cell and the endothelial cell, resulting in diapedesis, the
physiological mechanism used by immune cells to enter the brain [142,143]. Immune cells
normally traffic into brain at very low levels [144]. In the case of HIV-1, infected cells cross
no better than uninfected cells, but both infected and uninfected cells both cross more
rapidly because of the inflammatory status of AIDS [145].

4.3. BBB Disruption Plays a Selective Role in Viral Entry

BBB disruption is often cited as a mechanism by which viruses and infected immune
cells can enter the CNS. The term BBB disruption is often used loosely to refer to many
types of BBB dysfunction. Its more specific meaning relates to the loss of the ability of the
vascular BBB to prevent the unregulated leakage of plasma and its contents into brain. The
degree of BBB disruption varies greatly among the viruses, with HIV-1 being associated
with relatively mild disruption and herpes simplex resulting in disruption that can raise
CSF albumin levels to 150 mg/dl [146], about 3–6 times above normal levels. As discussed
above, three modifications to the capillary bed underly barrier function: expression of
tight junctions that limit paracellular leakage and loss of fenestrae and macropinocytosis,
limiting transcellular pathways. Although tight junction protein structure and function
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are often altered with viral exposures, the maximum opening of the paracellular pathway
may only be about 20 nm [147]. However, viruses have diameters of 75–100 nm. Thus,
it is more likely that disruption based on the induction of vesicles with diameters of 100–
150 nm participates in free virus entry into brain. Paracellular opening of the BBB could
permit brain entry of viral proteins or other inflammatory molecules, which could promote
vesicular modes of BBB disruption.

4.4. Entry of Free Virus at the Brain Barriers Is Mediated by Vesicular Pathways

As discussed above, the diameter of viruses suggests that vesicles are key to transport
of viruses across the BBB. To enter non-barrier cells, viruses are known to use a variety
of vesicular systems [148]. The vesicular pathways are induced by interactions between
the viral attachment protein (VAP) and glycoproteins, glycolipids, or phospholipids on
the cell membrane of the cell being invaded. In the case of SARS-CoV-2, the VAP is the
spike protein. Although the cell membrane binding site is referred to as a receptor, the
physiological function of that binding site may not be that of a receptor [149]. For example,
in the case of SARS-CoV-2, the ACE2 “receptor” is a membrane bound enzyme. As such,
VAP binding to the receptor does not depend on the physiologic function of the receptor
to cross the BBB, but induces a process resembling adsorptive transcytosis. Adsorptive
endocytosis was originally described for the BBB as a mechanism for engulfing lectin
glycoproteins on the brain endothelial cell luminal membrane [150]. As a corollary, viral
proteins including the VAPS can sometimes themselves cross the brain barriers.

4.5. Inflammation Enhances Uptake of Viruses by Brain

Inflammation is induced in response to viral infections and may also exist prior to viral
infections in the case of chronic illness and/or co-infection. As discussed in the previous
section, inflammation induces many alterations of BBB functions through a variety of
mechanisms [13]. These changes contribute to many of the CNS-mediated symptoms noted
with viral infections including cognitive impairments, depression-like behaviors, malaise,
and fever. Inflammation-induced BBB changes also include changes that result in increased
penetration of virus into brain. In the case of free virus entry, adsorptive transcytosis
is enhanced [151]. In the case of infected immune cells, diapedesis is enhanced [145].
For HIV-1, these processes are fairly well worked out. Inflammation acting at the BEC
stimulates the MAPK pathways, releasing interleukin-6 and granulocyte-macrophage
colony-stimulating factor from the luminal surface of BECs, stimulating transcytosis of free
virus [152]. Stimulation of the BEC CD40L receptor increases adhesion molecules through
JNK-dependent mechanism, increasing the transport of monocytes across the BBB [153].
An increase in BEC adhesion molecules has also been proposed to be central to the immune
cell-mediated transport into brain of Zika virus and West Nile virus as well [154,155].

Viral entry may vary with the course of neuroinflammation as well. For example,
Varicella-zoster virus has been reported to be present in CSF of a small group of MS patients
in the acute phase of a relapse, but absent from the CSF of MS patients in remission and in
control subjects [156].

