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Simple Summary: Most studies on dietary fiber mainly focus on the digestibility of feed nutrients
and microbial flora, etc. However, insufficient attention has been paid to the regulation of immune
and oxidative stress of the intestinal tract by dietary fiber. This study investigated the effects of
varying levels of defatted rice bran replacing corn on physiological, intestinal barrier, and oxidative
stress parameters in finishing pigs. Based on the current findings, a high diet of rice bran will not only
reduce the level of inflammatory factors in the peripheral blood of finishing pigs, but also enhance
the healthy level of the colon through mucin2 and keap1-Nrf2 pathways. Our results can be used as
reference for dietary rice bran to improve intestinal health in finishing pigs.

Abstract: Rice bran is a waste product with low cost and high fiber content, giving it an added
advantage over corn and soybean meal, which have to be purchased and always at a relatively
higher cost. Under the background of increased attention to sustainable agriculture, it is significant
to find alternative uses for this byproduct. A total of 35 finishing pigs were allotted to five dietary
treatments: a control group with basal diet and four experimental diets where corn was equivalently
substituted by 7%, 14%, 21%, and 28% defatted rice bran (DFRB), respectively. With increasing levels
of DFRB, the neutrophil to lymphocyte ratio (NLR) linearly decreased (p < 0.05). In the jejunum,
the mRNA level of nuclear factor erythroid-2 related factor-2 (Nrf2) exhibited a quadratic response
(p < 0.01) with incremental levels of DFRB. In the colon, the mRNA levels of mucin 2 (MUC2), Nrf2,
and NAD(P)H: quinone oxidoreductase 1 (NQO1) were upregulated (linear, p < 0.05) and heme
oxygenase-1 (HO-1) was upregulated (linear, p < 0.01). Overall, using DFRB to replace corn decreased
the inflammatory biomarkers of serum and showed potential function in modulating the intestinal
barrier by upregulating the mRNA expression levels of MUC2 and downregulating that of Nrf2,
NQO1, and HO-1 in the colon.
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1. Introduction

Corn and soybean meal are the main feedstuffs for pigs, providing balanced nutrients [1]. With
increasing demands for conventional feedstuffs by pig production, more attention is paid to alternative
and locally available feedstuffs.

Rice bran is one of the co-products of rice processing and is a combined layer of pericarp, seed
coat, aleurone layer, and embryo [2]. The decreasing cost of rice production and increasing supply of
corn make rice bran an appealing candidate for alternative feedstuffs. However, rice bran contains
lipoxygenases that break down the fatty acids present in the bran, which would eventually result in
a detrimental effect on its flavor [3]. In order to prevent rice bran from oxidation, defatted rice bran
(DFRB) has been used in practical production.

Rice bran includes several bioactive components such as pectin, arabinoxylan, lignin, cellulose,
hemicellulose, β-glucan, and gum [4,5] have been suggested to be functional polysaccharides with
immunomodulatory properties [6]. Meanwhile, the polysaccharide is reported as a kind of effective
free radical scavenger and antioxidant, playing a critical role in protecting against oxidation damage in
living organisms [7]. The health prospects of rice bran have attracted increasing interest. Potential
health benefits of dietary fiber associated with mucosal immune modulation have been shown in
recent researches [8,9].

A previous study by our team proved that dietary supplementation of DFRB had no effect on the
growth performance of Suhuai finishing pigs [10]. As the most important immune organs, the intestinal
tract is the first line of defense to protect the homeostasis of the body’s internal environment [11]
and the function of the intestinal mucosal barrier is a direct manifestation of intestinal health [12].
At present, insufficient attention has been paid to the regulation of immune and oxidative stress of
the intestinal tract by DFRB. We hypothesized that moderate levels of DFRB might improve intestinal
barrier function and modulate the steady state of redox reaction.

This study aimed to evaluate the effects of dietary supplementation of DFRB on physiological,
intestinal barrier, and oxidative stress parameters in finishing pigs, providing reference for the
reasonable addition of DFRB in the diet of finishing pigs.

2. Materials and Methods

The protocol of this experiment was reviewed and approved by the Nanjing Agricultural
University Animal Welfare and Ethics Committee (Certification No.: SYXK (Su) 2017-0007), following
the requirements of the Regulations for the Administration of Affairs Concerning Experimental Animals.

