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Abstract: This research presents a novel approach of artificial intelligence (AI) based gene expression
programming (GEP) for predicting the lateral load carrying capacity of RC rectangular columns
when subjected to earthquake loading. To achieve the desired research objective, an experimental
database assembled by the Pacific Earthquake Engineering Research (PEER) center consisting of
250 cyclic tested samples of RC rectangular columns was employed. Seven input variables of these
column samples were utilized to develop the coveted analytical models against the established
capacity outputs. The selection of these input variables was based on the linear regression and cosine
amplitude method. Based on the GEP modelling results, two analytical models were proposed for
computing the flexural and shear capacity of RC rectangular columns. The performance of both
these models was evaluated based on the four key fitness indicators, i.e., coefficient of determination
(R2), root mean squared error (RMSE), mean absolute error (MAE), and root relative squared error
(RRSE). From the performance evaluation results of these models, R2, RMSE, MAE, and RRSE were
found to be 0.96, 53.41, 38.12, and 0.20, respectively, for the flexural capacity model, and 0.95, 39.47,
28.77, and 0.22, respectively, for the shear capacity model. In addition to these fitness criteria, the
performance of the proposed models was also assessed by making a comparison with the American
design code of concrete structures ACI 318-19. The ACI model reported R2, RMSE, MAE, and RRSE
to be 0.88, 101.86, 51.74, and 0.39, respectively, for flexural capacity, and 0.87, 238.74, 183.66, and 1.35,
respectively, for shear capacity outputs. The comparison depicted a better performance and higher
accuracy of the proposed models as compared to that of ACI 318-19.

Keywords: reinforced concrete columns; lateral load carrying capacity; bearing capacity; flexural
capacity; shear capacity; gene expression programming

1. Introduction
1.1. Background

Columns are the primary structural elements intended to transfer the load of the
overlying structure to the foundations underneath through axial compression [1]. Based on
the material, they can be classified into several types. However, reinforced concrete (RC)
columns are widely used in buildings and bridge structures. They are generally considered
as the most important RC frame members of these structures in terms of their seismic
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response [2,3]; this is because most of the recent structural failures during earthquakes are
reported to occur because of poor column performances [4]. A failure normally triggered
through the columns progressively results in the global failure of the overall structure.
The modern generation of earthquake engineering aims to equip structural engineers
with advanced techniques to design structures based on their performance rather than
on conventional strength-based methods [5–8]. To effectively apply this approach for
the seismic design of RC rectangular columns, failure modes and ultimate load-carrying
capacities are required to be determined [9]. Enough literature is already available on the
failure mode classification of RC columns. According to Acun and Sucuoglu [10], failure
in columns occurs because of insufficient strength or deformation capacity. Based on this
principle, RC column failures can be classified into three categories [11], i.e., shear failure,
flexural failure, and flexural-shear failure. Shear failure occurs in a brittle manner with
a sudden loss of load carrying capacity before the yielding of longitudinal reinforcement,
and therefore also termed as brittle shear failure [12]. Flexural failure occurs in a ductile
fashion, with the column enduring a large deformation without any significant loss of
load-carrying capacity [12]. This type of failure is also known as a ductile flexural failure.
An intermediate failure stage exists between pure shear and flexural failure, i.e., flexural-
shear failure. In this type of failure, columns usually suffer material damage or flexural
yielding just before experiencing pure shear failure [12]. This is also termed as ductile
shear failure.

Many researchers have worked on quantifying these failure modes of RC columns.
Some have presented pure analytical techniques for classifying these failure modes based on
either geometrical or strength parameters, whereas others have presented mixed analytical-
experimental approaches. According to Feng et al. [13], the failure mode classification
is normally based on two simple indices, i.e., aspect ratio (Ar) and shear demand to the
capacity ratio. If Ar (i.e., the ratio of column length to the cross-sectional height) is less
than 2, the column failure would be categorized as a pure shear failure, whereas if it is
greater than 4, the failure would be classified as a pure flexural failure. If 2 ≤ Ar ≤ 4, the
failure is said to be a flexural-shear failure. Similarly, if the shear demand to capacity ratio
is greater than 1, the column would suffer pure shear failure, whereas if it is less than 0.7,
the failure would be a pure flexural failure. However, if the shear demand to capacity ratio
is between 0.7 and 1, combined flexural-shear failure is expected to occur for the given RC
column [13].

Once the failure mode is classified, the next step is determining the lateral load-
carrying capacity (i.e., bearing capacity) of the RC columns. This can be defined as the
maximum lateral load taken by the column before undergoing failure during seismic events.
The bearing capacity of an RC column further depends on its flexural and shear capacities,
the minimum of which is regarded as the bearing capacity of the overall column. The
flexural capacity is normally based on the plane section assumptions and can be determined
accurately using the famous flexural formula (f = MY/I). However, the determination of
shear capacity is relatively complicated because of multiple influencing factors and complex
shear transfer mechanisms. Many experimental and finite element studies have predicted
both these capacities of RC columns with higher accuracy [1,11,14], but these traditional
capacity determination techniques are costly, time-consuming, and laborious. The solution
to the problem lies in the development of analytical models [13,15–20]. Up till now, many
empirical models have been developed for the prediction of bearing capacity of RC columns,
e.g., failure mode and bearing capacity prediction model [13], strut and tie model [21,22],
modified compression field theory model [23,24], softened truss model [25,26], damage
model [27,28], etc. However, most of these models are based on simple regression analysis
incorporating limited experimental datasets [13]. Therefore, their applicability in a broader
aspect is always questionable. Moreover, the models with relatively larger datasets have
considered only a few parameters in their model development. Therefore, their accu-
racy is also not ideal. Artificial intelligence (AI) techniques are generally recommended
to overcome these issues using relatively larger databases developed over the past few
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decades [29]. AI is a “black box” that relates the inputs and outputs in a simplified manner
while avoiding complex mathematical derivations. It has better performance as compared
to the traditional analytical models and therefore can be employed to predict the bearing
capacity of RC columns quickly, accurately, and robustly.

