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Are the information processing steps that support short-term sensory memory common to all the senses? Systematic,
psychophysical comparison requires identical experimental paradigms and comparable stimuli, which can be
challenging to obtain across modalities. Participants performed a recognition memory task with auditory and visual
stimuli that were comparable in complexity and in their neural representations at early stages of cortical processing.
The visual stimuli were static and moving Gaussian-windowed, oriented, sinusoidal gratings (Gabor patches); the
auditory stimuli were broadband sounds whose frequency content varied sinusoidally over time (moving ripples).
Parallel effects on recognition memory were seen for number of items to be remembered, retention interval, and serial
position. Further, regardless of modality, predicting an item’s recognizability requires taking account of (1) the probe’s
similarity to the remembered list items (summed similarity), and (2) the similarity between the items in memory (inter-
item homogeneity). A model incorporating both these factors gives a good fit to recognition memory data for auditory
as well as visual stimuli. In addition, we present the first demonstration of the orthogonality of summed similarity and
inter-item homogeneity effects. These data imply that auditory and visual representations undergo very similar
transformations while they are encoded and retrieved from memory.
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Introduction

In the past decade, cognitive science has spawned some
powerful computational models for both the large-scale and
detailed structure of many fundamental phenomena, includ-
ing categorization and recognition. These models have
enjoyed considerable success, particularly in accounting for
recognition of simple visual stimuli, such as sinusoidal
gratings and chromatic patches [1–3], and more complex
visual stimuli, such as realistic synthetic human faces [4]. By
exploiting stimuli whose properties can be easily manipu-
lated, but resist consistent verbal rehearsal strategies [5],
researchers can formulate and test detailed predictions about
visual recognition memory.

To date, this effort has focused on vision, raising the
possibility that the properties of recognition memory
revealed thus far might be modality specific and therefore
of limited generality. There are several prerequisites that
must be satisfied before another sensory modality can be
addressed in a comparable fashion. First, a suitable task must
be found; second, a family of stimuli must be identified that
can be parametrically varied along dimensions thought to be
encoded in memory. In addition, baseline memory perform-
ance must be comparable across modalities, and the effect of
early perceptual processing on the stimulus representations
must be similar. Failure to satisfy any of these prerequisites
would undermine inter-modal comparisons of memory.

We decided to use Sternberg’s recognition memory task,
which had been used previously with visual stimuli and whose
properties were well understood [6]. We then identified a
family of auditory stimuli—moving ripple sounds—whose
attributes resembled ones that had proven useful in modeling
visual recognition memory. These auditory stimuli vary
sinusoidally in both time and in frequency content, and are

generated by superimposing sets of tones whose intensities
are sinusoidally modulated. Until now, these stimuli have
been mainly used to characterize the spectro-temporal
response fields of neurons in mammalian primary auditory
cortex [7–9], but because their spectro-temporal properties
resemble those of human speech [7,10], moving ripple stimuli
are well suited to probe human speech perception and
memory with minimal contamination by semantic properties
or by the strong boundaries between existing perceptual
categories [11].
This selection of stimuli was influenced by previous

attempts to compare auditory and visual memory. Some of
those attempts used auditory and visual stimuli that differed
substantially in their early sensory processing, but shared
semantic representations [12]. For example, Conrad and
Hull’s classic study compared memory for a list of digits
presented either visually or as spoken items [13]. Initial
processing differs tremendously for the two types of inputs,
indicating that differences in memory may be due to the
divergent initial processing. Further, with stimuli like these,
once the items have been encoded into verbal form for
storage in memory, shared semantic processes may obscure
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any fundamental differences in memory for the two modal-
ities. Other experiments use stimuli that arguably are free
from semantic influences, yet still fail to equate the early
stages of processing required by the stimuli [14].

We examined short-term memory for auditory and visual
stimuli whose early sensory processing is comparable. Finding
comparable stimuli across modalities is difficult, as it may
initially seem incontrovertible that the brain operates differ-
ently upon auditory and visual inputs. Certainly the initial
stages of processing by the modalities’ respective receptors
differ from one another in many ways. However, the
transformations performed by the nervous system on the
information generated by the auditory and visual receptors
appear to be very similar [7,15]. Starting from each modality’s
sensory receptors and continuing to the modality’s respective
processing networks within the cerebral cortex, analogs
between hearing and vision have been noted by several
researchers [7,9,16,17]. To take a few examples, adjacent
sensory receptors in the cochlea of the ear detect neighboring
frequencies of sound the same way adjacent sensory receptors
in the retina of the eye respond to light from neighboring
locations in space. This analogy extends to the retinotopic/
tonotopic structure and receptive fields of auditory and
visual cortex.

Both moving ripples and Gabor patches vary sinusoidally
along the dimensions that primary sensory neurons encode.
These stimuli are described in Figure 1. Moving further along
the processing hierarchy, it appears that primary auditory
cortex responds to moving ripple stimuli analogously to the
way primary visual cortex responds to Gabor patches: a few
neurons respond robustly to the stimulus, but most are
relatively quiet [9]. The sets of stimuli, therefore, are very well
matched in terms of early sensory processing. In addition, to
decrease reliance upon verbal rehearsal, these unfamiliar
stimuli can be varied continuously, and do not support
readily available verbal or semantic labels [5]. So we should
expect results to be minimally influenced by semantic
relationships among stimuli.

Finally, to promote comparability in the difficulty of the
memory task with auditory or visual stimuli, we adopted a

strategy introduced by Zhou and colleagues [18]. Recognizing
that the similarity relationships among visual stimuli strongly
influenced recognition memory, those researchers adjusted
each participants’ memory test stimuli according to that
participant’s discrimination threshold. Their aim was to
minimize individual differences on the memory task. We
took the procedure one step further, adjusting stimuli
separately within each modality according to each partic-
ipant’s discrimination threshold for that modality. This was
meant to equate for both auditory and visual modalities the
powerful influence that similarity exerts on memory.
We present the results of two experiments. Experiment 1

assessed several basic properties of recognition memory for
ripple stimuli and memory for Gabor patches; Experiment 2
used ripple stimuli to isolate the effects of summed probe-
item similarity and inter-item homogeneity. The design of
Experiment 2 was meant to orthogonalize these two potential
influences on recognition memory, allowing the effects of
summed similarity and inter-item homogeneity to be ex-
plored independently. A previously proposed model for
visual memory, the Noisy Exemplar Model (NEMo) was fit to
the data [1]. Because so many trials were required for each
case, and because the NEMo has been shown previously to fit
data for visual stimuli quite well [1], only auditory stimuli
were used in Experiment 2.

