
INTRODUCTION

Acute kidney injury (AKI) occurs in 1-35% of patients in 
hospitals and is associated with high mortality (Bellomo et al., 
2004). The incidence of AKI is on the rise in both high-income 
and low-income countries. Nearly 600,000 cases of AKI are 
reported each year in the United States (Rifkin et al., 2012). 
The conventional belief is that survivors of AKI are likely to 
fully recover kidney function. But, growing evidences suggest 
that patients who survive an episode of AKI might have a sig-
nificant risk of developing progressive chronic kidney diseases 
(CKD) (Coca et al., 2012; Lewington et al., 2013). Thus, mea-
sures in preventing the progression of AKI can consequently 
reduce short- and long-term mortality, morbidity, and health-
care burden (McCaffrey et al., 2017). 

AKI is commonly caused by ischemia reperfusion injury 
(IRI), sepsis, and drug toxicity. The new paradigm has empha-
sized that the pathophysiology of AKI is not solely attributed to 
the impairment of kidney perfusion. Various toxic or ischemic 
insults propagate tubular injury in AKI, which can be mediated 
by microvascular dysfunction, oxidative stress, inflammation, 
immune dysregulation, and gene-regulated cell death or se-
nescence (Gallagher et al., 2017). Multiple pathophysiological 
pathways identified for each AKI etiology renders the com-

plexity of plausible therapeutic approach against AKI. A num-
ber of agents have been tested in the clinical trials, including 
anti-inflammatory agents, antioxidants, vasodilators, apopto-
sis inhibitors, and repair agents as recently reviewed (Ben-
oit and Devarajan, 2018), but there are currently no effective 
pharmacological agents used clinically for AKI. It is suggested 
that the panacea for preventing the progression of AKI should 
interlink these pathophysiological pathways and act to prevent 
cellular dysfunction in response to multiple insults (Chen and 
Busse, 2017).

Fyn is a 59 KDa non-receptor tyrosine kinase that belongs 
to the Src family kinases (SFK). Following its initial finding as a 
proto-oncogene, Fyn kinase has been demonstrated to regu-
late a diverse cellular functions, such as cell growth, survival, 
adhesion, cytoskeletal remodeling, motility, and T-cell receptor 
signaling (Sugie et al., 1991; Appleby et al., 1992; Calautti et 
al., 2002). The role of Fyn kinase has massively expanded 
to various pathological conditions since then (Yu et al., 2010; 
Yamada et al., 2012; Lee et al., 2013; Panicker et al., 2015; 
Shang et al., 2015; Cheng et al., 2016; Seo et al., 2016; Mkad-
dem et al., 2017), as shown in Table 1. 

Considering the pathophysiological role of Fyn, this article 
reviews the current knowledge on Fyn kinase as a possible 
important mediator involved in the diverse pathological path-
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ways of AKI. A better understanding on Fyn kinase is impor-
tant to propagate a further investigation on Fyn kinase as a 
novel therapeutic target against AKI. 

STRUCTURE AND FUNCTION OF FYN

SFK is a family of proto-oncogenic, non-receptor tyrosine 
kinases. Eight members of SFK including c-Src, Fyn, Yes, Blk, 
Fgr, Hck, Lck, and Lyn have been identified up to now. All the 
members of SFK share a similar structure, having Src homol-
ogy domains SH1, SH2, SH3, and SH4 (Fig. 1) (Roskoski, 
2015; Liu et al., 2016). SH4 domain is important for mem-
brane localization, while SH3 domain is essential for protein-
protein interactions. SH2 domains acts protein motifs binding 
to phosphorylated tyrosine sites. Meanwhile, SH1 domain is 
the catalytic kinase domain where Src can be activated by 
auto-phosphorylation at Tyr416, which is induced upon activa-
tion of a wide variety of transmembrane receptor proteins that 
include the receptor tyrosine kinases, G protein-coupled re-

ceptors, integrins, and cytokine receptors (Moran et al., 1990; 
Jelic et al., 2007). 

There are three variants of Fyn such as FynT, FynB, and 
FynC, which arise from alternative splicing of exon 7 of the 
Fyn gene. Biological effects of FynC has not been reported 
yet (Goldsmith et al., 2002). Although FynT and FynB have 
been reported to have some biological functions in T cells, 
hematopoietic cells, brain, and muscle (Cooke and Perlmut-
ter, 1989; Davidson et al., 1992, 1994; Resh, 1998; Goldsmith 
et al., 2002; Yamada et al., 2012), their distinct and detailed 
biological functions in kidney have not been explored yet.