The term AI was first introduced in 1956 [30] to represent the ability of a machine
to imitate intelligent human behaviour in order to solve complicated problems based on
human-inspired algorithms [31]. However, its use was limited then in the civil and struc-
tural engineering community because of the lack of innovative techniques and advanced
computer technology. The recent progress in AI techniques and modern computer systems
has enhanced the interest of structural engineers in developing precise and consistent
models to solve complex structural problems [32]. AI procedures are generally based
on machine learning (ML), pattern recognition (PR) and deep learning (DL), which fur-
ther consist of artificial neural networks (ANNs), fuzzy logic, genetic programming (GP),
etc. [16,17,31,33–50]. The application of these AI techniques in structural engineering are
traced back to the early 1980s, where they were first used in the compliance checking of
design codes [51,52] and expert interactive design of concrete columns (EIDOCC) [53,54].
In addition to these basic works, an AI technique, i.e., ML, was also applied to predict
the location and extent of the damage to various structural systems subjected to varying
loading conditions [55–57]. Multiple AI techniques, including ANN, logistic and linear
regressors, lasso and supper vector machines (SVMs), have been adopted to predict the
fragility behaviour of RC structural systems [58–61]. Some recent works have also em-
ployed AI techniques to predict the shear strength of RC beams [62], shear strength of RC
joints [63], punching shear capacity of RC slabs [64], failure mode and capacity prediction of
RC columns, etc. [12,65,66]. However, the methodology adopted in all these works requires
a bulk of memory to accommodate a large number of hidden neurons involved in the
model development. Moreover, using these techniques, it is also difficult to represent the
relationship between inputs and outputs in a practically simplified form, which requires the
researchers and other stakeholders to shift towards more efficient, simple, and practically
applicable techniques.

Another AI method, i.e., GP, provides an effective solution to the above-discussed
practicality issue. This was first introduced by Cramer in 1985 [67] and further im-
proved by Koza in 1992 [68]. It is an evolutionary AI algorithm intended to produce
high-quality solutions to complicated problems through analogues to computer-based
genetic operations, e.g., deletion, reproduction, duplication, mutation, and crossover. It is
a domain-independent technique based on Darwin’s evolutionary theory [69]. GP starts
with the given initial population of programs consisting of multiple functions and terminals
(Figure 1). The functions describe the standard procedure to execute the program, whereas
terminals outline the arguments for each function [70,71]. The functions may include arith-
metical operations, program manoeuvres, and mathematical equations. The performance
of a certain program is evaluated based on its effectiveness in explaining the output while
exploiting the given inputs. Evaluating the initial population, worst performing programs
are deleted, whereas a new generation of programs is created based on the top performing
programs through the operations of reproduction, mutation, duplication, and crossover [68].
The mutation involves replacing an arbitrary part of a program with an alternative part
randomly picked from another program of the existing population. In addition to the
reproduction of the programs through mutation and crossover, some programs are simply
copied from the previous generation to the new generation through a process known as
duplication. These processes eventually result in the production of a new generation of
programs having a better fitness than their parent population [68]. This loop of genetic
operations is repeated again and again until an ultimate termination condition is reached.
Some common termination conditions of GP may include maximum number of iterations,
maximum allowable computational time, minimum level of difference between the popula-
tions of successive iterations or a solution satisfying the set criteria. In case either of these
conditions is reached, the program is terminated to provide a final solution [68].
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Figure 1. Working Procedure of GP Algorithms.

Recently, GP has been successfully used as an automated problem-solving technique
in many practical applications, e.g., engineering design, traffic routing, curve fitting, data
modelling, failure classification, capacity prediction, symbolic regression, etc. [72]. How-
ever, along with all the positive utilities it offers, there are certain limitations associated
with it. It is computationally very expensive in the case of high dimensional real-world
problems which require a huge amount of time to complete simulation to get the optimum
results [73]. It also tends to destructive mutation, i.e., once the best fit chromosome is
generated, it can be reconstructed into a lesser fit chromosome of the new generation,
reducing its overall efficiency [73]. The effectiveness of GP is always a matter of debate in
the case of decision problems, where there is the least probability for the convergence of
a solution [73]. It can also sometimes result in an exponential increase in the population
size during mutation and crossover operations, making this technique difficult to apply
to complex design problems [73]. Another drawback of GP lies in its inability to have an
independent genome. Therefore, its nonlinear structure has to act both as a genotype and
phenotype [74], which makes it incapable of producing simple and robust expressions.
To successfully deal with all these limitations, an extension of GP, i.e., gene expression
programming (GEP), is often recommended. GEP further improves the effectiveness of
this technique by making the model adaptive to different conditions, like living organisms.
It uses the simple chromosomes of defined length to encode a computer program for the
given model [74]. GEP has the ability to describe the output by a simple mathematical
equation, which can be recommended for practical purposes with higher prediction accu-
racy [75]. Recently, GEP has been considered an alternative to the conventional analytical
methodologies, particularly in civil and structural engineering [76].