Author Summary

Memories are not exact representations of the past. But can we say
that all our senses are equally reliable (or unreliable) sources for
memory? We performed a series of experiments to test that
proposition. Sound and light are processed by different receptors
and neural pathways in the brain. Previous comparisons of auditory
and visual memory have done little to place on equal footing the
stimuli that will be remembered, limiting the ability to truly compare
the two processes. However, using current knowledge of how these
sensations are represented in the nervous system, we created
auditory and visual stimuli of similar complexity and that undergo
similar initial processing by the nervous system. We then used these
well-matched stimuli to examine memory for studied lists of either
auditory or visual items. Using behavioral measures and a computa-
tional model for list memory, we show that memory representations
are altered similarly for both hearing and vision. We found that
auditory and visual memory exhibit striking parallels in terms of how
memory is affected by all the parameters we changed in this
experiment. These results imply that auditory and visual short-term
memory employ similar mechanisms.

Figure 1. Auditory, Stationary Visual, and Moving Visual Stimuli

(A and B) Spectro-temporal plots of two auditory moving ripple stimuli.
The horizontal axis shows time in seconds; the vertical axis shows
frequency content in Hertz (Hz). Brightness indicates the amplitude at a
particular frequency and time; white represents sounds of greater
amplitude. Modulations in frequency content are referred to as spectral
density, defined by sinusoidal frequency X; modulations over time are
referred to as the ripple’s velocity, defined by sinusoidal frequency w.
The ripple velocity for (A) is 16 Hz, and for (B), it is 8 Hz.
(C) Image representing the static grating stimuli used. Horizontal and
vertical axes represent actual spatial extent, in degrees visual angle from
fixation, of visual stimuli.
(D) Space–time plot of one moving grating stimulus. The horizontal axis
shows time in seconds; the vertical axis shows the horizontal dimension
in space (y). Brightness indicates the luminance at that point on the
display. Moving visual gratings looked like (C) in which the bars drifted
upwards over time.
doi:10.1371/journal.pbio.0050056.g001
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Results

Experiment 1: Basic Properties of Short-Term Recognition
Memory

Experiment 1 measured short-term recognition memory
for moving ripple stimuli and for both moving as well as
stationary Gabor patches. We used a variant of Sternberg’s
recognition task [6,19]. On each trial, one to four stimuli were
sequentially presented, followed after some retention interval
by a probe. The participants’ task was to identify whether the
probe matched any of the items presented in the list, pressing
a button to indicate their choice. The use of the Sternberg
paradigm for auditory stimuli allows comparisons to the
many studies that have used the same paradigm with visual
stimuli [1,19,20].

Both moving and static visual Gabor patches were tested
because although moving Gabor patches change in time
similarly to the ripple sounds, their stationary counterparts
have been extensively studied in psychophysical examinations
of memory [1]. We examined several basic properties of
short-term memory for auditory and visual stimuli: the effect
of the number of stimuli that must be remembered (list
length), the interval over which those stimuli must be
remembered (retention interval), and the serial position of
the stimulus matching a probe.

Each participant’s data from trials of a given list length and
retention interval were averaged to obtain a proportion
correct for that combination of conditions. These were
compared across participants using standard parametric
statistics. Proportion correct measures were used rather
than, for example, d9 measures because in this case, the
assumption that variances associated with target (probe
matches a list item) and lure (probe does not match a list
item) trials are identical is probably not defensible, as the
range of summed probe-item similarities for target trials is
much smaller than for lures (as by definition, Target trials
always include a stimulus that is identical to the probe, with a
similarity equal to 1) [21].

Effects of length of the study list, retention interval, and
serial position. Figure 2 shows the proportion of correct
responses made as a function of the length of the study list.
Error bars show the within-participant standard error of the
mean, taking out between-participant variability and be-
tween–stimulus type variability, and indicate results of the
effect of list length by analysis of variance (ANOVA) [22,23].
Note that as the number of elements in the list increases,
participants are correct less often. The effect of list length is
significant in a 3 3 4 (stimulus types by list lengths) ANOVA
(F3,39 ¼ 32.5, p , 0.0001). In addition, the overall proportion
correct is different depending on the stimulus type (F2,26 ¼
29.2, p , 0.0001). Participants’ proportion correct was overall
larger for the ripple sounds than for the grating stimuli in all
conditions. This difference indicates that the sound stimuli
chosen were more easily discriminable than the visual stimuli.
The interaction of the effect of list length with stimulus type
was nonsignificant (F6,78 ¼ 1.53, p ¼ 0.18,).

Figure 3 shows that even as the retention interval goes to
9.7 s, the proportion correct changes less than 10%. This
change is nonetheless significant in a 33 5 (stimulus types by
retention intervals) ANOVA (F4,52 ¼ 10.76, p , 0.0001). As
with all conditions, proportion correct was overall larger for
ripple sounds (F4,52 ¼ 26.12, p , 0.0001). The interaction

between stimulus type and retention interval was only
marginally significant (F8,104 ¼ 2.02, p ¼ 0.051). Error bars
show the within-participant standard error of the mean,
taking out between-participant variability and between–
stimulus type variability, indicating results of the effect of
retention interval by ANOVA [22,23].
Figure 4 shows the effect of serial position on recognition

rate. For clarity, only the data for the four-stimulus case are
shown. Effects were similar for the other list lengths. The
most recently presented stimulus is recognized more often
when it matches the probe than are earlier stimuli. For lists of
four items, a 334 (stimulus types by serial positions) ANOVA
showed no significant interaction between stimulus type and
serial position (F6,78 ¼ 1.3, p ¼ 0.26). However, there was a
highly significant effect of serial position (F3,39 ¼ 24.3, p ,

0.0001), and an effect of stimulus type (F2,26¼ 10.1, p ,0.001).
Error bars show the within-participant standard error of the
mean, taking out between-participant variability and be-
tween–stimulus type variability, indicating results of the
effect of serial position by ANOVA [22,23].
There appears to be a slight trend towards a greater

recency effect in the case of auditory stimuli than for the
visual stimuli, so that later serial positions are remembered
more accurately. Although this does not reach significance in
the list length 4 or 2 cases, it is marginally significant in the
list length 3 case, in which a 3 3 3 (stimulus types by serial
positions) ANOVA reveals a slight interaction between
stimulus type and serial position (F4,52 ¼ 2.7, p ¼ 0.04).