INVOLVEMENT OF FYN IN AKI 

While evidences indicate that patients who have history 
of AKI may develop to progressive CKD (Coca et al., 2012; 
Lewington et al., 2013), increased Src kinase activity has 
also been reported during the progression of CKD such as 
in streptozotocin (STZ)-induced type-1 diabetes (Taniguchi et 

Table 1. Role of Fyn in various pathological conditions

Organs/cells Models Mechanisms References

Organs
Kidney STZ-induced type 1 diabetes Suppresses Nrf2 expression Shang et al., 2015; Cheng et al., 2016
Kidney Obstructive fibrosis Mediates STAT3 activation Seo et al., 2016
Kidney Lupus nephritis Mediates ITAM phosphorylation Mkaddem et al., 2017
Liver STZ-induced type 1 diabetes Decreases GSK-3β phosphorylation Zhang et al., 2012
Visceral adipose 
tissue

HFD-induced obesity Increases M1/decreases M2  
macrophages

Lee et al., 2013

Muscle Fyn overexpression Decreases Vep34/p150/Beclin1/Atg14 
complexes

Yamada et al., 2012

Mid brain Parkinson’s disease Increases proinflammatory cytokines Panicker et al., 2015
Cells

Podocytes Apoptosis Increases TRPC6 phosphorylation Yu et al., 2010
Microglia Parkinsonian neurotoxin Mediates PKCδ>MAPK>NF-κB  

signaling 
Panicker et al., 2015
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Fig. 1. (A) Src family kinase members and (B) their activation domain structure. 
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al., 2013), db/db type-2 diabetes (Wu et al., 2015), as well as 
unilateral ureteral obstruction (UUO)-induced tubulointerstital 
fibrosis (Yan et al., 2016).

The involvement of Src kinase in the development of AKI 
has recently been suggested (Xiong et al., 2017). IRI-induced 
kidney dysfunction, inflammation, tubular epithelial cell apop-
tosis, and fibrosis are attenuated by PP1, a non-selective Src 
kinases inhibitor (Xiong et al., 2017). Our preliminary results 
showed an increased total as well as phosphorylated Fyn in 
the kidney of lipopolysaccharides (LPS)-treated mice, a model 
of sepsis-associated AKI (Fig. 2A, 2B). LPS-induced inflam-
mation, oxidative stress, and tubulointerstitial injury were sup-
pressed by PP2, a non-selective Src kinases inhibitor (data 
not shown). Furthermore, the gene expression omnibus data-
base (GEO), a public functional genomics repository analysis 
(https://www.ncbi.nlm.nih.gov/geo/) shows increased tran-
scription of Fyn in the kidney under IRI-induced AKI in mice 
(Fig. 2C).

Fyn mediates disorganization of the F-actin cytoskeleton 
leading to podocyte dysfunction in vitro, and Fyn deficiency 
ameliorates high glucose-induced Fyn activation and F-actin 
remodeling (Lv et al., 2016). On the contrary, a few reports 
show that basal Fyn is involved in the regulation of cytoskele-
tal architecture (Saito et al., 2010) and maintenance of kidney 
morphology via nephrin phosphorylation in podocytes (Verma 
et al., 2003; Li et al., 2004). In addition, Fyn deficiency contrib-
utes to proteinuria in mice (Yu et al., 2001). 

THE PATHOPHYSIOLOGICAL ROLE OF FYN KINASE 
IN THE AKI

The precise mechanism how Fyn kinase mediates kidney 
injury has not been clearly understood. This section summa-
rizes the current knowledge on Fyn kinase in mediating the 
oxidative stress, inflammation, ER stress, and autophagy dys-
function, all of which have been proposed to play important 
roles in AKI.

Oxidative stress
Reactive oxygen species (ROS) (Li et al., 2009; Mittwede et 

al., 2015) play important roles in AKI. The expression of Fyn is 
upregulated via ROS-mediated oxidative stress in response to 
diverse stimuli (Anuranjani and Bala, 2014; Rizvi et al., 2014; 
Santosa et al., 2015). Oxidative stress promotes to genera-
tion of specific CD36 ligands such as microparticles (MP) and 
oxidized LDL (oxLDL). Attachment of these ligands by CD36 
activates Fyn kinase (Li et al., 2010). 

On the other hand, Fyn translocation into nuclei exports nu-
clear Nrf2 to cytosol, where it binds to Keap1 for proteosomal 
degradation (Jain and Jaiswal, 2007; Koo et al., 2012). Nrf2 is 
a well-known transcription factor that regulates anti-oxidative 
response by increasing transcription of genes such as heme 
oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 
1 (NQO1) (Li et al., 2012; Miyata et al., 2013). Fenofibrate ac-
tivates the Nrf2 expression in the nuclei by activation of phos-
phoinositide 3-kinases (PI3K)/protein kinase B (PKB/Akt)/gly-
cogen synthase kinase-3β (GSK-3β) -dependent inhibition of 
Fyn nuclear translocation, resulting in attenuation of oxidative 
stress in type-1 diabetic kidney injury (Cheng et al., 2016).