Therefore, this research aims to predict the lateral load carrying capacity of RC rectan-
gular columns subjected to earthquake loading utilizing GEP. Moreover, as according to the
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authors’ knowledge, no equation has been proposed in the past research articles until now
to directly predict the lateral load carrying capacity of RC columns, this research also aims
to provide simplified empirical relationships for future design purposes while assuring the
universal nature of the proposed model. It is further extended to provide a comparison on
the lateral load carrying capacity of RC columns as recommended by the proposed model
and international design codes.

1.2. Gene Expression Programming

GEP was proposed by Candida Ferreira [77] in 2001 as an extension of GP. It belongs
to the family of evolutionary AI algorithms that create complex tree structure computer
programs, often known as parse trees. Multiple parse trees exist in each chromosome of
these computer programs, which are usually created by the multigenic system of GEP.
Therefore, they are also known as expression trees [78,79]. These computer programs
are supposed to explore the environment and adapt to the given conditions by altering
their sizes, shapes, and composition. The computer programs are generally encoded
using simple linear chromosomes of fixed length as inherited from genetic algorithms
(GA), resembling the genetic model of living organisms. GEP incorporates these linear
chromosomes as genotype, and the parse trees as phenotype of their complex system
of genomes and phenomes [79]. The genomes are intended to keep and transfer genetic
information, whereas phenomes are responsible for exploring and adapting the programs to
the given environment. Despite their fixed sizes, genomes are used to encode the expression
trees of varying sizes and shapes, allowing the adaptation and evolution of phenomes to
occur smoothly. An expression tree generally consists of a phenome expression and the
linear strings of GEP genes [79]. These linear string genes are often known as k-expressions
which can be read directly from top to bottom and left to the right in the expression tree
structure of GEP. The k-expressions are normally used to represent the region of genes
that are being expressed, which in turn epitomises the validity of computer programs and
expressions. GEP genes can be further expressed as a function of two domains, i.e., a head
and a tail [77]. The head is normally used to encode all the input variables and functions
chosen to get the required solution, whereas the tail provides a pool of terminals to ensure
the error-free nature of the GEP programs. Following the gene structure of living organisms,
GEP genes are also associated with the homeotic genes, which controls the interaction
between different main program modules [79]. Homeotic genes possess an identical
structure to the normal GEP genes as they are the product of the same process. They are
also comprised of a head and a tail domain. The only difference is that they contain linking
functions and special terminals called genic terminals. The cellular system in GEP allows
the unrestricted evolution of linking functions as well as the recursive use of encoded
programs. The head-tail domains of GEP and homeotic genes are the fundamental units of
all GEP algorithms [79]. However, GEP also tries to explore additional genes with an extra
domain. This extra domain usually encodes random constants that are persistently fined
tuned by the program to arrive at optimum solution.

The basic GEP algorithm involves four fundamental steps, i.e., the creation of initial
random population, execution of GEP programs, verification of termination conditions
and the generation of subsequent populations or the representation of the final optimum
solution in the form of a simple mathematical expression (Figure 2). The initial random
population of GEP programs is usually created with the help of functions and terminal
sets. GEP only requires the population units to be expressed in the form of simple linear
chromosomes of fixed length without wondering about their structural reliability [79]. This
is because GEP expressions always result in syntactically sound programs. After creating
the initial random population, all the GEP programs are executed according to predefined
fitness functions. These fitness functions normally depend on the type of problem under
consideration. Based on prediction outputs, the overall GEP problems can be classified into
three main categories, i.e., the regression problems, classification problems and Boolean
logic problems [79]. For the regression problems, the output is usually a numeric value.
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Therefore, the fitness function for the evaluation of their model performance is based on
the error between the model output and actual output. The most frequently used fitness
functions for regression problems include the coefficient of determination (R2), root mean
squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
number of loop iterations, etc. [79].

Figure 2. (a) GEP Algorithm (b) Mutation Process (c) Crossover Process.

The output of classification and Boolean logic problems generally cannot be expressed
in the form of numeric values; therefore, their performance evaluation functions are based
on a matrix counting the number of correct and incorrect predictions, often known as
a confusion matrix. Some common fitness functions based on this confusion matrix include
sensitivity, precision, Jaccard similarity, F-measure, etc. [79]. These fitness functions are
quite sophisticated and are adequate for efficient solution of most of the classification
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and Boolean logic problems. However, any complexity encountered while dealing with
these problems can be solved effectively by introducing an additional fitness function
capable of exploring the overall model structure, distribution of outputs and classifier
margins [79]. Once the GEP programs are executed, their performance is evaluated based
on the already defined above-discussed fitness functions. If the evaluation results satisfy
the termination criteria, the GEP loop algorithm is terminated, and the final optimum
solution is presented in the form of a simple mathematical expression. However, if the
termination criteria are not satisfied, the best-fit programs are selected to reproduce the
subsequent population of GEP programs, and the loop is repeated [77]. The reproduction
process of the GEP algorithm involves the four basic genetic operations, i.e., replication,
mutation, recombination, and transposition. During replication, all the genomes of the
best performing programs of the previous population are copied to the new population.
The sub-structural elements of these genomes are then replaced with one another during
the mutation process of genetic reproduction [77]. After the basic operations of replication
and mutation, the new chromosomes of the next generation are produced by combining
different parts of the parent chromosomes. To ensure the soundness and reliability of the
generated programs, a transposition insertion sequence is introduced in the heads of genes
while preserving the chromosome length and gene structure [79]. This loop algorithm of
GEP is repeated again and again until an optimum solution is obtained (Figure 2).