2.1. Experimental Animals and Design

The experimental animals were from Huaiyin pig breeding plant in Jiangsu Province, China.
Suhuai pig is a synthetic Chinese breed that is derived from Large white pig (75%) and Chinese Huai
pig (25%) [13]. A total of 35 Suhuai finishing pigs (158.5 ± 2.0 d) with body weight (BW) of 62.9 ± 0.8 kg
were selected and allotted to 5 treatment groups (7 replicates for each treatment) using a randomized
complete block design. The 5 dietary treatments included a basal diet without supplementation of
DFRB and 4 experimental diets with supplementation of 7%, 14%, 21%, and 28% DFRB, respectively.

2.2. Diets and Feeding Management

The basal diet was configured according to the Feeding Standard of Swine (NY/T 65-2004) 60–90 kg
Standard of Meat-fat Type Growing-finishing Pig. The basal diet and the four experimental diets were
formulated to be nearly equal in nutritional components except for dietary fiber (DF) content (Table 1).
Pigs from each treatment were individually housed in pens which were equipped with the Osborne
Testing Stations System (OTSS) and water saving type stainless-steel drinker to allow the pigs access to
feed and water ad libitum. All the groups were fed a basal diet during the 10-d preliminary trial period.
Subsequently, different treatment groups were fed with corresponding diets for 28 days. All pigs were
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housed in a temperature-controlled room with partially slatted floors. Over the whole trial period, the
experimental animals were in good health.

Table 1. Composition of experimental diets.

Items
Defatted Rice Bran (DFRB), %

0 7 14 21 28

Ingredients (%)
Corn 68.61 62.00 55.00 48.00 41.00

Wheat bran 15.40 15.80 16.15 16.67 17.21
DFRB 0.00 7.00 14.00 21.00 28.00

Soybean meal 13.30 11.70 10.40 8.95 7.50
Soybean oil 0.00 0.84 1.83 2.78 3.74

98.5% Lysine 0.03 0.04 0.03 0.03 0.03
Salt (NaCl) 0.30 0.30 0.30 0.30 0.30
Limestone 0.82 0.85 0.85 0.85 0.85
CaHPO4 0.75 0.68 0.65 0.63 0.58

60% Choline chloride 0.04 0.04 0.04 0.04 0.04
Premix 1 0.40 0.40 0.40 0.40 0.40

Measured composition 2

Dry matter (DM, %) 88.56 88.68 88.93 89.16 88.46
Crude protein (CP, %) 15.60 16.67 16.13 15.73 16.40

Crude fiber (CF, %) 4.38 4.72 5.06 5.38 5.58
Insoluble detergent fiber (IDF, %) 16.14 17.19 18.42 19.32 23.37
Soluble detergent fiber (SDF, %) 0.52 0.56 0.68 0.73 0.82
Acid detergent fiber (ADF, %) 5.53 6.25 6.53 7.08 8.13

Neutral detergent fiber (NDF, %) 8.89 11.80 12.93 14.35 17.94
Ether extract (EE, %) 5.19 5.08 5.32 5.27 5.38

Hemicellulose (%) 3.80 5.69 7.09 8.00 10.34
Cellulose (%) 4.06 4.43 4.71 5.09 5.79

Acid detergent lignin (ADL, %) 0.46 0.54 0.72 0.96 1.13

Calculated composition 2

Metabolic energy (MJ, %) 12.13 12.13 12.22 12.27 12.31
Calcium (%) 0.55 0.55 0.55 0.55 0.55

Available phosphorus (%) 0.27 0.27 0.27 0.27 0.27
L-lysine (%) 0.65 0.65 0.65 0.66 0.65

Methionine + cystine (%) 0.45 0.45 0.46 0.47 0.47
Total detergent fiber (TDF, %) 16.70 17.75 19.10 20.05 24.11

1 The premix provided the following per kg of diets: vitamin A 8000 international unit (IU), vitamin D3 1500 IU,
vitamin E 100 mg, vitamin K3 4 mg, vitamin B1 2 mg, vitamin B2 8 mg, vitamin B6 3 mg, vitamin B12 0.04 mg, niacin
30 mg, pantothenic acid 35 mg, folic acid 0.6 mg, biotin 0.13 mg, choline 150 mg, Fe 60 mg, Cu 5 mg, Zn 60 mg,
Mn 10 mg, Se 0.15 mg, I 0.1 mg. 2 DM, CP, CF, IDF, SDF, ADF, NDF, EE, hemicellulose, cellulose, and ADL were
measured values, whereas the other nutrient levels were calculated values.