Fig. 2. Fyn is increased in AKI. (A, B) AKI was induced by LPS (15 mg/kg, i.p). (A) Paraffin-embedded kidney sections were subjected to 
immunofluorescence staining using an anti-pFyn antibody (1:100; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) and anti-rabbit 
Alexa Fluor 588 (1:1,000; A11036; Life Technologies, Carlsbad, CA, USA). Nuclei were stained with DAPI. Images were taken using a Zeiss 
ApoTome Axiovert 200 M microscope (Carl Zeiss Microscopy GmbH, Jena, Germany). Scale bar indicates 50 μm. (B) pFyn and Fyn protein 
expression was detected by western blotting. Representative images are shown. (C) Transcription level of Fyn gene in IRI-induced AKI mice 
were analyzed using GEO database. Upper panel GSE52004; control (n=2), AKI (n=4) and lower panel GSE140988; control (n=3), AKI (n=3). 
NS, no sample.
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Inflammation 
Inflammation is a key contributor to AKI (Andrade-Oliveira 

et al., 2019; Patschan et al., 2019). It also plays an important 
role in AKI-CKD transition (Matsushita et al., 2019; Ogbadu 
et al., 2019). AKI is tightly associated with tubulointerstitial in-
flammation in response to hypoxia and reperfusion (Bonven-
tre and Zuk, 2004). Hypoxia induces endothelial and tubular 
epithelial cells damage in the initial phase, and subsequent 
leukocyte recruitments are responsible for the apoptosis and 
necrosis of endothelial and tubular epithelial cells (Rana et al., 
2001). The widespread inflammation in kidney tissue is rec-
ognized by toll-like receptors (TLRs), which activate several 
kinases and nuclear factor kappa B (NF-κB) (Jang and Rabb, 
2009), leading to apoptosis of cells. 

The contribution of SFKs in immune responses are well 
recognized (Abram and Lowell, 2008; Chen et al., 2014). Fyn 
kinase regulates antigen-specific activation of T cells, and 
its deficiency rigorously suppressed T cell responses (Sugie 
et al., 2004). Fyn also increases pro-inflammatory cytokines 
in mast cells, macrophages, basophils, as well as natural 
killer cells (Rajasekaran et al., 2013). The pro-inflammatory 
effects resulted from Fyn activation has been demonstrated 
in various tissues including the kidney (Table 1). Fyn kinase 
enhances microglial neuro-inflammatory responses via Cδ 
(PKCδ)>mitogen-activated protein kinase (MAPK)>NF-κB 
pathway, which is associated to the pathogenesis of Parkin-
son’s disease (Panicker et al., 2015). Fyn kinase is directly 
or indirectly associated with the inflammation in liver (Zhang 
et al., 2012; Zhao et al., 2018). Fyn kinase mediates visceral 
adipose tissues inflammation through increasing M1 mac-
rophages and decreasing M2 macrophages. Fyn deficiency 
promotes a preferential increase in subcutaneous adipose tis-
sue mass and decreases visceral adipose tissue inflammation 
(Lee et al., 2013). Role of signal transducer and activator of 
transcription 3 (STAT3) in mediating inflammation and fibrosis 
is well known. Fyn kinase induces STAT3 activation leading to 
fibrosis in obstructive nephropathy in mice (Seo et al., 2016).

Fyn-activating signature is found in patients with lupus 
nephritis. Autoimmune and inflammatory disease has been 
recognized as a result from dysregulation and chronic stim-
ulation of immunoreceptor tyrosine-based activation motif 
(ITAM)-containing immunoreceptor. Fyn can phosphorylate 
ITAM contained in the aggregated immunoreceptors. Under 
chronic stimulation, this immunoreceptor signaling activation 
aggravates inflammatory and immune diseases (Mkaddem et 
al., 2017).

ER stress and apoptosis
Endoplasmic reticulum (ER) stress (Bailly-Maitre et al., 

2006; Gao et al., 2012; Xu et al., 2016; Fan et al., 2017; Uddin 
et al., 2018) and apoptosis (Linkermann et al., 2014) play im-
portant roles in the pathogenesis of AKI. There are three sen-
sors in ER stress such as RNA-dependent protein kinase-like 
ER kinase (PERK), activating transcription factor 6 (ATF6), 
and inositol-requiring enzyme 1α (IRE1α) (Zheng et al., 2013). 
The activated IRE1 cleaves XBP1 to generate spliced XBP1 
(sXBP1) (Calfon et al., 2002) and activates JNK (Urano et 
al., 2000). The sXBP1 increases the expression of unfolded 
protein response (UPR)/UPR target genes and stimulates the 
production of inflammatory cytokine genes (Kim et al., 2015). 