Experiment 2: Effect of Inter-Item Homogeneity and
Summed Similarity on Memory for Ripple Sounds
Previous studies have shown that short-term recognition

memory for visual stimuli can be understood using the NEMo
introduced by Kahana and Sekuler [1]. Experiment 2 directly

Figure 2. Effect of Length of the Study List

Difference from mean proportion correct responses (P(correct) diff) is
plotted as a function of length of the study list. Statistics show a
significant effect of stimulus type and list length, but no interaction
between them. The mean proportions correct subtracted for each
stimulus type were: sound, 0.72; moving visual, 0.61; and stationary
visual, 0.59.
doi:10.1371/journal.pbio.0050056.g002
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tested this model’s predictions for memory for moving ripple
sounds, and compared these results to previous results
obtained with visual stimuli. This experiment was crafted so
that the key assumptions of the model, effects of inter-item
homogeneity and summed similarity, could be explored in a
model-free way, while also allowing data to be fit to NEMo for
a more quantitative assessment of these effects. The next
section explains the logic of the experimental design.

NEMo. Contemporary, exemplar-based memory models,
such as the Generalized Context Model [24], assume that
when participants judge whether a probe stimulus replicated
one of the preceding study items, their judgments reflect the
summed similarity of the probe to each study item in turn,
(summed probe-item similarity), rather than the similarity of
the probe to its one most-similar study item [1,25]. In
addition, recent studies have shown that the similarity
between the individual items to be remembered, the inter-
item homogeneity, also has an effect on participants’
performance. When items in memory are more homoge-
neous, participants make relatively few false alarms; when
items in memory are less homogeneous, rate of false alarms
increases [1–4]. This could indicate that the participant
adopts a less-strict criterion on trials in which the items are
less homogeneous, or it may indicate that the memory
representation is less fine-grained on trials in which stimuli
are more different from one another. This effect has been
found with a range of various visual stimuli, including
oriented, compound sinusoidal gratings [1,3], realistic, syn-
thetic human faces [4], and color samples [2]. Because all the
memory stimuli assayed thus far were visual, it may be that
the effect of homogeneity on memory is modality specific, a
possibility that we examined in the current studies.

If the inter-item homogeneity effect held for auditory
stimuli, this would support the idea that the mechanism

supporting the effect of homogeneity is shared by both
auditory and visual memory. Ripple stimuli are useful for
examining the effects of homogeneity and summed probe-
item similarity due to their many parallels with Gabor
patches, and their parametric variability.
Summed probe-item similarity. Several models of visual

short-term memory (including NEMo) posit that participants
use information about the summed similarity between the
probe and all the remembered items, rather than just the
item most similar to the probe, to make a judgment about
whether the probe was seen before [1,26]. Two pairs of
conditions were created (shown in Figure 5A) that were
similar in all respects, but the summed probe-item similarity
varied between the two conditions in the pair.
Figure 5B shows that greater summed probe-item similarity

(left side of each pair) predicts greater probability of a Yes
response (paired T-test for conditions a and b showed p ,

0.00001, for c and d, p , 0.01). This experiment controlled for
the similarity between the probe and the stimulus closest to it,
as well as the inter-item homogeneity of the list, therefore
indicating that the observed effects are due to summed
probe-item similarity rather than other variables.
Inter-item homogeneity. As noted in the Introduction, one

goal in performing this experiment was to determine whether
and how the homogeneity between items in memory
influences participants’ subsequent recognition for sounds.
With this in mind, stimulus conditions were created that
varied inter-item homogeneity while other factors (summed
similarity between the probe and each item, and similarity
between the probe and the item most similar to it) were held
constant. This allowed the effect of inter-item homogeneity
to be explored independently.

Figure 3. Effect of Retention Interval

Difference from mean proportion correct responses (P(correct) diff) is
plotted as a function of the retention interval. Proportion correct
decreases modestly with retention intervals up to 9.7 s. The mean
proportions correct subtracted for each stimulus type were: sound, 0.77;
moving visual, 0.66; and stationary visual, 0.62.
doi:10.1371/journal.pbio.0050056.g003

Figure 4. Effect of Serial Position

Difference from mean proportion correct responses (P(correct) diff) is
plotted as a function of the serial position of the matching study item.
Data are shown for the case in which four stimuli were presented.
Statistics show a significant effect of serial position and list length, but no
interaction between them. The mean proportions correct subtracted for
each stimulus type were: sound, 0.72; moving visual, 0.62; and stationary
visual, 0.61.
doi:10.1371/journal.pbio.0050056.g004
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Figure 6 shows that as inter-item homogeneity is increased,
a probe is less likely to attract a Yes response (paired T-test for
conditions e and f showed p , 0.00001, for c and d, p , 0.01).
Note that the experiment controlled for similarity between
the probe and the list items, as well as the similarity between
the probe and the item closest to it.

Perceptual similarity. The perceived similarity between
ripple sounds is monotonic with their physical difference.
Figure 7 shows data from the cases in which a single list item
was presented and followed immediately by a probe. When
the probe matched the stimulus, participants were very likely
to respond ‘‘Yes, there was a match.’’ As the difference
between the stimuli increased, the proportion of Yes
responses decreased monotonically, indicating a reduced
likelihood that the probe would be confused with the stimulus
that preceded it.

Computational Models: Context Affects Memory for
Sounds
Figures 5 and 6 show that inter-item homogeneity and

summed probe-item similarity both affect memory for
complex sounds. This result is analogous to that observed
for visual stimuli [1,2,4,18]. By fitting the same computational
models to these auditory data and visual memory data, we can
more sensitively examine whether the cognitive processing
undergone by auditory and visual representations are similar.
The data for Experiment 2 were fit to the models described

in the Methods section: a three-parameter model that does
not take into account inter-item homogeneity, a four-
parameter model that adopts values describing perceptual
similarity based on participants’ performance when list
length is 1 (Figure 7), and a five-parameter model including
inter-item homogeneity effects, and not assuming that
perceptual similarity can be based on participants perform-
ance for list length 1.
Table 1 shows the parameter values produced by model fits

to the combined data for 12 participants. Fits were made for

Figure 5. Effect of Probe-Item Similarity

(A) A schematic diagram of four stimulus conditions. These examine
effects of summed probe-item similarity on participants’ report of having
seen a stimulus. Conditions a–d keep inter-item homogeneity constant
(pairs a & b and c & d) while changing summed probe-item similarity.
These diagrams show the relationships between conditions, rather than
the actual values stimuli may take. Throughout, summed probe-item
similarity is denoted in green, whereas inter-item similarity is denoted in
blue. Conditions in the first row have high summed similarity (indicated
by the shorter green solid bars). These are identical to their pairs (b and
d, respectively) in the second row in terms of inter-item homogeneity
(indicated by the length of the blue dashed bar), and similarity of the
probe to the closest item (shorter of the two green solid bars). The
second row shows cases of lower summed similarity (longer green solid
bars).
(B) The results of the experiment. For each pair of otherwise matched
stimuli, when summed similarity is larger, participants are more likely to
indicate that a probe has been seen before (p , 0.01). These box plots
show the median (thick bar), and boxes include the middle 50% of data.
The whiskers include all data points that are not outliers. Outliers are
shown as circles, and defined as those points more than 1.5 times the
interquartile range from the median. Light and dark green indicate high
(conditions a & c) and low (conditions b & d) summed similarity,
respectively.
doi:10.1371/journal.pbio.0050056.g005