2.3. Sample Collection

Two blood samples were collected from the jugular vein of each pig at slaughtering. One was
collected into glass tubes without anticoagulant. After centrifugation (1000× g for 15 min at 4 ◦C),
serum samples were collected and stored at −80 ◦C for determination of serum biochemistry and serum
immunoglobulins. The other was collected into a vacutainer containing ethylene diamine tetraacetic
acid (EDTA). The vacuum tubes were immediately placed in an icy box until they were sent to the
veterinary hospital (within 2 h) for the examination of blood cell counts. Segments (5 cm in length)
of jejunum (the middle part of the distance from pylorus to ileocecal valve) and colon (the middle
part of colon) were intercepted. All the segments were opened longitudinally and washed with saline
solution to remove contents. The intestinal mucosa samples were collected and rapidly frozen in liquid
nitrogen until analysis.
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2.4. Blood Sample Analysis

Routine blood test was submitted to Mairui 5300 Blood Cell Analyzer (Wuhan Shengshida Medical
Equipment Co., Ltd., Wuhan, China). Serum samples were analyzed for total protein (TP), albumin
(ALB), globulin (GLOB), alkaline phosphatase (ALP), glutamate pyruvic transaminase (GPT), glucose
(GLC), blood urea nitrogen (BUN), amylase (vAMY), total cholesterol (THOL), and triglyceride (TC)
using a Beckman 480 Biochemical Analyzer (Beckman Coulter Commercial Enterprise (China) Co.,
Ltd., Shanghai, China). Porcine-specific ELISA kits were used to quantify immunoglobulin A (IgA),
immunoglobulin G (IgG), and immunoglobulin M (IgM) in accordance with the manufacturer’s
instructions (Wuhan Huamei Bioengineering Co., Ltd., Wuhan, China). All samples were analyzed
in duplicate.

2.5. Assays of Secretory Immunoglobulin A (SIgA), IgM, and Cytokines Concentration

After homogenization of mucosa samples in tissue homogenate diluent and centrifugation at
5000× g for 5 min at 4 ◦C, the supernatants were used for determination of SIgA (ug/mg), IgM
(ug/mg), and inflammatory cytokines (pg/mg) using commercially available ELISA kits (Wuhan
Huamei Bioengineering Co., Ltd., Wuhan, China; Abcam, Cambridge, MA, USA; and R&D Systems,
Inc., Minneapolis, MN, USA, respectively) according to the manufacturer’s procedures. The total
protein content of supernatant liquid was determined using the bicinchoninic acid (BCA) method.
Concentrations of SIgA, IgM, and cytokine were standardized to the protein in each sample.

2.6. RNA Extraction and Gene Expression Analysis

Total RNA from the mucosa of jejunum and colon were extracted using TRIzol reagent (Shanghai
Yuanye Biotechnology Co., Ltd., Shanghai, China) according to the manufacturer’s instructions
after the samples were ground with liquid nitrogen. The integrity of RNA was checked by 1%
formaldehyde agarose gel electrophoresis. The concentration and purity of mRNA were measured
spectrophotometrically (Shanghai Meixi Instrument Co., Ltd., Shanghai, China). Those RNA samples
with an OD260:OD280 ratio (where OD is the optical density) ranging from 1.8 to 2.0 were eligible
for use in subsequent experiments. Reverse transcription reactions were performed using a RT
reagent kit (Applied Biological Materials (ABM) Inc) following the manufacturer’s instructions.
The generated cDNA was immediately used for real-time fluorescence quantitative PCR analysis.
The mRNA expression levels of mucin 2 (MUC2), porcine beta defensin 1 (PBD1), proline-arginine-rich
antimicrobial peptides (PR39), nuclear factor erythroid-2 related factor-2 (Nrf2), NAD(P)H: quinone
oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1) in the mucosa of jejunum and colon were
analyzed by real-time quantitative PCR with SYBR Green PCR reagents (ABM). The sequences of
primers (Table 2) used in the experiment were synthesized by Tsingke Biotech Co., Ltd. (Beijing, China).
The reaction was performed using the following cycle program: A hold stage at 95 ◦C for 10 min;
40 cycles for PCR stage at 95 ◦C for 15 s and at 60 ◦C for 60 s; a melt curve stage at 95 ◦C for 15 s,
at 60 ◦C for 60 s, and at 95 ◦C for 1 s.