A significant characteristic of GEP is that only the genome is transferred to the suc-
cessive population of computer programs instead of the global parent structure, which
enhances the overall algorithm efficiency [77]. There also exists a direct relationship be-
tween the chromosomes and corresponding functions or terminals which makes the genetic
variation of GEP simple and easy to understand [32]. Another advantage of GEP lies
in its ability to provide the optimum solution with simple mathematical equations [17].
These equations can be easily manipulated in practical works, especially in civil and struc-
tural engineering. Considering all these positive features, this research aims to employ
GEP to predict the lateral load carrying capacity of RC rectangular columns subjected to
earthquake loading.

2. Methods

The development of an analytical model for predicting the bearing capacity of RC rect-
angular columns involves three fundamental steps i.e., the preparation of a comprehensive
universal database, selection of model parameters, and the implementation of the GEP
algorithm. According to Mundfrom et al. [80], the minimum sample size in the database
must be 3–20 times the involved parameters for general engineering problems. However, it
is still a controversial topic and is often decided according to logical judgment criteria [13].
The selection of parameters for the model development can be based on linear regression
or other simpler analysis determining the relationship between two or more variables.
Once an integrated and comprehensive database is established, the GEP algorithm can be
implemented to obtain the required analytical model for the given problem.

2.1. Database

An inclusive structural performance database assembled by the PEER centre [29] was
adopted to develop an analytical model for predicting RC rectangular columns’ bearing
capacity. This was prepared by the researchers based on the experimental work at the
National Institute of Standards and Technology. It contains all the data required to evaluate
the seismic performance of RC columns. The overall information provided in the database
can be divided into two main categories, i.e., the key column properties (e.g., material
properties, geometric properties, confinement details and test configuration) and experi-
mental test results (e.g., failure modes, bearing capacities, force–displacement relationship,
axial load effect, and damage pattern). The database is currently available on the world-
wide websites of the University of Washington [81] and the PEER centre [82]. However,
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PEER website provides additional information about the experimental work, i.e., structural
drawings, testing images, etc., compared to the University of Washington’s website.

The distribution of some important column properties, i.e., depth, aspect ratio, axial
load ratio, longitudinal reinforcement ratio and transverse reinforcement ratio, was ex-
amined to evaluate the comprehensiveness and universal nature of the model database
(Table 1). From the detailed statistical analysis, the database was found to be normally
distributed about a mean value of 319 mm with respect to depth, 3.6 with respect to the
aspect ratio, and 2.39% with respect to longitudinal reinforcement ratio. However, it was
found to be skewed more towards the lesser values of aspect ratio, longitudinal reinforce-
ment ratio and axial load ratio. The analysis has also shown that approximately 80% of the
columns have depths ranging between 200 and 500 mm, whereas 65% have an axial load
ratio of between 0 and 0.3. The database was also found to be weighted around a mean
value of 2% of the transverse reinforcement ratio. However, no characterizable distribution
was observed. Analysing the distribution characteristics of all the above discussed column
properties, the database can be said to possess population samples from one extreme to the
other following a specific distribution, more often a normal distribution, which indicates
its inclusiveness and universality.

Table 1. Database Characteristics.

Property Unit
Statistical Parameters

Mean STD COV

Depth mm 319 117 0.37
Aspect Ratio Decimals 3.58 1.46 0.41
Axial Load Ratio Decimals 0.27 0.19 0.70
Longitudinal Reinforcement Ratio % 2.39 0.96 0.40
Transverse Reinforcement Ratio % 2.01 1.22 0.61

STD: Standard Deviation, COV: Coefficient of Variations.

