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Abstract: A chemotherapy drug, oxaliplatin, induces cold and mechanical hypersensitivity, but
effective treatments for this neuropathic pain without side effects are still lacking. We previously
showed that Cinnamomi Cortex suppresses oxaliplatin-induced pain behaviors in rats. However,
it remains unknown which phytochemical of Cinnamomi Cortex plays a key role in that analgesic
action. Thus, here we investigated whether and how cinnamic acid or cinnamaldehyde, major
components of Cinnamomi Cortex, alleviates cold and mechanical allodynia induced by a single
oxaliplatin injection (6 mg/kg, i.p.) in rats. Using an acetone test and the von Frey test for measuring
cold and mechanical allodynia, respectively, we found that administration of cinnamic acid, but
not cinnamaldehyde, at doses of 10, 20 and 40 mg/kg (i.p.) significantly attenuates the allodynic
behaviors in oxaliplatin-injected rats with the strongest effect being observed at 20 mg/kg. Our in vivo
extracellular recordings also showed that cinnamic acid (20 mg/kg, i.p.) inhibits the increased
activities of spinal wide dynamic range neurons in response to cutaneous mechanical and cold stimuli
following the oxaliplatin injection. These results indicate that cinnamic acid has an effective analgesic
action against oxaliplatin-induced neuropathic pain through inhibiting spinal pain transmission,
suggesting its crucial role in mediating the effect of Cinnamomi Cortex.

Keywords: Cinnamomi Cortex; phytochemical; cinnamic acid; cinnamaldehyde; oxaliplatin;
neuropathic pain; allodynia; spinal cord; wide dynamic range neuron

1. Introduction

Oxaliplatin is a widely used third-generation platinum chemotherapeutic agent usually prescribed
with fluorouracil and leucovorin against metastatic colorectal [1,2], breast, ovarian and lung cancer [3].
Furthermore, oxaliplatin has no cross-resistance and has a higher efficacy and a lower nephrotoxicity
than cisplatin, which is a first generation platinum chemotherapeutic agent [4]. However, the acute
neuropathic pain induced by even a single treatment of oxaliplatin affect more than 90% of treated
patients [5]. This oxaliplatin-induced neuropathic pain is characterized by peripheral paresthesia
and dysesthesia of hands and feet [5,6]. Especially, cold and mechanical hypersensitivities are
emphasized [7,8].

This neuropathic pain can interrupt the treatment schedule, and put an end to treatments by
deteriorating the patient’s quality of life [5,9,10]. Today, drugs used as first-line therapy for this pain are
selective serotonin, norepinephrine reuptake inhibitors (duloxetine, venlafaxine) and anticonvulsants
(gabapentin, pregabalin) [11]. However, these drugs also have untoward side effects such as headache,
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dizziness and somnolence, which limit their use [12,13]. Thus, it is important to put efforts to find out
new alternative medicine that could attenuate oxaliplatin-induced neuropathic pain without causing
side effects.

In our previous study, oral administration of water extract of Cinnamomi Cortex (C. Cortex;
Cinnamomum cassia P., family Lauraceae) significantly attenuated cold allodynia induced by single
oxaliplatin injection [14]. By using ultra-high performance liquid chromatography, we confirmed
that C. Cortex is mainly composed of coumarin, cinnamic acid and cinnamaldehyde. To further
understand which phytochemical plays a major role in the analgesic effect of C. Cortex, we first tested
the effect of coumarin among the three main phytochemicals. As a result, we found out that five
consecutive oral administrations of coumarin (10 mg/kg) significantly attenuated the cold allodynia
induced by oxaliplatin [14]. However, coumarin did not attenuate the mechanical allodynia whereas C.
Cortex significantly decreased both the cold and mechanical allodynia (unpublished data). Moreover,
coumarin has been reported to cause hepatotoxicity in rats [15].

Thus, in this study, we first determined whether cinnamic acid (CA) or cinnamaldehayde
(CD) plays a key role in mediating the suppressive effect of C. Cortex on oxaliplatin-induced
cold and mechanical allodynia. Secondly, we verified its effect on cutaneous stimuli-evoked
neuronal hyperexcitation in the spinal cord of oxaliplatin administered rats, using in vivo
extracellular recordings.