4.6. The Viral Attachment Protein May Bind to a Site on the Receptor Not Used by the
Physiological Ligand

The VAP may or may not bind partially or entirely to the site used by the physiological
ligand. The VAP-receptor interaction does not relate to the physiological function of the
receptor, but induces adsorptive endocytosis. As originally described, vesicles are routed to
lysosomes and subsequently returned to the luminal surface [150]. However, some vesicles
are routed to other membranes, including the abluminal surface. Luminal to abluminal
routing constitutes passage across the BBB (transcytosis). VAP-receptor binding may not
follow classic Michaelis-Menten kinetics. Indeed, a hallmark of adsorptive transcytosis is
that increasing the amount of ligand can enhance, rather than saturate, passage [157]. If
the VAP binding site partially overlaps with the physiologic ligand, then the ligand may be
able to induce partial inhibition of viral penetration across the BBB.
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4.7. Some Viruses Bind to More Than One Seemingly Unrelated Receptor

HIV-1 binds to CD4, galactosyl ceramide, and mannose-6 phosphate receptors. Her-
pes simplex virus binds to heparan sulfate, a tumor necrosis factor-α-related receptor,
nerve growth factor receptors, CD155, polio related receptor 1 and 2, and nectin 1-alpha
and 2-alpha [149,158]. Rabies binds to the acetylcholine receptor, neural cell adhesion
molecule, and nerve growth factor receptor [158]. Being able to bind to multiple receptors
allows a virus to invade multiple tissues. For example, HIV-1 uses galactosyl ceramide
to invade immune cells, but brain endothelial cells, which do not possess galactosyl ce-
ramide [159], are invaded using the mannose-6 phosphate receptor [160]. In cases when
a virus binds primarily or more avidly to a single receptor, the other binding sites are
referred to as alternative receptors. Binding of the VAP can be to a single receptor or may
require subsequent or simultaneous binding to co-receptors for attachment or entry [149].
Although the receptors are apparently unrelated, the receptors tend to be rich in sialic acid.
Receptor recognition and species barriers are often related to variations in glycosylation
patterns. Additionally, some viruses use proteins which they have acquired from the host
cell as VAPS, as illustrated by paramyxoviruses viruses and herpes viruses [149]. Some
coronaviruses bind to ACE2 and to other binding sites, such as CD209L [161].

4.8. Mechanisms of SARS-CoV-2 Entry into Brain

Currently, there is no study of the mechanisms by which SARS-CoV-2 enters the CNS.
There is, however, a study on the ability of the S1 VAP to cross the murine BBB [162], at least
three studies of the appearance of live virus in mouse brain after induction of a productive
infection [61,66,70], and analysis of human brain tissue and/or CSF that suggests brain
entry or infection can happen, as discussed in an earlier section. These studies guide
the application of the principles of general viral entry into brain as they likely apply to
SARS-CoV-2.

SARS-CoV-2 administered nasally results in its appearance in brain [61,66]. This study
clearly establishes that the virus can enter the CNS, but does not establish whether the virus
is taken up by the olfactory bulb and trigeminal nerve, is absorbed into the blood stream via
the nasal turbinates, or is aspirated into lung where a productive infection then seeds the
brain by hematogenous spread. Another study found that the epithelium of the olfactory
bulb was massively damaged with immune cell infiltration in Syrian hamsters infected
with SARS-CoV-2, but that there was no infection of the olfactory bulbs themselves [163].
The study using S1 [162] found a very small amount of S1 entering the brain after nasal
administration at the level of the cribriform plate and evidence for an even smaller entry
into the blood stream. By contrast, passage from blood to brain was much more robust.
The most parsimonious explanation for these results is that direct spread from the nares to
brain is likely a more minor route than that of blood-to-brain transport.