2.2. Parametric Selection

The structural performance database assembled by the PEER centre provides more
than 40 parameters describing all aspects of the seismic response of RC rectangular columns.
The selection of output variables was made conferring to the set objective (i.e., determining
the bearing capacity of RC rectangular columns) according to which flexural capacity
and shear capacity outputs were selected. However, for selecting input variables against
the established outputs, a detailed stepwise procedure was adopted. A linear regression
analysis was performed using Microsoft Excel while considering all the available input
variables in the first step. The analysis results showed a strong relationship between
the inputs and outputs with a coefficient of determination (R2) of 0.9408 for flexural
capacity output and 0.9339 for shear capacity output. However, the number of variables
employed in the regression analysis was found to be too much to be expressed by a simple
mathematical expression. Therefore, reducing the number of inputs was decided while
ensuring minimum damage to the statistical relationship between the inputs and outputs.
To reduce the number of input parameters, all the groups of similar variables were replaced
by their corresponding single universal variable (e.g., instead of width and height, area
parameter was used, which is the combined/universal variable for the preceding two
variables), based on the fundamental principles of civil and structural engineering. This
utilization of a single universal variable instead of a number of default variables reduced the
number of input parameters to 12, almost one-third of their initial quantity, i.e., 35. Linear
regression analysis was performed again to assess the damage caused by the reduction of
input variables to the statistical relationship between the inputs and outputs. However, the
analytical results showed no significant impairment as the coefficient of determination was
found to be 0.8912 in the case of flexural capacity output, and 0.8784 in the case of shear
capacity output.
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A combined approach of the linear regression and cosine amplitude methods was
employed to further reduce the number of input variables for the model development.
Linear regression along with analysis of variance (ANOVA) was performed in Microsoft
Excel to calculate the p-value, whereas the cosine amplitude method was used to compute
the relationship coefficient R for each parameter (Table 2). The R-value was obtained
according to Equation (1), where X1 and X2 represent the parameters, whose relationship is
to be determined, and “m” epitomises the sample size. For the acceptability of each of the
above discussed modified parameters, a maximum threshold of 0.05 for the p-value, and
a minimum threshold of 0.75 for the R-value, were established. Any parameter satisfying
either of these criteria for the flexural or shear capacity output was selected as the model
input for predicting the bearing capacity of RC rectangular columns. This combined
approach of linear regression and cosine amplitude method reduced the number of input
variables to approximately half of their previous quantity, i.e., seven (Table 3). Linear
regression analysis was performed again to evaluate the damage caused by this reduction
of input variables to the statistical relationship between the inputs and outputs. However,
the analysis results showed no substantial loss as the coefficient of determination was
0.8896 for flexural capacity output, and 0.8760 for shear capacity output, which is similar to
that calculated earlier employing 12 variables.

R−Value =
|∑m

k=1 X1k . X2k|√(
∑m

k=1 X2
1k
) (

∑m
k=1 X2

2k
) , (1)

Table 2. Parametric Selection Based on Linear Regression and Cosine Amplitude.

Parameters
Flexural Capacity Output Shear Capacity Output

p-Value R-Value p-Value R-Value

Column Length 0.2209 0.8101 1.04 × 10−44 0.7199
Cross Sectional Area 6.72 × 10−12 0.9342 1.59 × 10−11 0.8889
Long. Rein. Ratio 0.0005 0.6239 0.0102 0.6985
Long. Rein. Yield Strength 0.4242 0.6818 0.5124 0.7348
Long. Rein. Ultimate Strength 0.8822 0.6417 0.2295 0.6391
Trans. Rein. Ratio 0.1707 0.5013 0.1874 0.5181
Trans. Rein. Yield Strength 0.7121 0.5861 0.0921 0.6881
Trans. Rein. Ultimate Strength 0.7703 0.5797 0.0995 0.6186
Concrete Compressive Strength 0.0083 0.5741 0.0718 0.6585
Applied Axial Load 9.25 × 10−18 0.8053 3.64 × 10−21 0.7979
Design Axial Load 0.0081 0.9068 9.63 × 10−05 0.8839
Clear Cover 0.0027 0.7468 0.3666 0.7707

Long.: Longitudinal, Rein.: Reinforcement, Trans.: Transverse.

Table 3. Statistical Characteristics of Model Parameters.

Parameters Symbol Unit Type Minimum Maximum Mean STD

Column Length L m Input 0.08 2.34 1.095 0.5485
Cross Sectional Area A cm2 Input 64 4180.64 1021.6 777.88
Long. Rein. Ratio ρ Decimal Input 0.007 0.0603 0.024 0.0101
Concrete Comp. Strength f ’c MPa Input 16 118 51.91 29.244
Applied Axial Load PA KN Input 0 8000 1238.33 1350.28
Design Axial Load PD KN Input 109.51 7359.6 2424.26 1421.61
Clear Cover Cc cm Input 0 6.51 2.395 1.0855
Flexural Capacity MF KN-m Output 2 1680 264.75 264.55
Shear Capacity VS KN Output 23 1339 207.78 176.55

Comp.: Compressive, PD: Function of Geometric and Material Properties.
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2.3. GEP Modelling

The modelling of flexural and shear capacity models for predicting the overall bearing
capacity of RC rectangular columns was carried out using an extremely flexible GEP data
modelling software, GeneXproTools 5.0. This is an easy and resourceful data mining soft-
ware especially designed for simple functional regression, logistic regression, classification,
time series prediction and logic synthesis. A well-organized Microsoft Excel database
consisting of seven input variables against the established outputs was imported into
GeneXproTools to initialize the modelling process. For effective and robust model develop-
ment, all the 250 population samples were regarded as both the training and validation
datasets [75,83–85]. GeneXproTools exhibits a distinct characteristic where it allows the
user to specify the key modelling parameters, i.e., the number of chromosomes, head size,
number of genes, linking function, constant per gene, model functions, etc., for the prepa-
ration of the predictive model. Exploiting this characteristic of GeneXproTools, multiple
GEP models were created using different combinations of modelling parameters. A brief
summary of the modelling characteristics of these GEP models is given in Table 4. The
performance of all these models was then evaluated based on the four most commonly used
fitness measures, i.e., coefficient of determination (R2), root mean squared error (RMSE),
mean absolute error (MAE), and root relative squared error (RRSE). A higher R2, and lower
RMSE, MAE, and RRSE, usually represent a better fit model. There also exists another
performance measure, i.e., the correlation coefficient. However, this was ignored because
of its insensitivity towards the multiplication and division of outputs to a constant [86].
Based on these performance indicators, the best fitted model was proposed for future
practical purposes.