2. Materials and Methods

2.1. Animals

Seven-week-old, male Sprague Dawley (SD) rats (180–210 g, n = 95 in total, Young Bio, Gyeonggi,
Korea) were housed in a cage with free supply of food and water. The room temperature was
maintained at 23 ± 2 ◦C and kept on a 12-h/12-h light-dark cycle. All procedures described on this
study were approved by the Institutional Animal Care and Use Committee of Kyung Hee University
(KHUASP[SE]-18-153) and were performed according to the institutional guidelines of the International
Association for the Study of Pain [16,17].

2.2. Behavioral Tests and Experimental Protocols

To measure cold and mechanical allodynia, we used acetone drop test and von Frey filament
(Linton Instrumentation, Norfolk, UK) test (up-down method), respectively [18]. Rats were habituated
to handling and to all test procedures for a week before the initiation of the experiments.
The experimenters were blinded to oxaliplatin and any other drug injections. Rats were placed
in a clear plastic box (20 × 20 × 14 cm) with a wire mesh floor and habituated for 30 min before testing.

For cold allodynia test, acetone (10 µL) was treated to the ventral surface of the right hind paw
by pipet connected rubber tube, and the behavioral responses were monitored for 20 s. Acetone was
applied five times to the right hind paw, and the total frequencies of licking and flicking were averaged
per set.

For mechanical allodynia test, paw withdrawal thresholds were measured in right hind paw
using the von Frey filaments. Dixon’s up-down method and Chaplan’s calculation methods were used
and withdrawal threshold of 15 g was applied as the cut-off [19,20].

To see the time-dependent effects of different doses of two phytochemicals, CA and CD, behavioral
tests were conducted at time point zero (before the administration of chemicals), 30, 60, and 120 min
after the injection.

2.3. Oxaliplatin Administration

Oxaliplatin (Wako Pure Chemical Industries, Osaka, Japan) was dissolved in a 5% glucose solution
at a concentration of 2 mg/mL and injected intraperitoneally (i.p.) at a dose of 6 mg/kg. The control
group received the same volume of 5% glucose solution (i.p.) [17].
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2.4. Cinnamic Acid and Cinnamaldehyde Administration

CA (trans-Cinnamic acid, Wako Pure Chemical Industries, Osaka, Japan) and CD (Cinnamaldehyde,
Wako Pure Chemical Industries, Osaka, Japan) were dissolved in 10% dimethyl sulfoxide (DMSO,
Sigma) (adjusted pH 7 by using 2M HCl and 5M NaOH) and 1% Tween 20 (Sigma) respectively.
The final volume of 10% DMSO and 1% tween 20 used in the experiments is 2 µL/g rat. Different
doses of CA and CD (10, 20, and 40 mg/kg) were administered (i.p.) in rats with cold and
mechanical allodynia.

2.5. In Vivo Extracellular Recording

Extracellular recordings were performed on day four after the administration of oxaliplatin, when
rats exhibited significant mechanical and cold allodynia. As previously described [21], rats were
anesthetized with urethane (Sigma; 1.5 g/kg, i.p.) and the spinal cords of the animals, which were
fixed in a stereotaxic frame, were exposed from T13–L2 and irrigated with oxygenated (95% O2-5%
CO2 gas) Krebs solution (in mM: 117 NaCl, 3.6 KCl, 2.5 CaCl2, 1.2 MgCl2, 1.2 NaH2PO4, 11 glucose, and
25 NaHCO3) at a flow rate of 10–15 mL/min at 38 ± 1 ◦C. Based on their responses to brush, pressure,
pinch, and acetone stimulations, the wide dynamic range (WDR) cells were identified. Extracellular
single-unit recordings were made with a low-impedance insulated tungsten microelectrode (impedance
of 10 MΩ, FHC, Bowdoin, ME, USA). For mechanical stimuli, brush, press, and pinch stimulations
were applied to the lateral and ventral surfaces of the hind paw. Brush stimulus was given by brushing
the receptive field five times with a camel brush. Press stimulus was given by pressing the receptive
field for 4 s using the blunt tip of the camel brush with a diameter of 0.5 cm and a magnitude of about
20 g. Pinch stimulation was given by pinching the skin using toothed forceps (11022-14, Fine Science
Tools, Heidelberg, Germany) for 3 s. For cold stimulation, 10 µL of acetone drop was applied to the
receptive fields [22].