A melting curve analysis was generated following each real-time quantitative PCR so
as to check and verify the specificity and purity of all PCR products. The reference gene
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used for normalization, and the relative
mRNA expression levels of the target gene in comparison with the reference gene were calculated
using the 2−∆∆CT method. Each sample was run simultaneously in triplicate on the same PCR plate.
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Table 2. List of primers used in this study.

Gene Primer Sequences (5′-3′) 1 Reference

GAPDH F: GAAGGTCGGAGTGAACGGAT
R: CATGGGTAGAATCATACTGGAACA [14]

MUC2 F: CTGCTCCGGGTCCTGTGGGA
R: CCCGCTGGCTGGTGCGATAC [15]

PBD1 F: GGCCCTTGAGGATGTGATAAA
R: CTGTGGGCATGTCACTTAGAT [16]

PR39 F: CTTCCCAGTAGAGGCATGTTATT
R: GCCACAGTTTGAGGTGATTTG [16]

Nrf2 F: CGTGAAGCGACTGAACCT
R: ATGTAGCCGAAGAACCT [17]

NQO1 F: TGCCTTCCTTGACTTGCT
R: TCCCGGCTTTACATCCTA [17]

HO-1 F: TTCACCTTCCCGAGCAT
R: GCCTCTTCTGTCACCCTGT [17]

1 F = forward primer; R = reverse primer.

2.7. Statistical Analysis

This study used a randomized complete design. DFRB was the main effect. Each pig was
considered as the experimental unit for all analyses. All data were submitted to one-way ANOVA
procedure of SPSS 25.0 software. The significance of linear and quadratic responses was declared at
p < 0.05 and a statistical trend was considered for 0.05 ≤ p < 0.10. The results were presented as the
means and standard error of the means (SEM).

3. Results

3.1. Blood Cell Counts

Table 3 reported the effects of varying DFRB levels on blood cell counts. With the DFRB level
increased in the diets, neutrophils percentage decreased (quadratic, p < 0.01), lymphocytes percentage
linearly increased (p < 0.05), and neutrophil to lymphocyte ratio (NLR) linearly decreased (p < 0.05).
The other indexes were not affected by the supplementation levels of DFRB.



Animals 2020, 10, 449 6 of 12

Table 3. Effects of increasing defatted rice bran (DFRB) supplementation on blood cell counts of finishing pigs 1.

Item
DFRB, %

SEM
p-Value

0 7 14 21 28 Linear Quadratic

Leukocyte count (109 L−1) 24.07 24.69 23.51 21.90 24.04 0.75 0.594 0.774
Neutrophil granulocyte count (109 L−1) 12.60 12.87 12.12 10.90 11.56 0.49 0.101 0.350

Neutrophils percentage% 52.35 52.13 51.55 49.77 48.09 1.10 0.014 0.007
Lymphocytes count (109 L−1) 10.27 10.72 10.40 9.73 11.23 0.43 0.667 0.752

Lymphocytes percentage% 42.67 43.42 44.24 44.43 46.71 1.19 0.016 0.062
Mononuclear cells count (109 L−1) 0.67 0.64 0.56 0.79 0.79 0.05 0.612 0.665

NLR 2 1.22 1.22 1.21 1.11 1.07 0.05 0.030 0.062
Mononuclear cells percentage% 2.78 2.59 2.38 3.61 3.29 0.17 0.250 0.475

Eosinophils count (109 L−1) 0.27 0.24 0.24 0.26 0.26 0.03 0.994 0.365
Eosinophils percentage% 1.12 0.97 1.02 1.19 1.08 0.10 0.908 0.661

Basophilic granulocyte count (109 L−1) 0.26 0.21 0.19 0.21 0.20 0.02 0.186 0.155
Basophilic granulocyte percentage% 1.08 0.85 0.81 0.96 0.83 0.06 0.311 0.582

Platelet count (109 L−1) 248.68 202.88 239.78 234.40 199.00 15.01 0.419 0.759
Mean platelet volume (fL) 8.07 8.00 7.44 7.89 8.06 0.13 0.900 0.419
Platelet distribution width 15.18 15.27 15.17 15.07 15.18 0.06 0.452 0.796