• Coefficient of Determination (R2)

R2 = 1− ∑m
i=1(Pi − Ti)

2

∑m
i=1
(

Pi − T
)2 , (2)

• Root Mean Squared Error (RMSE)

RMSE =

√
∑m

i=1(Pi − Ti)
2

m
, (3)

• Mean Absolute Error (MAE)

MAE =
∑m

i=1|Pi − Ti|
m

, (4)

• Root Relative Squared Error (RRSE)

RRSE =

√√√√∑m
i=1(Pi − Ti)

2

∑m
i=1
(
Ti − T

)2 , (5)

Table 4. Summary of GEP Models for Predicting the Bearing Capacity of RC Rectangular Columns.

GEP
Models

Model Details Performance Indicators

Chromosomes Head
Size Genes Linking

Function
Fitness

Function
Model

Functions
Input

Variables
Variables

Used R2 RMSE MAE RRSE

Flexural Capacity Models (FCM)
FCM 1 30 8 3 + RMSE +, −, *, / 7 7 0.9228 73.42 47.21 0.2781
FCM 2 30 8 3 − RMSE +, −, *, / 7 5 0.9275 71.10 48.03 0.2693
FCM 3 30 8 3 * RMSE +, −, *, / 7 6 0.9448 62.17 41.82 0.2355
FCM 4 30 8 3 / RMSE +, −, *, / 7 7 0.9454 61.94 45.67 0.2346
FCM 5 30 8 3 Average RMSE +, −, *, / 7 7 0.9233 74.09 47.03 0.2806
FCM 6 30 8 3 Minimum RMSE +, −, *, / 7 7 0.9221 74.33 46.89 0.2815
FCM 7 30 8 3 Maximum RMSE +, −, *, / 7 6 0.9156 88.17 60.35 0.3340
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Table 4. Cont.

GEP
Models

Model Details Performance Indicators

Chromosomes Head
Size Genes Linking

Function
Fitness

Function
Model

Functions
Input

Variables
Variables

Used R2 RMSE MAE RRSE

FCM 8 80 8 3 / RMSE +, −, *, / 7 7 0.9496 59.68 41.90 0.2260
FCM 9 50 8 3 / RMSE +, −, *, / 7 7 0.9614 53.41 38.12 0.2023

FCM 10 50 12 4 / RMSE +, −, *, / 7 7 0.9376 66.01 42.78 0.2500
FCM 11 50 5 2 / RMSE +, −, *, / 7 5 0.9298 70.13 43.56 0.2656

FCM 12 50 8 3 / RMSE +, −, *, /,√ 7 6 0.9362 66.97 45.06 0.2536

FCM 13 50 8 3 / RMSE +, −, *, /,
ln 7 7 0.9264 71.63 43.96 0.2713

Shear Capacity Models (SCM)
SCM 1 30 8 3 + RMSE +, −, *, / 7 6 0.9233 48.81 32.94 0.2770
SCM 2 30 8 3 − RMSE +, −, *, / 7 7 0.9012 55.40 39.05 0.3144
SCM 3 30 8 3 * RMSE +, −, *, / 7 6 0.9138 51.80 37.88 0.2940
SCM 4 30 8 3 / RMSE +, −, *, / 7 6 0.9246 49.11 35.69 0.2787
SCM 5 30 8 3 Average RMSE +, −, *, / 7 7 0.9032 56.41 38.40 0.3201
SCM 6 30 8 3 Minimum RMSE +, −, *, / 7 7 0.9133 53.36 40.25 0.3029
SCM 7 30 8 3 Maximum RMSE +, −, *, / 7 7 0.9234 48.88 35.24 0.2774
SCM 8 80 8 3 / RMSE +, −, *, / 7 6 0.9268 47.71 35.05 0.2708
SCM 9 50 8 3 / RMSE +, −, *, / 7 7 0.9481 40.23 29.13 0.2283

SCM 10 50 12 4 / RMSE +, −, *, / 7 7 0.9052 54.30 33.45 0.3082
SCM 11 50 5 2 / RMSE +, −, *, / 7 5 0.8942 58.46 44.75 0.3318
SCM 12 50 8 3 / RMSE +, −, * 7 7 0.9512 39.47 28.77 0.2240

SCM 13 50 8 3 / RMSE +, −, *, /,√ 7 5 0.9287 47.21 34.01 0.2679

Here P represents the predicted values, T represents the tested values or experimental
values, T represents the mean tested value, and m represents the number of population samples.

3. Results

The nominal failure in RC rectangular columns subjected to earthquake loading occurs
when either of their shear or flexural capacity is reached. This is because shear strength and
flexural strength are the only parameters triggering the failure of RC rectangular columns
in seismic conditions. Based on this fact, two types of capacity prediction models, i.e., the
flexural capacity model and shear capacity model, are required to explain their overall
bearing capacity comprehensively. Based on the results obtained from both these models,
the ultimate bearing capacity or lateral load carrying capacity (Vu) of the aforementioned
columns can be obtained using Equation (6).