2.6. Statistics

All the data was represented as the mean ± S.E.M. Data in Figure 1 was analyzed by paired t-test
(Figure 1A,B) or unpaired t-test (Figure 1C–F). Data in Figures 2 and 3 was represented as mean ± S.E.M
and was analyzed by Bonferroni post-test after one-way ANOVA to assess statistical differences among
the groups. Data in Figure 4A–D was analyzed by using Dunnett’s multiple comparisons test after
two-way ANOVA. Confidence of 95% was considered as statistically significant.

3. Results

3.1. Behavioral and Electrophysiological Correlates of Oxaliplatin-Induced Neuropathic Pain in Rats

A single intraperitoneal injection of oxaliplatin (6 mg/kg) induces neuropathic pain in rats. In our
previous studies, significant cold and mechanical allodynia were observed from day three to seven
after oxaliplatin injection [22,23]. Figure 1A,B show the results of acetone drop and von-Frey stimuli
before and after oxaliplatin injection. Four days after oxaliplatin injection, both the cold and mechanical
allodynia were significantly induced (p < 0.001). Once the behavioral signs of neuropathic pain were
observed, in vivo extracellular recordings were conducted in the rat spinal cord neurons. The number
of spike responses of WDR neurons to mechanical (brush, press and pinch) and cold (acetone drop)
stimuli were significantly increased after the injection of oxaliplatin (Figure 1C–F), indicating the
hyperexcitation of WDR neurons by cutaneous stimuli. Representative raw traces of WDR neuron’s
responses to pinch and acetone drop are shown in Figure 1G. These behavioral and electrophysiological
results clearly validate the establishment of neuropathic pain four days after the injection of oxaliplatin.
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Figure 1. Single oxaliplatin injection induces neuropathic pain behaviors and hyperexcitation of spinal
neurons in rats. Four days after single oxaliplatin injection, significant cold; n = 34 (A) and mechanical;
n = 31 (B) allodynia were induced in rats. Firing frequencies of spinal dorsal horn WDR cells to brush,
press, pinch and acetone drop stimuli were measured after 5% glucose (control, n = 7) or oxaliplatin
(oxaliplatin, n = 7) injections (C–F). Representative raw trace of WDR neuron firings to pinch and
acetone drop stimuli in the control and oxaliplatin groups (G). Data is presented as the mean ± S.E.M.;
* p < 0.05, ** p < 0.01, *** p < 0.001 vs. Before; by paired t-test (A,B) and * p < 0.05, ** p < 0.01, *** p < 0.001
vs. Control; by unpaired t-test (C–F).
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3.2. CA Attenuates Oxaliplatin-Induced Cold and Mechanical Allodynia

To observe whether CA could decrease the cold and mechanical allodynia induced by oxaliplatin
administration, we conducted behavioral tests with three different doses of CA (10, 20, and 40 mg/kg,
i.p.). On cold allodynia, all three doses of CA were shown to be effective; however, the effect of
10 mg/kg of CA was shorter than 20 and 40 mg/kg, as its effect disappeared at 120 min time point.
Between 20 and 40 mg/kg, analgesic effect of 20 mg/kg CA was shown to be slightly stronger than
40 mg/kg (control vs. 20 mg/kg, p < 0.001 and 40 mg/kg, p < 0.05) (Figure 2A). On mechanical
allodynia, 10 mg/kg of CA was slightly effective as its effect was significant only at 60 min after
injection, however, 20 mg/kg of CA had the strongest anti-allodynic effect among the three doses
during all the time points (Figure 2B). These results indicate that intraperitoneal administration of CA
potently alleviates oxaliplatin-induced cold and mechanical allodynia in rats, for which the optimal
dose is 20 mg/kg.