Figure 6. Effect of Inter-Item Similarity

(A) A schematic diagram of four stimulus conditions. These examine
effects of inter-item homogeneity on participants’ report of having seen
a stimulus. Conditions e & f keep summed probe-item similarity constant
(indicated by the total length of green bars for each condition) while
changing inter-item homogeneity (length of blue dashed bar). Con-
ditions g & h do the same, but for a different summed probe-item
similarity. These diagrams show the relationships between conditions,
rather than the actual values stimuli may take. As in all figures, inter-item
similarity is denoted in shades of blue, whereas summed probe-item
similarity is in green.
(B) The results of the experiment. For each pair of otherwise matched
stimuli, when stimulus items are more homogeneous (dark blue),
participants are less likely to indicate that a probe has been seen before
than if the stimulus items are less homogeneous (light blue) (p , 0.01).
Box and whisker plot conventions are as described in the caption for
Figure 5B.
doi:10.1371/journal.pbio.0050056.g006
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individual participants as well, and the parameters are similar
in the individual participant fits and the fits to the average.
The s and r parameters showed most variability across
participants. Models in which the s parameter was estimated
from an independent dataset in which study lists comprised
just one item are indicated. The value for A calculated from
data with list length 1 was 0.93 for the data averaged over
participants, with individual participant values ranging from
0.88 to 1.02. The value for s calculated from data with list
length 1 ranged from 0.43 to 1.41 across participants. When s
was allowed to vary in the five-parameter model, the value
ranged from 0.97 to 3 (the maximum of the allowed range)
across participants. The parameter s and the criterion C have
somewhat of a reciprocal relationship mathematically, and so
their values depend on one another: as C decreases, s
increases.

Interestingly, the a parameter was not significantly less
than 1, indicating that in this experiment, when participants
had to remember only two stimuli, both stimuli were
remembered equally well. When participants must maintain
more stimuli in memory, however, they are more likely to
forget stimuli presented earlier in the list, as is shown in
Figure 4.

Note that the b parameter remained negative and with a
similar value regardless of model. Note that in both the four-
and five-parameter models, b ; �1. This result is similar to
that found by Kahana and Sekuler [1].

Results indicated that models must incorporate inter-item
homogeneity in order to fit the data well. The three-
parameter model that did not incorporate inter-item
homogeneity (as shown in Figure 8A) accounted for only
51% of the variance (r2), and had an Akaike information
criterion (AIC) value (see Methods) of 1,010 (higher AIC
values indicate worse fit [27]). On the other hand, the four-
parameter model accounted for 78% of the variance (r2), and

had a considerably lower AIC value of 652. The five-
parameter model, allowing s to vary according to the list
length 2 data, accounted for 81% of the variance (r2) and had
a slightly higher AIC value of 696, indicating that the addition
of this extra parameter does not make the model more
generalizable.

Discussion

The ripple stimuli used here share many similarities with
visual grating stimuli. Grating stimuli have long been a fixture
of psychophysical experiments because they can be used to
explore some properties of vision that are thought to be
fundamental: spatial location, luminance, orientation, and
spatial frequency. Similarly, the ripple sounds used in the
present study can be used to examine some fundamental
properties of hearing: frequency spectrum, sound level, and
temporal frequency. The experiments presented here make
use of the similarities to explore whether the fundamental
information processing steps in vision and hearing are
similar.
Moving ripple stimuli and visual gratings are processed by

the nervous system in analogous ways, and therefore
represent an important class of stimuli for comparing
memory in the visual and auditory domains. Both auditory
and visual cortical receptive fields have characteristic center-
surround properties [7,9,15]. Further, edge detection in visual
cortex appears to have an analog in auditory cortex [28].
Relatedly, both auditory and visual systems appear to exploit
‘‘sparse’’ coding [29]: when presented with stimuli of the
appropriate type, individual cells respond very strongly to
one example of the stimulus type and less strongly to other
examples. In the visual modality, single primary visual cortical
cells show large responses and specific tuning for oriented
sine-wave gratings, or Gabor patches [9,30]. In the auditory
modality, single primary auditory cortical cells show large
responses and specific tuning for moving ripple stimuli
[7,9,15].
Thus, early stages of cortical processing seem to treat

Gabor patches and moving auditory ripples in an analogous
fashion. Although a number of studies have examined
recognition memory for Gabor patches [1,3], comparable
tests of memory for auditory ripple stimuli have been lacking
until now.
Parametrically manipulable stimuli were used in order to

explore how memory alters the representation of stimuli. By
using an auditory stimulus set for which early processing is

Figure 7. Proportion Yes Responses as a Function of Difference between

Probe and To-Be-Remembered Item (in Units of JND)

Twelve participants’ data are shown in thin lines, with the average in
thick red. These curves are well described by the exponential function of
Equation 4. This function relates actual stimulus values to their mental
representations. P(yes) responses indicate proportion of Yes responses.
doi:10.1371/journal.pbio.0050056.g007

Table 1. Parameter Values for Models with Three, Four, or Five
Free Parameters

Model Parameter

r s a b C

Three parameters 1.11 0.67a 1 — 0.57

Four parameters 0.99 0.67a 1 �1.12 0.43

Five parameters 1.04 1.69 1 �1.10 0.12

aModel in which the s parameter was estimated from an independent dataset in which
study lists comprised just one item.
doi:10.1371/journal.pbio.0050056.t001
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similar to the visual gratings used here and in myriad
previous studies (e.g., [1,20,30]), comparisons between mem-
ory effects in the two modalities can be made. Our results
indicate that these auditory stimuli are processed in a way
that is quite analogous to visual gratings. In Experiment 1, we
directly tested properties of memory between the two
modalities, and found little or no difference depending on
stimulus type in how memory is affected by list length,
retention interval, or serial position. The overall mean
proportions correct were larger for the auditory stimuli than
the visual stimuli, but the change with each of these variables
was similar regardless of the stimulus type. In Experiment 2,
we tested the hypothesis that a quantitative model for visual
memory, NEMo, would fit the data for auditory memory
better than other models. Indeed, NEMo fit the auditory
memory data quite well, as shown in Figure 8, and the two
major assumptions of the model proved true for auditory
stimuli just as they had for visual stimuli: summed probe-item
similarity and inter-item homogeneity each contribute to a
participant’s probability of responding that Yes, an item has
been seen before.