Thrombocytocrit 0.20 0.16 0.18 0.19 0.16 0.01 0.456 0.799
Red blood cell count (1012 L−1) 7.53 7.69 7.80 7.28 7.76 0.14 0.953 0.999

Hematocrit 44.53 45.29 45.31 42.95 45.29 0.88 0.838 0.973
Mean corpuscular volume (fL) 59.28 58.86 58.22 58.91 58.44 0.63 0.266 0.462

Hemoglobin concentration (g L−1) 130.55 137.45 137.36 127.12 138.02 2.22 0.814 0.975
Mean erythrocyte hemoglobin Concentration (g L−1) 293.33 304.12 302.94 298.05 304.69 2.00 0.344 0.595

Average hemoglobin content of red blood cell (pg) 17.41 17.88 17.63 17.51 17.80 0.14 0.586 0.865
Red blood cell distribution width coefficient of variation 17.05 17.24 16.91 16.68 18.14 0.36 0.440 0.398

Red blood cell distribution width-standard deviation 42.18 41.93 41.80 42.67 39.67 0.69 0.300 0.386
1 Values are means and pooled SEMs; SEM, standard error of mean; n = 7. 2 NLR, neutrophil to lymphocytes ratio.
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3.2. Serum Biochemistry Parameters

The results of serum biochemistry parameters are reported in Tables 4 and 5. With the DFRB level
increased in the diets, the level of serum albumin and amylase tended to increase linearly (p = 0.087
and p = 0.094, respectively). There was no difference in other serum biochemistry parameters. Serum
immunoglobulins (Ig) did not change with increasing levels of DFRB.

Table 4. Effects of increasing DFRB supplementation on serum biochemistry parameters of finishing
pigs 1.

Item
DFRB, %

SEM
p-Value

0 7 14 21 28 Linear Quadratic

Total protein (g L−1) 76.33 76.46 74.16 76.18 73.16 0.93 0.192 0.485
Albumin (g L−1) 33.44 34.89 35.26 34.67 35.95 0.56 0.087 0.287
Globulin (g L−1) 42.82 41.29 39.49 42.24 36.66 1.08 0.168 0.442

A/G 2 0.83 0.86 0.88 0.82 1.00 0.32 0.229 0.403
Glutamic pyruvic transaminase

(U L−1) 63.06 68.71 59.70 65.19 59.01 2.57 0.437 0.696

Alkaline phosphatase (U L−1) 110.79 132.81 129.00 125.68 132.91 6.81 0.243 0.407
Urea (mmol L−1) 5.90 7.03 6.95 5.78 6.40 0.24 0.913 0.757
Amylase (U L−1) 1456.86 2318.04 2050.74 2210.01 2611.04 136.07 0.094 0.315

Glucose (mmol L−1) 4.66 5.71 4.46 4.69 5.33 0.25 0.878 0.963
Total cholesterol (mmol L−1) 2.61 2.63 2.63 2.78 2.71 0.07 0.125 0.399

Triglyceride (mmol L−1) 0.55 0.64 0.62 0.41 0.72 0.04 0.811 0.895
1 Values are means and pooled SEMs; SEM, standard error of mean; n = 7. 2 A/G, albumin/globulin.

Table 5. Effects of increasing DFRB supplementation on serum immunoglobulins of finishing pigs 1.

Item 2 DFRB, %
SEM

p-Value

0 7 14 21 28 Linear Quadratic

IgA (µg/mL) 187.78 208.27 165.68 354.75 232.41 30.37 0.391 0.741
IgM (µg/mL) 171.69 151.28 307.30 95.32 146.92 22.69 0.738 0.815
IgG (µg/mL) 2117.57 1953.98 1802.16 678.50 1552.05 218.16 0.214 0.481

1 Values are means and pooled SEMs; SEM, standard error of mean; n = 7. 2 IgA, immunoglobulin A; IgM,
immunoglobulin M; IgG, immunoglobulin G.

3.3. Intestinal Immune Barrier

Tables 6 and 7 report the effects of varying DFRB levels on intestinal immune barrier-related
indexes. The levels of interferon γ (IFN-γ), interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 10
(IL-10), interleukin 12 (IL-12), SIgA, and IgM neither exhibited a linear nor quadratic response to the
diets (p > 0.05).