Figure 2. Intraperitoneal administration of cinnamic acid (CA) attenuates oxaliplatin-induced cold and
mechanical allodynia. Analgesic effects of three different doses of CA (10, 20, and 40 mg/kg). CA was
injected intraperitoneally on day 4, when significant allodynic signs were observable in oxaliplatin
treated rats (time point zero). Behavioral tests for both cold (A) and mechanical (B) allodynia were
conducted on 0, 30, 60, and 120 min after CA injection. Vehicle group received 10% DMSO as control.
Data is presented as the mean ± S.E.M.; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. 0 min; by Bonferroni
post-test after one-way ANOVA (A,B).

3.3. Cinnamaldehyde Has No Effect on Oxaliplatin-Induced Cold and Mechanical Allodynia

In this study, we also tested the effect of CD, which is another major component of C. Cortex.
However, in contrast to CA, three different doses of CD (10, 20, and 40 mg/kg, i.p.) did not show any
significant analgesic effect against oxaliplatin-induced cold and mechanical allodynia (Figure 3).
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Figure 3. Intraperitoneal administration of cinnamaldehyde (CD) does not affect oxaliplatin-induced
allodynia. Analgesic effects of three different doses of CA (10, 20, and 40 mg/kg) are shown. CD was
injected intraperitoneally on day 4, when significant allodynic signs were observable in oxaliplatin
treated rats. Behavioral tests for both cold (A) and mechanical (B) allodynia were conducted on time
point 0, 30, 60, and 120 min after CD injection. Vehicle group received 1% Tween 20 as control. Data is
presented as the mean ± S.E.M.; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. 0 min; by Bonferroni post-test
after one-way ANOVA (A,B).

3.4. CA Inhibits the Hyperexciation of Spinal WDR Neurons in Oxaliplatin-Injected Rats

To see if CA can reduce the increased activities of WDR neurons after oxaliplatin injection,
we conducted in vivo extracellular recordings in the rat spinal cord (see Materials and Methods) on
day four, when behavioral and electrophysiological correlates of neuropathic pain were established
(Figure 1). CA was given intraperitoneally at a dose of 20 mg/kg, which was optimal for attenuating
cold and mechanical allodynia (Figure 2). DMSO (10%, i.p.) was used as a control. Mechanical (brush,
press and pinch) and cold (acetone drop) stimuli were given before and after the administration of
CA or control. Increased WDR neuronal activities following oxaliplatin injection were significantly
decreased after intraperitoneal administration of 20 mg/kg of CA. However, 10% DMSO did not
change these increased activities of WDR (Figure 4A–D). Representative raw data exhibiting the
decrease of WDR cell’s firings to pinch and acetone drop by CA is shown in Figure 4E. These results
suggest that intraperitoneal administration of CA at 20 mg/kg strongly inhibits the hyperexcitation of
spinal WDR neurons in rats with oxaliplatin-induced cold and mechanical allodynia.



Nutrients 2019, 11, 432 7 of 10

Figure 4. CA inhibits the hyperexcitability of spinal dorsal horn WDR cells to cutaneous stimuli in
oxaliplatin treated rats. In vivo extracellular recordings were used to measure the change in firing
frequencies of WDR cells to cold and mechanical stimuli after CA administration (20 mg/kg, i.p.) in
oxaliplatin injected rats; n = 8. Control rats received the same volume of 10% DMSO; n = 6. Data is
presented as the mean ± S.E.M.; * p < 0.05, *** p < 0.001 vs. time point zero; by Dunnett’s multiple
comparisons test after two-way ANOVA (A–D), N.S.; non-significant. (E) Representative raw trace of
WDR neuron firings in response to pinch or acetone drop stimuli before and after injection of CA.
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4. Discussion

Oxaliplatin is more widely used compared to the drugs of other generations [24] as it bears
no nephrotoxicity and hepatoxicity [25] and its effect against colon carcinoma cell lines resistant to
other platinum drugs has been reported [26]. Nevertheless, even a single intraperitoneal injection
of oxaliplatin can cause peripheral neuropathic pain [14,17,21], which is a dose-limiting cause [27].
Different categories of analgesic drugs are used to attenuate this neuropathic pain; however, these
drugs can also cause side effects, which limit their wide use [12,13]. Thus, efforts to develop a novel
drug are continually needed.