ACE2 is thought to play a dominant role in uptake of SARS-CoV-2 by all tissues
including the brain barriers and CNS tissues. However, several studies have presented
various types of results indicating that S1 could use other glycoproteins as receptors or
co-receptors, including basigin, cyclophilins, dipeptidyl peptidase-4 and GRP78 [164–166].
In the S1 study [162], evidence suggested a role for S1 uptake into brain, but was also
suggestive that other binding sites might also play a role. In contrast, ACE2 played a much
larger role for uptake by lung, but little or no role for uptake by other tissues, suggesting
other binding sites could be more important for their uptake. At present, our interpretation
is that ACE2 is important in brain uptake, but may not be the only binding site involved.
As a corollary of the S1 study, ACE2 is likely much more involved in lung uptake, but other
binding sites may be key in viral uptake by other tissues.

Given the experimental design used in the S1 study [162], the vascular BBB is likely
a site of entry into brain. ACE2 is expressed on the epithelial cells which comprise the
choroid plexus and SARS-CoV-2 can infect those cells in vitro [167]. This suggests that the
virus likely enters brain at both the vascular BBB and at the choroid plexus.
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The infection study of Song et al. found very little cellular infiltrate in brain [61].
Given the experimental design of S1, it is likely S1 entry did not involve transport via
immune cells. The best conclusion based on these findings is that SARS-CoV-2 can enter as
free virus, but that entry via infected immune cells deserves further study.

Inflammation is a key feature of COVID-19 and is likely of a magnitude that results in
both paracellular and transcellular disruption of the BBB. In the S1 study [162], activation of
the innate immune system did not enhance the entry of S1 by way of adsorptive transcytosis,
but did enhance S1 entry by BBB disruption, likely via the transcellular pathways. A
summary of these possible routes of entry and their modifications under pathological
conditions is depicted in Figure 2. There is not presently much more information on
the contributions of inflammation to mechanisms of SARS-CoV-2 brain infection, but
animal models of SARS-CoV-2 infection with neurotropism do exhibit both systemic
and neuroinflammation [61,66,168] and therefore it is plausible that future studies could
evaluate whether anti-inflammatory interventions inhibit neuroinvasion of SARS-CoV-2.
Non-replicative pseudoviruses that have the structural protein components of SARS-CoV-
2 could also be used as tools to more effectively study viral entry that is regulated by
inflammation in the absence of confounds such as differences in systemic viral load that
may also be influenced by blocking inflammation. In summary, S1 protein can clearly cross
the BBB and best evidence to date suggests that SARS-CoV-2 is also likely to do so using
vesicular mechanism akin to adsorptive transcytosis.
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5. Co-Morbidities That Could Influence SARS-CoV-2 Entry into the Brain

As was discussed in previous sections, the disease that develops following SARS-
CoV-2 infection can range from unnoticeable to deadly. Factors such as age, male sex,
preexisting disease, and genetic risk variants have been identified that appear to increase
the risk for developing severe COVID-19. We posit, based on the limited evidence in
humans and animals, that brain viremia and adverse neurological outcomes are more likely
to occur in those who develop severe COVID-19. In this section, we will consider how
co-morbid conditions that increase risk for severe disease could also increase the ability of
SARS-CoV-2 to enter or infect the brain.

5.1. Type I Interferons

Interferons are cytokines that interfere with viral replication and activate cells of
the immune system to respond to viral infection. Interferons can be classified into three
types: Type I, II, and III which engage different receptors and signaling pathways [169,170].
Recent studies have identified type I interferon signaling deficiencies in individuals with
severe COVID-19 [171–173]. These deficiencies include autosomal loss-of-function muta-
tions in genes upstream of IFN-α production, resulting in low levels of IFN-α in blood
following SARS-CoV-2 infection [172], or production of anti-IFN-α autoantibodies [173].
However, recent work in a mouse model indicates that an inhibition of the type I interferon
response prevents an inflammatory response in the lungs, but has little effect on viral
replication [168]. Less is known about how interferons regulate SARS-CoV-2 brain infec-
tion or entry, although interferons have been shown to regulate brain infections of other
viruses. For example, nasal inoculation of RNA (VSV) or DNA (CMV) viruses induces
a widespread upregulation of type I interferon signaling, which prevents viral spread
throughout the brain [174]. Interferons also regulate the permissiveness of microglia and
astrocytes to measles virus infection [174]. In brain organoids infected with SARS-CoV-2,
however, type I IFN signaling was not observed [61], which suggests that SARS-CoV-2
may evade host mechanisms that suppress viral spread in the brain, although this has not
yet been confirmed in vivo. Type I interferons were shown to have a stabilizing effect on
the BBB in context of autoimmune CNS diseases and viral infections [175,176]. Therefore,
deficiencies in type I IFN responses to SARS-CoV-2 infection could, in theory, contribute to
a loss of protection at the level of the BBB.