Direct Comparison between Memory for Auditory and
Visual Stimuli

In our hands, direct comparison between auditory and
visual memory revealed the two to be strikingly similar. The
list length manipulation effectively changed the memory load
participants had to bear, and has been used in experiments
on vision [6] and hearing [11]. The current experiment reveals
that the effect of load does not depend on the modality of the
stimulus by comparing the stimulus types using the same
participants and same experimental paradigm.

The effects of retention interval on recognition memory
are also quite similar across stimulus types, as seen in Figure
3. Memory for auditory and visual stimuli decreased only
modestly with retention interval. This result is consistent with
previous studies of visual memory [20].

The effects of serial position on recognition memory were
found to be quite similar across modality, as seen in Figure 4.
Although this is consistent with some studies [31], there is an

apparent contradiction in the literature: some researchers
have found serial position curves of different shapes for
auditory and visual experiments [32]. Many such experiments
rely on auditory stimuli that are phonological in nature, and
others use different experimental paradigms or stimulus
types for auditory and visual experiments. A study by Ward
and colleagues [31] implies that the auditory versus visual
difference seen in other studies can be explained by the
differing experimental methods used. When experimental
methods are held constant, little or no serial position
difference was seen between the two modalities, consistent
with our data. Although there was no significant interaction
of the effect of serial position with stimulus type, there is a
trend toward a larger recency effect for the auditory stimuli
than for the visual stimuli (Figure 4). The origin of this
recency effect has been debated [33]. One idea put forward by
Baddeley and Hitch [33] implies that the recency effect may
be due to implicit learning of the items (similar to priming)
followed by explicit retrieval of the residual memory.
Many studies using various types of stimuli in free-recall

tasks have shown a ‘‘primacy effect’’ in which serial position 1
shows a better proportion correct than serial position 2 [34].
No such primacy effect is evident in our data, as can be seen
in Figure 6. The lack of a prominent primacy effect is
consistent with some previous experiments using this
paradigm [1,35], whereas other experiments using the same
paradigm, but different stimuli, have found modest primacy
effects [36]. Previous experiments have shown that these
effects are sensitive to the delay between the stimulus items
and probe [14,37]. The absence of a primacy effect may be
due to specifics of timing, the difficulty of rehearsing these
stimuli, or an interaction of the stimuli and recognition
memory task employed.
Differences between means. Although the effects of list

length, retention interval, and serial position were similar
across the stimulus types, there is a striking and statistically
significant difference between the mean proportion correct
for the auditory and visual stimuli. Differences in mean in
experiments like these may result from a difference in the
overall difficulty of discriminating any two stimuli presented
in the experiment. Although we performed a threshold test to
determine each participant’s just noticeable difference (JND)
thresholds for each stimulus type, it is possible that these
estimates erred on the side of being too easy for the auditory
stimuli, despite the fact that JNDs were estimated using the
same algorithm for all stimulus types.
Another possibility is that participants became gradually

better at the auditory task, but not the visual tasks. Because
the threshold tests were performed before the six exper-
imental sessions, this would result in the auditory task
becoming easier in later sessions, and a higher mean
proportion correct. Analysis of participants’ performance
across session does not rule out this explanation. Text S1
explains the analysis that compares performance on trials
early in the string of sessions to later trials. Participants’
proportion correct increased with time in the auditory case,
but not in the visual case, suggesting that participants
improved on the auditory but not the visual task. Further
experiments would be necessary to fully explore this differ-
ential learning effect. Although neither of these particular
auditory and visual stimuli occur in participants’ normal
environments, it is possible that through prior exposure to

Figure 8. Model Fits for NEMo

Model fits for NEMo are much better for versions including inter-item
homogeneity (four-parameter model in [B]), than for identical models
that do not include inter-item homogeneity (three-parameter model in
[A]). Line indicates best fit to the data.
doi:10.1371/journal.pbio.0050056.g008
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stimuli like our visual stimuli, participants were better able to
optimize their performance, but were less familiar with
stimuli like the auditory stimuli.

Summed Probe-Item Similarity
Figure 5 shows that summed probe-item similarity corre-

lates very strongly with whether a probe will be judged as new.
Because the similarity of the probe to the closest item is
identical in each pair, the data imply that participants use
information from all stimuli when making a judgment, not
just information about the stimulus closest to the probe
[1,25]. This gives credence to an exemplar model of memory,
rather than a prototype model [25], and is entirely consistent
with the results found in the visual domain [1,4,18].

Inter-Item Homogeneity
These data indicate strongly that inter-item homogeneity

plays a role in memory for sounds. When items in a list are
more similar to each other, participants are less likely to say
that a probe was a member of the list. This result was robust
through direct data comparison (Figure 6) as well as by model
fitting, which gave a more sensitive measure of the effect of
inter-item homogeneity. As noted earlier, these results are
consistent with experiments that examine memory for visual
stimuli, including gratings and faces [1,4]. In fact, some older
experiments using sound stimuli are consistent with this
inter-item homogeneity effect. In one experiment, partic-
ipants were required to remember a tone stimulus during
presentation of distracter tones, and performed much worse
when the distracter tones were presented both higher and
lower than the remembered stimuli (low homogeneity
between the remembered tone and the distracters), as
opposed to the case when distracters were presented only
higher or only lower than the remembered stimulus (higher
overall homogeneity between the remembered tone and
distracters) [38]. The similarity across stimulus type implies
that the origin of the inter-item homogeneity effect is a
process common to both auditory and visual memory.

Similar Patterns Imply Similar Processing
The strikingly similar patterns of memory observed for the

auditory and visual stimuli imply that the information-
processing steps involved in memory for each stimulus type
are similar. Previous research has shown that sensory-specific
cortex is re-activated during memory for a sensation [39,40].
Further, lesions of some auditory-specific cortex results in
impairment specifically to auditory memory [41]. The current
data imply that the effects of inter-item homogeneity and
summed probe-item similarity on memory either arise from
non-sensory–specific cortex, or that the mechanisms in each
sensory-specific region are very similar.