Table 6. Effects of increasing DFRB supplementation on SIgA and IgM in jejunum and colon of finishing
pigs 1.

Item 2 Intestinal Segment DFRB, %
SEM

p-Value

0 7 14 21 28 Linear Quadratic

SIgA (ug/mg) Jejunum 2.01 1.14 1.20 1.04 1.15 0.23 0.165 0.130
Colon 1.11 3.19 1.38 0.92 1.17 0.33 0.283 0.247

IgM (ug/mg) Jejunum 6.00 3.50 2.50 3.96 4.69 0.53 0.673 0.108
Colon 5.59 4.48 4.72 5.44 5.12 0.65 0.991 0.656

1 Values are means and pooled SEMs; SEM, standard error of mean; n = 7. 2 SIgA, secretory immunoglobulin A;
IgM, immunoglobulin M.
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Table 7. Effects of increasing DFRB supplementation on cytokines in jejunum and colon of finishing
pigs 1.

Item 2 Intestinal
Segment

DFRB, %
SEM

p-Value

0 7 14 21 28 Linear Quadratic

IL-10
(pg/mg)

Jejunum 5.77 7.17 6.53 14.17 5.32 1.04 0.160 0.716
Colon 1.73 1.13 1.73 1.32 1.49 0.09 0.778 0.896

IL-12
(pg/mg)

Jejunum 26.60 18.00 23.56 41.03 28.33 3.56 0.400 0.755
Colon 29.32 16.15 24.01 16.67 16.37 2.35 0.210 0.486

IL-6
(pg/mg)

Jejunum 0.21 0.40 0.21 0.15 0.53 0.06 0.520 0.667
Colon 1.70 0.92 0.65 1.99 1.15 0.16 0.989 0.870

IL-1β
(pg/mg)

Jejunum 51.00 34.12 32.27 82.31 34.56 4.52 0.855 0.983
Colon 60.62 42.43 56.03 56.09 46.56 3.49 0.620 0.904

IFN-γ
(pg/mg)

Jejunum 142.62 103.00 78.45 227.01 82.95 13.64 0.985 0.994
Colon 49.51 44.82 52.42 49.14 43.76 2.97 0.603 0.690

1 Values are means and pooled SEMs; SEM, standard error of mean; n = 7. 2 IL-10, interleukin 10; IL-12, interleukin
12; IL-6, interleukin 6; IL-1β, interleukin 1β; IFN-γ, interferon γ.

3.4. Intestinal Chemical Barrier

The mRNA expression levels of intestinal chemical barrier-related genes in the mucosa of jejunum
and colon of finishing pigs are presented in Table 8. In the jejunum, the supplementation levels of
DFRB had no effect on the mRNA expression levels of MUC2, PBD1, and PR39. In the colon, the mRNA
levels of MUC2 was upregulated (linear, p < 0.05; quadratic, p < 0.05) with increasing levels of DFRB
in the diet. There was a tendency (linear, p = 0.057) that the mRNA expression level of PR39 was
increased as the concentration of DFRB increased in the diets. However, the mRNA expression level of
PBD1 showed no response to these diets.

Table 8. Effects of increasing DFRB supplementation on MUC2, PBD1, and PR39 in jejunum and colon
of finishing pigs 1.

Item 2 Intestinal Segment DFRB, %
SEM

p-Value

0 7 14 21 28 Linear Quadratic

MUC2
Jejunum 1.00 0.93 1.23 0.76 1.31 0.11 0.383 0.408

Colon 1.00 1.45 2.03 0.73 3.42 0.20 0.019 0.028

PBD1
Jejunum 1.00 3.07 3.71 3.82 1.85 0.74 0.501 0.341

Colon 1.00 2.33 2.67 4.22 2.09 0.66 0.290 0.367

PR39
Jejunum 1.00 13.38 12.64 0.29 10.94 3.09 0.643 0.709

Colon 1.00 1.26 6.57 0.77 12.78 1.79 0.057 0.104
1 Values are means and pooled SEMs; SEM, standard error of mean; n = 7. 2 MUC2, mucin 2; PBD1, porcine beta
defensin 1; PR39, proline-arginine-rich antimicrobial peptides.