5.2. Apolipoprotein E

Apolipoprotein E (ApoE) plays a critical role in cholesterol metabolism and transport.
In humans, there are three major alleles including APOE-ε2 (ApoE2), APOE-ε3 (ApoE3),
and APOE-ε4 (ApoE4), encoded on chromosome 19. ApoE4 is associated with cardio-
vascular disease, atherosclerosis, and Alzheimer’s disease. COVID-19 severity is also
affected by these pre-existing morbidities including dementia, cardiovascular disease, and
type 2 diabetes [177]. Therefore, while ApoE can have independent effects on COVID-
19 severity, it is also important to consider the implications of ApoE4 co-morbidities on
SARS-CoV-2 infection.

ApoE isoform has recently been suggested to increase the risk for severity of COVID-19
infection and this can occur independently of pre-existing morbidities including dementia,
cardiovascular disease, and diabetes [178]. It is thought the ApoE isoform can alter the
severity of viral infection. While there have been hypotheses generated about how this
might occur, the direct impact of ApoE isoform and SARS-CoV-2 has not been investigated.
Many of these hypotheses have been generated based on previous studies investigating
the impact of ApoE isoform on other viral infections, such as with hepatitis C or HIV-1.

ApoE is associated with the susceptibility to general viral infections [179]. ApoE
can mediate viral entry by either interacting with the virus, interacting with proteins
and receptors present on the host cell surface, or impacting the immune response once
infection has occurred [177]. For example, ApoE can mediate hepatitis C viral binding to
human hepatocyte-like cells by engaging interaction with heparan sulfate proteoglycan
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receptors [180]. The impact of APOE alleles on hepatitis C infection are likely viral strain-
and cell-specific [181]. In another example, ApoE4 increases the susceptibility, severity, and
CNS invasiveness of herpes simplex virus-1 (HSV-1) in mice and humans compared to
ApoE3 [182–184]. Lastly, ApoE4 increases HIV-1 cell entry and expression of two copies of
the ApoE4 allele results in an even more rapid HIV disease progression [185]. In addition,
ApoE4 is associated with increased BBB disruption in humans [186] which could also
contribute to an increased SARS-CoV-2 entry into the brain depending on the mechanism
of leakage.

ApoE lipoproteins can modulate parts of the immune response by acting on T-
lymphocyte activation and proliferation [187]. Based on these immunomodulatory proper-
ties, ApoE can impact the pathology of infectious diseases [188]. There is also a relationship
between ApoE and cytokine production and vice versa. Cytokine levels and secretion
are dependent on the APOE allele expressed [189]. For example, ApoE4 macrophages
secrete higher levels of TNF-α compared to ApoE3 [190]. In addition, in response to an
inflammatory stimulus, ApoE3 expressing cells produce less pro-inflammatory cytokines
compared to ApoE4 [190]. Alternatively, pro-inflammatory cytokine expression can de-
crease the production of ApoE [191], which could have indirect effects on the beneficial
action of ApoE.

Specifically related to SARS-CoV-2, computational analysis suggests angiotensin-
converting enzyme 2 (ACE2), the receptor suggested to be primarily involved in mediating
SARS-CoV-2 uptake, can interact with ApoE [192]. In addition, the C terminus end of the
S1 protein has been shown to directly bind neuropilin-1 (NRP1) and NRP1 receptor [46].
Whether the different APOE alleles affect these interactions are currently unknown.

We have recently investigated the impact of ApoE genotype and sex on S1 BBB
transport in mice [162]. APOE genotype affects S1 transport into liver, spleen and kidney
with ApoE4 resulting in a slower transport rate. Transport of S1 is greatest in the olfactory
bulb in male ApoE3 mice. There was no difference in the rate of transport into whole brain.
These results suggest that enhanced uptake of S1 by some tissues could contribute to the
increased risk of COVID-19. While there is previous evidence for ApoE effects on viral
infections, further investigations to understand the biological mechanisms linking APOE
genotypes and COVID-19 severity are needed.