In the kidney, mechanistic target of rapamycin complex 
1 (mTORC1) mediates IRE1α-JNK pathway leading to cell 

death (Kato et al., 2012). Fyn overexpression increases 
mTORC1 activation leading to activation of IRE1α-JNK sig-
naling, which potentiates the ER stress-induced cell death 
in skeletal muscle and in HEK293T cells. Synergic effect of 
Fyn and thapsigargin (ER stress inducer) accelerates IRE1α-
induced cell death. Rapamycin inhibits mTORC1 activation 
and suppresses IRE1α expression and JNK phosphorylation, 
which protects cells against Fyn- and thapsigargin-induced 
cell death (Wang et al., 2015). Activated Src kinase is also 
associated with kidney tubular epithelial cell apoptosis in dia-
betic db/db mice, which is attenuated by PP2 treatment (Wu 
et al., 2015). PP2 also inhibits high glucose-induced cell death 
in cultured HK-2 cells and shear stress-induced podocyte 
apoptosis (Huang et al., 2012). The Fyn-mediated cell death 
is also evident in other tissues such as neurons. Fyn kinase 
involved in the amyloid-mediated apoptosis in cortical neurons 
(Lambert et al., 1998), and pro-apoptotic Fyn/PKCδ-mediated 
signaling pathway contributes to oxidative stress-induced cell 
death in dopaminergic neurons (Saminathan et al., 2011). 

Autophagy
Autophagy is generally a cytoprotective mechanism that 

eliminates damaged macromolecules and organelles during 
various stress (Kroemer et al., 2010). Although Suzuki et al. 
(2008) have shown the harmful effects of autophagy, various 
studies have suggested protective role of autophagy in AKI 
(Yang et al., 2008; Jiang et al., 2010; Hsiao et al., 2012). Nu-
trient sensors, i.e. AMP-activated protein kinase (AMPK) and 
mTORC1 play important roles in regulation of autophagy in 
AKI (Sengupta et al., 2010; Kim et al., 2011; Alers et al., 2012), 
and several studies have suggested the involvement of Fyn 
kinase in these metabolic signaling (Fig. 3). 

A crosstalk between Fyn kinase and the AMPK pathway 
has been reported through Fyn-dependent regulation of liver 
kinase B1 (LKB1), an AMPK upstream activator. Fyn null mice 
exhibits increased insulin sensitivity in adipose and skeletal 
muscle, which are associated with increment of fatty acid oxi-
dation, AMPK activation, and acetyl-CoA carboxylase inhibi-
tion (Bastie et al., 2007). Fyn kinase directly phosphorylates 
LKB1 on Y261 and Y365, resulting in decreased AMPK phos-
phorylation (Bastie et al., 2007; Yamada et al., 2010). Fyn also 
inhibits AMPK enzymatic activity via phosphorylation on the 
α-subunit of AMPK on Y436, without altering the assembly 
state of the AMPK heterotrimeric complex. A treatment with 
pro-inflammatory cytokine, TNFα enhances Fyn-dependent 
AMPKα Y436 phosphorylation and inhibits autophagy, which 
is abolished in response to Y436 mutation of AMPKα (Yamada 
et al., 2016). 

AMPK suppresses mTORC1 activation through phosphory-
lation of raptor and tuberous sclerosis complex (TSC1/2) (San-
chez et al., 2012). Overexpression of Fyn inhibits LKB1-AMPK 
pathway, which subsequently promotes mTORC1 activation 
(Yamada et al., 2010, 2012). Although Fyn-induced activa-
tion of mTORC1 signaling complex is evident (Yamada et al., 
2012), study showing inhibition of autophagy via Fyn/mTOR 
signaling axis is lacking. However, Src kinase-regulated mTOR 
signaling has been shown to inhibit autophagy. NADPH oxi-
dase 2 (Nox2)-induced oxidative stress induces persistent Src 
kinase activation, resulting in activation of mTOR via PI3K/Akt 
phosphorylation in mice model of Duchenne muscular dystro-
phy. Inhibition of either Nox2 or Src kinase abrogates defec-
tive autophagy and attenuates the progression of disease (Pal 
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et al., 2014). Src kinase is also critical for amino acid-induced 
mTORC1 activation via Rag GTPase-mediated GATOR1 and 
Rags dissociation. Src kinase induces mTORC1 recruitment 
and activation at the lysosomal surface, which leads to down-
regulation of autophagy (Pal et al., 2018).