3.5. Oxidative Stress Index

Table 9 shows the effects of increasing DFRB levels on the mRNA expression levels of oxidative
stress indexes in the mucosa of jejunum and colon. In the jejunum, the mRNA level of Nrf2 exhibited
a quadratic response (p < 0.05) with incremental levels of DFRB. There was a tendency (p = 0.059
and p = 0.081, respectively) for the mRNA expression levels of NQO1 and HO-1 to show a quadratic
response as the concentration of DFRB increased in the diets. In the colon, the mRNA levels of Nrf2 and
NQO1 were downregulated (linear, p < 0.05) and HO-1 was downregulated (linear, p < 0.01; quadratic,
p < 0.05) with increasing levels of DFRB in the diets. NQO1 tended (p = 0.054) to show a quadratic
response with the DFRB levels in the diet.
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Table 9. Effects of increasing DFRB supplementation on Nrf2, NQO1, and HO-1 in jejunum and colon
of finishing pigs 1.

Item 2 Intestinal Segment DFRB, %
SEM

p-Value

0 7 14 21 28 Linear Quadratic

Nrf2 Jejunum 1.00 1.06 1.40 1.24 0.68 0.10 0.490 0.039
Colon 1.00 1.22 0.96 0.62 0.68 0.07 0.010 0.447

NQO1 Jejunum 1.00 0.43 0.55 0.64 0.63 0.07 0.226 0.059
Colon 1.00 0.81 0.52 0.44 0.66 0.07 0.025 0.054

HO-1
Jejunum 1.00 0.39 0.46 0.42 0.47 0.09 0.079 0.081

Colon 1.00 0.47 0.34 0.38 0.30 0.08 0.003 0.047
1 Values are means and pooled SEMs; SEM, standard error of mean; n = 4. 2 Nrf2, nuclear factor erythroid-2 related
factor-2; NQO1, NAD(P)H: quinone oxidoreductase 1; HO-1, heme oxygenase-1.

4. Discussion

In the current trial, the diets were formulated in terms of the Feeding Standard of Swine (NY/T
65-2004) 60–90 kg Standard of Meat-fat Type Growing-finishing Pig, since Suhuai pig is a synthetic
breed. The five experimental diets were supplemented with 0%, 7%, 14%, 21%, and 28% DFRB,
respectively. In order to balance digestible energy and amino acids among five groups, we changed
corn, wheat bran, soybean oil, lysine, etc. in four experimental diets. In this case, it led to small
differences in the composition of other components in addition to dietary fiber components. In
view of the fact that the level of DFRB is the main difference of dietary components among groups,
the differences in the indicators were mainly caused by the different levels of dietary fiber of DFRB.

Blood as an easily accessible organ system is often used to screen for pathological conditions.
Neutrophils are formed within the bone marrow during hematopoiesis [18]. Researchers once believed
that neutrophils were present only during the acute phase of the inflammatory response, functioning
only as pathogen killers. Now it is known that neutrophils can shape the immune landscape by
communicating with macrophages, dendritic cells, and cells of the adaptive immune response through
direct cell–cell contact or as soluble mediators [19–21]. Neutrophil homeostasis is likely influenced
by phagocytic uptake in the periphery, cell mass in the bone marrow, and inflammatory or pathogen
challenge [22]. Another study concluded that rice bran induced an anti-inflammatory environment
that helped to protect against tumorigenesis [23]. The linear and quadratic response in neutrophils
percentage resulting from varying supplementation levels of DFRB indicates that DFRB may reduce
the number of neutrophils by inhibiting the inflammatory environment.

Lymphocytes can be divided into T lymphocyte, B lymphocyte, and natural killer (NK) cells
according to its migration, surface molecule, and function, which mediate cellular immunity, humoral
immunity, killing tumor cells, and virus-infected cells, respectively. In our experiments, the linear
response to lymphocytes percentage resulting from varying supplementation levels of DFRB indicated
that DFRB improved immune status.

NLR has been postulated as a marker of systemic inflammation [24,25]. It has been shown to be
associated with a variety of malignancies [26]. Swine serves as an important biomedical model for
various human diseases because the immune system of pigs is very similar to that of human beings.
In human medicine, the sum of lymphocyte percentage and neutrophil percentage is almost 100%;
the decrease of neutrophil percentage will inevitably lead to the increase of lymphocyte percentage
and the decrease of NLR. In our experiments, our experimental data followed this biological law.