5.3. Disease States That May Increase Risk of SARS-CoV-2 Entry into Brain

COVID-19 severity and mortality is increased in patients with diabetes mellitus,
cardiovascular disease, and obesity. Links between these diseases with COVID-19 include
effects on glucose homeostasis, inflammation, altered immune response, and activation
of the renin-angiotensin-aldosterone system through the ACE2 receptor. This system
contributes to blood flow, endothelial function, inflammation, insulin resistance, and
vasodilation [162,193]. Therefore, disruption of this system contributes to the detrimental
effects in individuals with diabetes or obesity.

At least in human monocytes, high glucose concentrations increase replication of
the virus [194]. Whether the same occurs in other cells exposed to high glucose such
as brain endothelial cells is unknown. Poor glycemic control predicts COVID-19 sever-
ity and increases mortality [195]. In addition, SARS-CoV-2 infection can induce loss of
glycemic control. Whether the same thing happens in pre-diabetic obese individuals
remains to be determined.

Hyperglycemia and obesity can affect immune function and it is known viral infection
leads to increased production of pro-inflammatory cytokines, which can lead to a cytokine
storm in some instances. Therefore, in patients with diabetes and obesity, the inflammatory
response is further aggravated by SARS-CoV-2 infection. This inflammatory response can
also affect insulin resistance, establishing a vicious cycle [196]

Of patients that underwent MRI and CT scans during COVID-19 infection, one in five
showed evidence of strokes, brain bleeds, and blocked blood vessels. Half of these patients
had pre-existing histories of hypertension and/or type 2 diabetes [197,198]. Currently, a
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challenge in interpreting the results of neuropathological associations with SARS-CoV-2
infection is that comorbid conditions such as hypertension, diabetes, and obesity may
contribute to neuropathologic changes such as neurovascular damage, white matter injury,
and neuroinflammation independently of SARS-CoV-2 infection [199–202]. Future work in
larger patient cohorts is needed to determine whether patients with diabetes, hypertension,
or other conditions increases the risk for COVID-19 associated neurologic sequalae, or
whether certain CNS pathologies that arise with SARS-CoV-2 infection are more common
or more severe in those with these preexisting co-morbidities.

6. Conclusions

In this review, we have summarized the current evidence which supports that SARS-
CoV-2 may infect cells in the brain, at least in some more severe COVID-19 cases, and
mechanisms by which it may enter the brain across the BBB. Human studies have variably
reported the ability to detect SARS-CoV-2 in brain tissue and CSF, indicating that further
studies are needed to evaluate how common or rare SARS-CoV-2 neuroinvasion is. Mouse
models of SARS-CoV-2 infection suggest that brain cells, particularly endothelial cells
and neurons, can be infected and/or damaged, but the mechanism of brain uptake of
infectious virus in these models has not yet been determined. Studies using portions of
the spike VAP of SARS-CoV-2 have shown in wild-type mice that S1 can cross the intact
BBB through a mechanism of adsorptive endocytosis, suggesting that human ACE2 is
not required. The olfactory route is a minimal contributor to S1 protein uptake into the
brain. Future work in animal models could improve our understanding of how SARS-
CoV-2 enters the brain, but data generated using transgenic ACE2 mice driven by artificial
promoter systems should be interpreted carefully when considering translatability of the
results to humans. SARS-CoV-2 infection may influence the functions of BECs and other
components of the NVU through direct physical interactions with the virus and its proteins,
or through inducing host factors such as cytokines. It is plausible that both mechanisms
could influence long-term neurological outcomes in COVID-19 survivors. Co-morbidities
that increase risk for severe COVID-19 may also alter aspects of BBB functions that regulate
brain entry of SARS-CoV-2. In conclusion, although there is much left to be learned about
the involvement of the BBB in SARS-CoV-2 infection and how the BBB may contribute to
the neurologic sequalae of COVID-19, the BBB is likely involved by several mechanisms in
the expression of those neurological sequalae.
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