Vu = min
(

MF
L

, VS

)
, (6)

3.1. Flexural Capacity Model

To develop the analytical model for the prediction of the flexural capacity of RC
rectangular columns, multiple GEP models were created in GeneXproTools with different
combinations of modelling parameters, a summary of which is shown in Table 4. The per-
formance of all these models was assessed based on the already defined fitness indicators,
i.e., R2, RMSE, MAE, and RRSE. Based on the evaluation results, the best performing GEP
model, i.e., the model with the highest value of R2 and least value of RMSE, MAE, and RRSE,
was selected and proposed for predicting the flexural capacity of RC rectangular columns
for future practical purposes. The GEP expression tree was extracted from the modelling
software GeneXproTools as shown in Figure 3, to ensure the effective and easy utilization
of the proposed model in real-world problems. This expression tree was then decoded to
be presented in the form of simple mathematical expressions as given in Equations (7)–(10).
Here, Equation (7) can be used to predict the flexural capacity of RC rectangular columns,
the input parameters of which can be calculated using Equations (8)–(10). The rest of the
variables used in all these equations are already defined in Table 3. However, attention
must be paid to the measuring units.

MF =
X1

X2 . X3
, (7)
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X1 = PD − [{ρL(PD − PA)} . {Cc − 10.963L}], (8)

X2 = ρ +
1

ρPA + 11.8583
, (9)

X3 = 4.6477L (Cc + 0.7413) + 3.4714 f ′c + 32.0948, (10)

Figure 3. GEP Expression Tree for Flexural Capacity Model.

3.2. Shear Capacity Model

A similar procedure was adopted to develop the analytical model for predicting shear
capacity of RC rectangular columns as used for the development of the flexural capacity
model. The best performing GEP model from all those shown in Table 4 was selected
based on the same performance criteria as described earlier in the flexural capacity model.
The expression tree of this model (Figure 4) was extracted from GeneXproTools, which
was then decoded and expressed in terms of simplified mathematical expression. Here,
Equation (11) was proposed to predict the shear capacity of RC rectangular columns. The
parameters involved in this equation can be calculated using Equations (12)–(14).

VS =
XA

XB . XC
, (11)
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XA = 1.4668A (PA + 400.271) +
(

f ′c + PD
)2, (12)

XB = A +
[
{2L (Cc + 6.9691)} .

{
L f ′c + 60.6393

}]
, (13)

XC = 0.1455 f ′c − 50.402ρ + 6.9193, (14)

Figure 4. GEP Expression Tree for Shear Capacity Model.

3.3. Model Validation

In AI-based data modelling, it is often recommended to conduct a variety of statistical
analyses to ensure the proposed models’ robustness and universality [67]. Two types of
such analysis, i.e., the sensitivity analysis and the parametric analysis, were employed in
this research to investigate whether the proposed models represent the actual physical phe-
nomenon or not [85]. The sensitivity analysis is normally used to explore input variables’
relative contribution (RLC) towards the overall model development. The mathematical
expressions for conducting the sensitivity analysis are given in Equations (15) and (16) [67].
Here, fmax (xi) and fmin (xi) represent the maximum and minimum predicted output cor-
responding to the ith input variable in the database while maintaining all other variables
at their average value. From the sensitivity analysis results, PD was found to be the most
significant input variable contributing around 50% towards the development of flexural
and shear capacity models of RC rectangular columns (Figure 5). The rest of six variables
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i.e., L, f ’
c, PA, ρ, Cc and A cumulatively account for the remaining 50% of the overall

model development.

RLC (%) =
Ni

∑n
i=1 Ni

.100, (15)

Ni = fmax(xi)− fmin(xi), (16)

Figure 5. Relative Contribution of Input Parameters to the Model Development.

3.3.1. Impact Assessment of Model Influencing Parameters

Parametric analysis was conducted to further validate the efficiency of the proposed
models to capture behind-scenes real-world phenomena. In the parametric analysis, the
trend of the output variable to a certain change in a specific input variable was observed
while keeping all the other variables constant at their average value. A detailed description
of the parametric analysis results is given in the following sections.

Geometric Parameters

Two geometric parameters, i.e., L and A were selected as the input variables for
developing GEP models for predicting the bearing capacity of RC rectangular columns. The
impact of these variables on the overall bearing capacity of the aforementioned columns
was investigated based on parametric analysis, the results of which are shown in Figure 6.
The figure shows an increase in the flexural and shear capacity of RC rectangular columns
along with the decrease in length, and the increase in the cross-sectional area of columns.
The inverse relationship between the length and flexural or shear capacity of the RC
rectangular columns is because of the probability of buckling phenomenon in the long
columns. Similar results were also presented in the nonlinear finite element-based study
conducted by Mahmood and Ghulam [14], which ensures the strength and effectiveness of
the proposed models.

Material Parameters

f ‘c was the only material characteristic considered in developing the proposed models.
Based on the parametric analysis, its impact on the overall bearing capacity of RC rectangu-
lar columns is presented in Figure 6. This figure shows a direct relationship between the
flexural and shear capacity of RC rectangular columns and f ‘c. A similar relationship was
also observed by the finite element-based research program of Mahmood and Ghulam [14].
This relationship can also be validated by Equation (18) of ACI 318-19 [87].
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Figure 6. Parametric Analysis Results for Proposed Capacity Prediction Models.
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Structural Parameters

Four structural parameters of RC rectangular columns, i.e., ρ, PA, PD, and Cc, were
considered in developing their capacity prediction GEP models. The impact of these
parameters on the overall bearing capacity of RC rectangular columns was analyzed based
on parametric analysis, the results of which are presented in Figure 6. The figure shows that
the flexural and shear capacity of the RC rectangular column increases along the increase
in ρ, PA, and PD, whereas it decreases along with the increase in Cc. Moreover, flexural
capacity was found to be declining after reaching a certain threshold of ρ and PA. These
observations were found to be well in agreement with the non-linear finite element-based
investigations of Mahmood and Ghulam [14] and the design guidelines of ACI 318-19 [87].
The trend of predicted output corresponding to a certain change in these parameters was
also found to be consistent with the experimental results in the database which further
authenticates the validity of the proposed models.