In our previous study, we found that C. Cortex can effectively attenuate oxaliplatin-induced
cold and mechanical allodynia; however, more experiments had to be conducted to understand
which phytochemicals of C. Cortex played a major role in this analgesic effect [14]. Also by using
HPLC, it was shown that 0.226% and 0.027% of CA and CD exist in water extract of C. Cortex,
respectively. As 400 mg/kg of C. Cortex was administered orally for five consecutive days to decrease
oxaliplatin-induced neuropathic pain, approximately 0.9 and 0.1 mg/kg of CA and CD were contained
in 400 mg/kg of C. Cortex, respectively. In the present study, we determined the effects of two
main components of C. Cortex, CA and CD, on oxaliplatin-induced neuropathic pain behaviors and
investigated their electrophysiological mechanism.

As reported from others and our lab [28,29], we showed that single intraperitoneal injection of
oxaliplatin (6 mg/kg) can cause significant behavioral signs of cold and mechanical allodynia in rats.
Also, by using in vivo extracellular electrophysiology, we showed that spike numbers of spinal WDR
neuronal cells in response to cutaneous cold and mechanical stimuli were increased after oxaliplatin
injection (Figure 1), validating the establishment of neuropathic pain induced by oxaliplatin in rats.
On day four, when the allodynic signs were strongly shown, we administered CA intraperitoneally.
Different doses of CA (10, 20 and 40 mg/kg) attenuated cold and mechanical allodynia, but 20 mg/kg
produced the strongest analgesic effect (Figure 2). However, on the contrary to CA, all three doses
of CD (10, 20 and 40 mg/kg) did not show any analgesic effect against oxaliplatin-induced cold and
mechanical allodynia (Figure 3). These results suggest that CA, but not CD, play a key role in the
anti-allodynic effect of C. Cortex in oxaliplatin treated rats.

Previously published articles by other research group reported that when CD was injected into
naïve rats, it significantly reduced the paw withdrawal latency to cold and mechanical stimuli. They
speculated that this result may be due to the agonist action of CD on transient receptor potential
ankyrin 1 (TRPA1) [30]. CD was reported to act as a TRPA1 agonist like mustard oil, and activation of
TRPA1 was shown to induce cold and mechanical allodynia [31,32]. Thus, this may explain the reason
why in our experiment CD did not show any analgesic effect. However, in our study CD did not
induce cold and mechanical hypersensitivity as in other papers, and this may be due to the differences
in the injected sites (paw vs. intraperitoneal) and pain models (naïve vs. neuropathic pain).

In our last experiment (Figure 4), we showed that CA (20 mg/kg, i.p.) significantly reduces the
increased activities of spinal WDR neurons in response to cutaneous stimuli in oxaliplatin injected
rats. This electrophysiological mechanism reflects that the peripheral pain induced by third generation
platinum based agents is related to the hyperexcitability of spinal WDR neurons, and that decreasing
their increased activities can lead to the attenuation of pain [21]. Downregulation of glial activation
and/or cytokines [14] may play a role in this pain decreasing effect of CA. Subsequent in-depth
research into its molecular mechanism is required.

5. Conclusions

Taken altogether, our results show that intraperitoneal administration of CA can alleviate the cold
and mechanical allodynia induced by single oxaliplatin injection in rats. Moreover, this action of CA is
related to the attenuation of spinal WDR neurons’ firings increased by oxaliplatin treatment. Based on
these results, we suggest that CA has a potential to be an alternative to the current analgesic drug used
to treat oxaliplatin-induced neuropathic pain.
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