In addition, Fyn-dependent STAT3 activation decreases 
Vps34 protein level, leading to inhibition of Vps34/p150/Be-
clin1/Atg14 complex assembly. Muscle specific FynB or FynT 
over-expressing animals exhibits muscle wasting associated 
with inhibited macroautophagy (Yamada et al., 2012).

FYN, A POSSIBLE MEDIATOR OF AKI TO CKD 
TRANSITION

Patients who have history of AKI may develop to progres-
sive CKD (Coca et al., 2012; Lewington et al., 2013). Kid-
ney fibrosis is a histological hallmark of CKD (Ardura et al., 
2010). AKI promotes progressive tubulointerstitial fibrosis in 
humans (Basile et al., 2012) and pet animals (Keegan and 
Webb, 2010; Lawson et al., 2015). Following severe AKI, the 

proximal tubule cellular repair process can lead to fibrosis. 
Increased synthesis of native and foreign hepatocyte growth 
factor (HGF) in damaged tubular epithelial cells during the ini-
tial stage of AKI, leads to the generation of pro-fibrotic factors 
including cytokines, growth factors, and matrix proteins (Yang 
et al., 2011). Consequently, AKI can result in proliferation of 
fibroblasts and excessive deposition of extracellular matrix 
(Yang et al., 2011; Du et al., 2013). 

The activation of Src kinase is strongly associated with the 
progressive kidney fibrosis in various models, such as STZ-in-
duced diabetes (Taniguchi et al., 2013), db/db diabetes (Wu et 
al., 2015), and obstructed fibrosis (Yan et al., 2016), and Fyn 
kinase is elevated in the STZ-induced diabetic kidney (Cheng 
et al., 2016). Administration of non-selective Src kinase in-
hibitors attenuates the development of kidney fibrosis. Fur-
thermore, Fyn deficiency attenuates kidney fibrosis through 
inhibition of STAT3 activation in UUO mice. STAT3 siRNA in 
Fyn-deficient proximal tubular cells suppresses α-SMA ex-
pression, whereas a STAT3 activator partially restores plas-
minogen activator inhibitor-1 expression (Seo et al., 2016). It 
remains to be determined whether inhibition of Fyn at early 

Fig. 3. Fyn signaling pathway. Activation of NOX, TLR, CD36, and TNFR may increase Fyn with or without ROS-mediated oxidative stress. 
Activated Fyn may i) suppress LKB1-AMPK and thus increases mTORC1-ER stress pathway and ii) activate STAT3 signaling which inhibits 
macroautophagy through suppression of VSP34, activates inflammation signaling, and mediates fibrosis. Additionally, Fyn also activates 
inflammation signaling (PKCδ>MAPK>NF-κB). All of these ultimately may contribute to kidney dysfunction. TNFR, tumor necrosis factor re-
ceptor.
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stage of AKI may prevent AKI-associated CKD.

FURTHER DIRECTION AND CONCLUSION

Fyn kinase, a classic proto-oncogene, has been proposed 
to be activated and involved in the pathogenesis of AKI. The 
therapeutic effects of non-selective SFK inhibitors have been 
confirmed in the preclinical studies of CKD. Although the de-
tailed mechanism by which Fyn kinase mediated AKI remains 
elusive, studies in both kidney and other tissues have sug-
gested the important role of Fyn kinase in modulating vari-
ous pathogenic pathways in AKI (Fig. 4). Activated Fyn kinase 
exacerbates inflammation, oxidative stress, and fibrosis de-
velopment. The crosstalk between Fyn kinase and metabolic 
signaling, i.e. AMPK and mTOR also contributes to regulation 
of autophagy and ER stress. 

There are a number of SFK inhibitors including imatinib, 
nilotinib, and dasatinib either approved for the treatment of 
malignancies or aimed at clinical trials in brain disorders 
(Schenone et al., 2011). None of these inhibitors targets one 
specific member of the SFKs, making it difficult to clarify the 
role of individual SFKs in a given disease. Thus, future studies 
should be conducted to clarify the role of Fyn by utilizing highly 
selective inhibitors and genetic manipulation. In addition, ana-
lyzing the expression profile of SFKs in kidney biopsies will 
also help to elucidate the role of individual SFKs in different 
kidney diseases. Considering the pathological roles of Fyn in 
various diseases including AKI, it would be worthwhile to de-
velop an inhibitor targeting Fyn to treat the AKI patients.
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