3.4. Performance Evaluation

The performance of both the proposed capacity prediction models was evaluated
based on four key fitness indicators, i.e., R2, RMSE, MAE, and RRSE, as described earlier in
the “GEP Modelling” section. For this evaluation, some fundamental statistical analyses
were employed, which reported these performance indicators to be 0.9614, 53.41, 38.12,
and 0.2023, respectively, for the flexural capacity model, and 0.9512, 39.47, 28.77, and
0.2240, respectively, for the shear capacity model (The details of these evaluation results are
shown in Figure 7). From these performance indicators, it can be observed that there exists
a strong correlation between the predicted and experimental output with the least possible
error (Figure 8), which indicates the higher prediction accuracy of the proposed models.
In addition to these fitness criteria, the performance of the proposed models was also
assessed by comparing with the prevailing design code of concrete structures in the country
(Pakistan) i.e., ACI 318-19 [87]. (Explanation: The comparison was made only with ACI
318-19 [87] because almost all the design codes provide similar guidelines for the capacity
prediction of discussed RC members. Moreover, no specific mathematical expressions
were found by the author in past research articles, on the basis of which comparison could
have been made.) For the comparison, the flexural and shear strength of RC rectangular
columns present in the database were computed in accordance with the guidelines of
sections 22.4 and 22.5 of ACI 318-19 [87], the mathematical expressions for which are also
given in Equations (17)–(20). All the parameters involved in these equations are defined
clearly in Chapter 2 of the given design code. The performance of ACI model was also
evaluated by employing the same statistical analysis. The results of these analyses reported
R2, RMSE, MAE, and RRSE to be 0.8849, 101.86, 51.74, and 0.3858, respectively, for flexural
capacity predictions, whereas 0.8737, 238.74, 183.66, and 1.35 respectively for shear capacity
predictions (Figure 9). The comparison depicted a better performance and higher accuracy
of the proposed models than that of ACI 318-19 [87]. Following the model validation and
performance evaluation results, given models can be recommended for computing the
lateral load-carrying capacity of RC rectangular columns for future practical purposes.

VS = Vc + Vst, (17)

Vc =

[
0.66λ(ρw)

1
3

√
f ′c +

Nu

6Ag

]
bwd, (18)

Vst =
Av fytd

S
, (19)

VS =
2MF

L
, (20)
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Figure 7. Predicted Versus Experimental Values Plot for Proposed Models.

Figure 8. Comparison of Experimental and Proposed Model Results.

Figure 9. Predicted Versus Experimental Values Plot for ACI Models.
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4. Conclusions

This research presented a novel AI approach to GEP for predicting the ultimate lateral
load-carrying capacity of RC rectangular columns subjected to earthquake loading. For this,
an experimental database assembled by the PEER centre consisting of 250 cyclic tests of RC
rectangular columns was utilized. Based on statistical GEP modelling results as presented
in the earlier sections, the following conclusions can be drawn:

• The proposed AI technique provides an alternative method for the determination of
lateral load carrying capacity of RC rectangular columns while avoiding complicated
structural and mathematical computations. Moreover, it is also simpler and easier to
be implemented in practical applications.

• The proposed capacity prediction models were found to exhibit better accuracy when
compared to that of the ACI model. The major performance indicator, i.e., R2, was
found to be 0.9614 and 0.9512 in the proposed flexural and shear capacity model,
respectively, and 0.8849 and 0.8737 in the case of flexural and shear capacity models
ACI, respectively.

• Design axial load (PD) was found to be the most significant input variable, contributing
around 50% towards the development of both the proposed models. The rest of the
six input variables were observed to cumulatively account for the remaining 50% of
the overall model development.

• From the parametric analysis results of the proposed models, the trend of output
variables corresponding to most of the input variables was found to be consistent with
the experimental results in the database, which validates the ability of the proposed
models to capture behind the scenes real-world phenomena.

The main incentive of the proposed models is that they are based on a “black box”
model that relates the inputs and outputs in a simplified manner while avoiding complex
mathematical derivations. It has better performance as compared to the traditional analyti-
cal models and therefore can be employed to predict the lateral load carrying capacity of
RC rectangular columns quickly, accurately, and robustly. Moreover, the proposed GEP
models can be expressed in terms of simple mathematical expressions, which is not possible
in some of the other conventional and modern analytical techniques. Apart from all its
advantages, it is associated with certain limitations. The proposed models are unable to
explain the failure mode, as well as the involved mechanism in predicting the lateral load
carrying capacity of RC rectangular columns. Moreover, as it was not feasible to consider
every involved parameter in the model development, the applicability of the proposed
models in special cases is questionable. Considering all the pros and cons of the proposed
capacity prediction models, future researchers are recommended to work on the best AI
algorithm, either individual or ensembled [88–96], that considers all the possible aspects
and explains the mechanism involved.
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