Conclusion
The data presented here show that memory for visual and

auditory stimuli obey many of the same principles. In both
modalities, recognition performance changes in similar ways
in response to variation in list length, retention interval, and
serial position. Further, memory performance depends not
only on the summed similarity between a probe and the
remembered items, but also on the similarity of remembered
items to one another. Memory performance data for both
modalities are fit well by the NEMo. These results imply that

auditory and visual short-term memory employ similar
mechanisms.
Previous studies have examined how auditory and visual

items are encoded into memory, implicating some structures
in both visual and auditory working memory [42,43].
Behaviorally, visual and auditory stimuli can interfere with
each other, indicating some shared processing [44]. On the
other hand, some memory information is processed in
sensory-specific cortex, indicating that the transformations
performed on such information may differ between modal-
ities [39,40,45]. Our data imply that, regardless of whether the
processing is performed by the same brain area or not,
similar processing is performed on auditory and visual
stimuli as they are maintained and retrieved from memory.
For centuries, people have pondered possible parallels

between their experiences of light and sound [17]. Belief that
the two modalities were parallel probably influenced Sir Isaac
Newton’s conclusion that the visible spectrum contained
seven colors, the same number of tone intervals in a musical
octave [46]. (Newton observed: ‘‘And possibly colour may be
distinguished into its principle degrees, red, orange, yellow,
green, blue, indigo and deep violet, on the same ground that
sound within an eighth is graduated into tones.’’ [46]) Today,
300 years after Newton, understanding of the neural signals
supporting vision and hearing has advanced sufficiently that
we have been able to formulate and test hypotheses about
fundamental relationships between the characteristics of
short-term memory for each modality.

Materials and Methods

Experiment 1. Moving ripple sounds: moving ripple stimuli varied
sinusoidally in both time (with a period w cycles per second [cps]) and
frequency content (with a period X cycles per octave). The sounds
were generated by superimposing sounds at many frequencies whose
intensity at any time, and for any frequency (f), was defined by

sðg; tÞ ¼ D0 þ D � cos½2pðwtþ XgÞ þ w� ð1Þ

where g ¼ log(f/f0), t is time, w is the phase of the ripple, and D is
modulation depth. (D0 represents the baseline intensity, and is set to
1 in the equation to avoid negative intensity values.) f0 is the lowest
allowed frequency. In these experiments, the parameter space was
simplified by allowing only one parameter (w) to vary. Other
parameters took the following fixed values: X ¼ 1, D0 ¼ 0.9, f0 ¼ 200
Hz, and w was varied randomly between 0 and p/2 for each stimulus.
Frequencies ranged over three octaves above f0 , that is, from 200 to
1,600 Hz. Choices for these parameters were made so that a range of
stimuli with parameters close to these could be discriminated, as
suggested by existing psychophysical data [10,47,48], and in pilot
experiments of our own.

Each stimulus contained 20 logarithmically spaced frequencies per
octave. Levels for each frequency were identical, but psychophysical
loudness varied. However, the same group of frequencies was used for
every stimulus, so the time-averaged loudness should be nearly
identical for each of the stimuli. Equation 1 describes for each
frequency f, a sinusoidal modulation of the level around some mean,
at a rate of w cps. This produces a spectral profile that drifts in time,
so that different frequencies are at their peaks at different times.
Figure 1 illustrates the dynamic spectrum of a moving ripple, with
modulation in both time (w, horizontal axis) and frequency content
(X, vertical axis). For all stimuli, duration was fixed at 1 s. The level of
the stimulus was ramped on and off gradually and linearly over 10 ms
at the beginning and end of each stimulus. Frequencies at the spectral
edges of the stimulus were treated identically to frequencies in the
middle of the frequency range. Two examples of auditory stimuli with
different w values are given in Audios S1 and S2, and correspond to
the stimuli schematized in Figure 1A and 1B.

Visual stimuli: visual stimuli were Gabor patches, created and
displayed using Matlab and extensions from the Psychtoolbox [49].
The CRT monitor was calibrated using Eye-One Match hardware and
software from GretagMacbeth (http://www.gretagmacbeth.com/index.
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htm). The Gabor patches’ mean luminance matched that of the
background; the peak contrast of a Gabor patch was 0.2. Patches were
windowed with a two-dimensional Gaussian envelope with a standard
deviation of 1.4 degrees. Before windowing, the visual stimuli were
generated according to the following equation:

sðy; tÞ ¼ D0 þ D � cos½2pðwvtþ XvyÞ þ w� ð2Þ

where s represents the luminance of the stimulus at any y (vertical)
position and time, t. Note that these stimuli were aligned horizontally
and moved only vertically; the luminance did not change with
horizontal position. w is the phase of the grating, which varied
randomly between 0 and p/2 for each stimulus. D is modulation depth.
(D0 is the mean luminance, set to a mid-gray level on the monitor.) In
these experiments, the parameter space was simplified by allowing
only one parameter to vary at a time. In blocks with moving gratings,
the wv parameter varied; in blocks with static gratings, the spatial
frequency, X v, parameter varied. Other parameters took the
following fixed values: D0 ¼ 0.9 and f0¼ 200 Hz.

All moving gratings had a spatial frequency, Xv, of 0.72 cycles per
degree, and moved with speeds that ranged upward from 1.5 cps (2.1
degrees per second). For static gratings, stimuli did not move (wv¼ 0),
and had spatial frequencies, Xv, with a minimum of 0.36 cycles per
degree. An example of a moving grating is shown in Video S1, and an
example of a static grating is shown in Figure 1C. Parameter values
were chosen based on pilot experiments and previous data so that a
range of stimuli with parameters near these would be discriminable.

Stimuli were tailored to each participant in an initial session, JND
thresholds to achieve 70% correct were estimated using the QUEST
algorithm [50] as implemented in the Psychtoolbox [49]. Participants
were presented with two stimuli sequentially and responded
indicating which stimulus was ‘‘faster’’ (in the case of moving ripples
or moving gratings) or ‘‘thinner’’ (in the case of stationary gratings).
Thresholds for each stimulus type were estimated in separate blocks.
These JND values were used to create an array of ten stimuli for each
participant, in which each stimulus differed from its nearest neighbor
by one JND. All stimuli were chosen from this array, and were thus
separated from one another by an integer number of JNDs.

The timing of stimulus presentation during threshold measure-
ments was the same as that used in the later memory tests for a list
with a single item. Stimuli were thus individually tailored for each
participant, so that the task was of similar difficulty for all
participants, and somewhat similar difficulty across modality [18].
The lowest value that each stimulus could take was the same for all
participants. Other stimulus values were allowed to vary by
participant in order to equate discriminability across participants.
In Experiment 1, for the static grating stimulus type, in which the
spatial frequency, Xv, changed, the lowest Xv value was 0.36 cycles per
degree. For the moving grating stimulus type, in which temporal
frequency, wv, changed, the lowest wv value was 0.025 cps. For the
moving ripple sounds, the lowest possible ripple velocity, w, was 6 cps.
In Experiment 2, the lowest ripple velocity, w, was 7 cps.

In order to minimize the possibility that participants could
memorize all stimuli, a second, ‘‘jittered’’ set of stimuli was created
and then used on half the trials chosen randomly. This list of stimuli
started at 0.5 JND above the base value, and increased in units of 1
JND to create a second array of ten stimuli. For data analysis, we do
not distinguish between trials on which the two arrays were used.

We experimentally manipulate the physical difference between any
two stimuli, here measured in JND. However, the perceptual
similarity is traditionally referred to in models that take perception
into account. Therefore, when discussing physical stimuli, we refer to
their difference (in JND), but later, when discussing fits to models, it is
the related perceptual similarity that is relevant.

Participants: participants for all experiments were between the
ages of 18 to 30 y, and were recruited from the Brandeis student
population. They participated for payment of $8 per session plus a
performance-based bonus. Using a MAICO MA39 audiometer,
participants’ hearing thresholds were measured at 250, 500, 750,
1,000, 2,000, 3,000, 4,000, and 6,000 Hz. Each participant had normal
or better hearing, that is, thresholds under 20 dBHL (decibels hearing
level) at each frequency.

Fourteen participants participated in seven total sessions each. In
an initial session, hearing was tested and vision was tested to be 20/20
or better (using a Snellen eye chart), participants performed 30
practice trials for each stimulus type, and JND thresholds were
measured at a 70% accuracy level for each stimulus type. Each of the
subsequent six sessions lasted approximately 1 h, and consisted of 504
trials. A session began with 15 practice trials, whose results were not
included in subsequent data analysis. For each participant, successive

sessions were separated by at least 3 h, and all sessions were
completed within 2.5 wk.

Apparatus and sound levels: participants listened to ripple sounds
through Sennheiser Pro HD 280 headphones. All stimuli were
produced by Apple Macintosh iMac computers and Matlab, using
extensions from the Psychtoolbox [49]. Sound levels for this system
were measured using a Knowles electronic mannequin for acoustic
research, in order to define the stimulus intensity at the participant’s
eardrum. Levels for all stimuli in Experiment 2 were 79 dBSPL
(decibels sound pressure level), well above our participants’ hearing
thresholds, and levels for stimuli in Experiment 1 were similar (with
the same code and hardware settings, but a different computer).

This experiment examined and compared some basic character-
istics of short-term memory for moving ripple sounds and for Gabor
patches. Using Sternberg’s recognition memory paradigm, we
examined recognition’s dependence on the number of items to be
remembered, the interval over which the items had to be retained,
and the serial position of the to-be-remembered item [6]. The
experiment used static visual gratings (in which the spatial frequency
of the gratings, Xv, varied), moving visual gratings (in which the speed
of the gratings, wv, varied), and moving ripple sounds (in which the
temporal frequency, w, of the ripples varied).

Stimulus presentation: trials were presented in blocks such that
only one stimulus type (moving ripple sounds, static gratings, or
moving visual gratings) was presented per block. During presentation
of either visual or auditory list stimuli, participants fixated on a ‘‘þ’’
in the center of a computer screen. Each stimulus, auditory or visual,
lasted for 1 s. After the last item from a list was presented, a short
beep sounded, and the ‘‘þ’’ was replaced by the text ‘‘...’’, indicating
that the participant should wait for the probe. The text ‘‘?’’ was
presented onscreen during presentation of the probe (for sound
stimuli only) and after the probe presentation, before the participant
made a response. Participants were instructed to be as quick and
accurate with responses as possible. Stimuli were presented in blocks
of 84 trials of a given stimulus type. Six total blocks were presented
per session. The first two trials of each block were not used for
analysis to allow for task-switching effects.

Stimuli for each list were chosen from a set created as described
above for each participant based on their own JND threshold. Trials
with different list lengths and retention intervals were randomly
interleaved. Twenty-four trials of each possible serial position were
presented to each participant, for each stimulus type. Effect of
retention interval was examined by having participants perform trials
in which a single stimulus was followed by a probe, after a retention
interval of 0.6, 1.9, 3.2, 4.5, or 9.7 s; 24 trials of each retention interval
were performed by each participant. Equal numbers of trials in which
the probe matched a list item (target), and trials in which the probe
did not match (lure) were performed.

Trials were self-paced, with each beginning only when participants
indicated with a key press that they were ready. Participants were
alerted with a high or low tone whether they got the current trial
correct or incorrect, and were updated after each trial as to their
percent correct. For every percentage point above 70%, participants
received an extra $0.25 reward above their base payment of $56.

Experiment 2. Participants and stimulus presentation: on each
trial, a list of one or two ripple stimuli (s1, s2) were presented,
followed by a probe (p). As in Experiment 1, the participants’ task was
to identify whether the probe stimulus matched any of the items
presented in the list, and press a button to indicate a choice. During
list presentation, participants fixated on a ‘‘þ’’ in the center of a
computer screen. This was replaced by a ‘‘?’’ during the presentation
of the probe item. Twelve participants participated in each of eight
sessions, following an initial session in which hearing was tested, JND
thresholds for the w parameter (cps) were measured, and 200 practice
trials were performed. Sessions were approximately 1 h each, and
consisted of 586 trials. At the beginning of every session, each
participant completed at least 30 practice trials that were excluded
from data analysis. Each session began at least 6 h from the previous
session, and all sessions were completed within 3 wk. All other details
are as described for auditory stimuli in Experiment 1.

Summed probe-item similarity: in order to examine the effect of
summed probe-item similarity independently of other confounds,
such as the similarity of the probe to the closest item or the inter-
item homogeneity, stimulus conditions were created that varied
summed probe-item similarity while other factors were held constant.
Two pairs of conditions were created that were similar in all respects,
but the summed probe-item similarity varied between the two
conditions in the pair.

Figure 5A shows the relationships between stimuli for each
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condition. All figures indicate relationships between stimuli in terms
of their differences in units of JND.

Pairs of conditions (labeled a & b on one side, and c & d on the
other) were created with identical inter-item homogeneities, and
identical similarities between the probe and the item closest to it.
However, each pair has one low and one high summed probe-item
similarity (pair a & b, for example, both have inter-item difference¼2
JND, but summed probe-item differences of 2 and 4 JND units,
respectively).

Figures 5 and 6 indicate only the relationship among the stimuli in
units of JND, not their physical values. Part A in these figures
illustrates the case when s1 , s2, equally often s1 . s2. Also in
conditions b and d, the probe, p, is equally likely to be greater than or
less than the stimuli s1 and s2. The conditions as shown in the figures
do not specify exactly the stimulus values for a trial. Eight cases of
each condition were chosen randomly from all possible configu-
rations that satisfy the condition, given ten stimuli in the array. This
made 64 lure cases. Twenty repetitions of each case were performed
by each participant, interleaved among the other trial types. For each
lure case, analogous target cases were created where the probe
matched one of the stimuli. Each target case matched a different lure
case in either inter-item homogeneity (in conditions a–d), or summed
probe-item similarity (in conditions e–h, explained below).

Inter-item homogeneity: stimulus conditions with high and low
inter-item homogeneity were created according to Figure 6A, which
follows the same conventions as Figure 5A. Relationships between
stimuli for each condition are shown in terms of their physical
differences, in units of JND. Two sets of paired high and low
homogeneity conditions were created; both members of a pair had
the same inter-item homogeneity and similarity between the stimulus
and the closest probe.

Computational modeling of results: fitting computational models
to experimental data can help determine what information process-
ing steps are involved in short-term memory. Previous experiments in
the visual domain found that a NEMo, including effects of summed
probe-item similarity as well as inter-item homogeneity, fit data for
short-term visual memory well [1,2,4].

The NEMo model was applied only to the data from the 128
auditory memory cases whose list length was two items, because only
those trials incorporated information about inter-item homogeneity,
important to the model. The NEMo assumes that given a list of L
items and a probe item, p, the participant will respond that ‘‘Yes, the
probe is a member of the list’’ if the quantity:

XL

i¼1
aigðp; si þ eiÞ

Summed probe�item similarity

þ 2
LðL� 1Þb

XL�1

i¼1

XL

j¼iþ1
gðsi þ ei; sj þ ejÞ

Mean inter�item similarity

ð3Þ

exceeds a threshold criterion value, C.
The first term depends on the summed similarity between the

probe and the items on the list. a is defined as 1 for the most recent
stimulus; its value for a less-recent stimulus determines the degree of
forgetting of that stimulus. It should take on values less than 1 if the
earlier item is forgotten more readily. g, as defined in Equation 4,
measures the perceptual similarity between any two stimuli, as a
function of s, which defines how quickly perceptual similarity drops
with physical distance:

gðsi; sjÞ ¼ Ae�sjsi�sj j ð4Þ

The parameter A in Equation 4 defines the maximum similarity
between two stimuli. e defines the noise in the memory representa-
tion of the stimulus (hence the label ‘‘Noisy Exemplar’’). The
parameter e is a normally distributed random variable with variance
r2. Note that the similarities incorporated in the model depend on
the noisy values of the remembered stimuli.

The second term in Equation 3 involves the homogeneity of the
list, that is, the similarity between the remembered list items. b is a
parameter determining the direction and amplitude of the effect of
list homogeneity. If b , 0, as was found in earlier experiments using
visual stimuli, a given lure will be more tempting when s1 and s2 are
widely separated; conversely, if b . 0, a lure will be less tempting
when s1 and s2 are widely separated. If b ¼ 0, the model does not
depend on inter-item homogeneity, and is a close variant of
Nosofsky’s Generalized Context Model [24]. The parameter A, as
defined in Equation 4, was set to 1. This model allows five parameters,
r, a, b, C, and s, to vary.

Two additional similar models were also examined. A second
model assumes that the similarity between items can be predicted

from participants’ probability of confusing two items in a trial of list
length 1. This model adopts values for s and A for each participant
based on the fit of Equation 4 to their data with list length 1. This
model is identical to that above, but simpler, allowing only four
parameters (r, a, b, and C) to vary based on the data with list length 2.

A third model is identical to the second, but in it, b is forced to be
0, which means that only three parameters are free to vary: r, a, and
C. Note that this last model does not take into account any possible
influence of inter-item homogeneity. Models are labeled according to
the number of parameters varied in each: five, four, and three.

Model fits: models were fit to participants’ accuracy data by means
of a genetic algorithm. Such a method was chosen because it is robust
to the presence of local minima [51]. The parameter spaces involved
in this experiment are relatively complex, so the genetic algorithm
approach was particularly attractive. To summarize our implementa-
tion of a genetic algorithm, 3,000 ‘‘individuals’’ were generated, each
a vector of randomly chosen values for each of model’s parameters.
The ranges for each parameter were: 0 , r , 5,�3 , s , 3, 0 , a ,1,
�2 , b , 2, and 0 , C , 2. Three thousand trials were simulated for
each individual, each with a randomly chosen value for e given the
parameter r. When the value in Expression 3 exceeds C, the
simulation produced a Yes response. The proportion of Yes responses
for each case was calculated. The fitness of each individual was
computed by calculating the log likelihood that the predicted and
observed data came from the same distribution. Log likelihood was
chosen because it is more robust to non-normal data than is a least-
squares error method [27]. The 10% most fit individuals are
maintained to the next generation. These act as ‘‘parents’’ to the
next generation: the parameters for the 3,000 individuals of the next
generation come from combinations of pairs of parents and
mutations. This procedure was repeated for 25 generations. Best-fit
parameters typically did not change past the 20th generation,
indicating stable parameter values had been obtained.

Model comparison: in order to compare the three models
described above, the predicted data and observed data were plotted
against each other, and a measurement of the variance accounted for
by the model, r2, was calculated. However, when comparing two
models with different complexities, for example, with different
numbers of parameters, the important distinction between models is
their generalizability to new data, that is, the likelihood that the
model will fit another set of similar data. The AIC is a measure of
model fitness that takes into account both how well the data fit the
model and the number of parameters in the model. See the work of
Myung et al. [27] for more information about AIC and calculation
techniques. Thus, both the AIC and r2 values were used to
discriminate between different models.

Supporting Information

Audio S1. Auditory Ripple Sample (Faster)

An example of one auditory ripple sound used. This sound is ‘‘faster’’
than the other auditory ripple example (Audio S2), and corresponds
to Figure 1A with w ¼ 16 Hz.

Found at doi:10.1371/journal.pbio.0050056.sa001 (31 KB WAV).

Audio S2. Auditory Ripple Sample (Slower)

An example of one auditory ripple sound used. This sound is
‘‘slower’’ than the other auditory ripple example (Audio S1), and
corresponds to Figure 1B with w ¼ 8 Hz.

Found at doi:10.1371/journal.pbio.0050056.sa002 (31 KB WAV).

Text S1. Possible Differential Learning Effects for Auditory and
Visual Data

Found at doi:10.1371/journal.pbio.0050056.sd001 (95 KB PDF).

Video S1. Moving Visual Grating Demo

An example of the moving visual grating stimulus.

Found at doi:10.1371/journal.pbio.0050056.sv001 (2.7 MB MOV).
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