In this study, there was a trend that amylase and albumin increased linearly with increasing levels
of DFRB supplementation in the diets. The change of supplementation levels of DFRB had no effect on
the content of globulin and total protein. The results of globulin in blood were consistent with the
results of serum immunoglobulins. We inferred that the DFRB did not change the content of serum
protein. This observation was consistent with results of previous experiment [27].
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Cytokines play a crucial role in immune response, and their balance is important for preventing
infection [28]. In the present experiment, no difference was observed in the concentrations of cytokines
in response to the supplementation level of DFRB. The reason for this observation may be that there
were not enough immunological stimuli to induce changes in the concentrations of pro-inflammatory
cytokines since pigs used in this experiment were of good health status.

Mucins, secreted by goblet cells in the epithelium, are the determining constituents of the mucus
layer. In the small and large intestine, the secreted mucus is predominantly composed of MUC2 [29],
which forms a considerable chemical barrier to enteric commensals and pathogens so that absence of
the secreted MUC2 leads to colitis [30]. Our results showed that there was an increased expression of
MUC2 in the colon in response to the increased DFRB supplementation. According to the research of
the former scholars that dietary treatment was reported to affect mucus secretion [31], we speculate that
DFRB increased the expression of MUC2 and had a positive effect on intestinal health. The reason for
the quadratic may be due to the relatively small value of the 21% group. This suggests that there is not
always a positive correlation between the level of DFRB supplementation and intestinal health. It may
have adverse effects on intestinal health when the proportion of DFRB exceeds the appropriate range.

Nrf2 has been proven to be a crucial transcription factor that protects organism from oxidants [32].
Nrf2 locates in the cytoplasm as it is negatively controlled by cytoplasmic Kelch-like ECH-associated
protein 1 (Keap-1) under homeostatic conditions. Reactive oxygen species (ROS) play a key role in the
activation of Nrf2 [33,34] under the stimulation of ROS, Nrf2 translocates into the nucleus, where it
combines with antioxidant response elements (AREs) and promotes the transcription of antioxidant
proteins, including NQO1 and HO-1 [35]. For a long time, the Keap1-Nrf2 pathway has been researched
for clinical applications and to improve human health [36]. The antioxidant effect of dietary fiber is
based on the polyphenol compounds bound to polysaccharide complexes, which are released in the
gut and function as antioxidants [37]. In this experiment, dietary fiber in defatted rice bran may play a
direct role in antioxidation, which may be account for the decreased expression levels of Nrf2, NQO1,
and HO-1 in the colon.

Distinct microbial communities between the small intestine and large intestine were found [38,39].
The small intestine is mainly responsible for food digestion and absorption, while the large intestine,
which has lots of microorganisms, is related to microbial fermentation [40]. In the present experiment,
the mRNA expression level of Nrf2 in jejunum exhibited a quadratic response with incremental levels
of DFRB. In the colon, the mRNA levels of Nrf2 were downregulated linearly with increasing levels
of DFRB in the diets, which may be due to the different fermentation ability of different intestinal
segments to fiber. Our results showed that it is meaningful to understand the differential metabolic
capacities among distinct intestinal locations. It will contribute to informing strategies to improve gut
health based on defatted rice bran addition in the diets of finishing pigs.

5. Conclusions

This study showed that DFRB can be used as a feedstuff for finishing pigs. Dietary supplementation
of DFRB decreased the inflammatory biomarkers of serum and showed the potential function
to modulate the intestinal barrier by upregulating the mRNA expression levels of MUC2 and
downregulating that of Nrf2, NQO1, and HO-1 in the colon.

Author Contributions: Conceptualization, R.H. and P.L.; methodology, L.F., T.D., and P.L.; investigation, L.F.
and H.W.; resources, L.F. and C.W.; data curation, L.F., G.P., and Y.C.; writing—original draft preparation, L.F.;
writing—review and editing, L.F., S.W.K., P.L., and R.H.; supervision, P.L.; project administration, W.Z. and P.L.;
funding acquisition, R.H. and P.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation (31872318, 31601923),
the Ministry of Agriculture and Rural Affairs Joint Projects for the National High Quality and Lean Pig Breeding
(19190540), the Key Project for Jiangsu Agricultural New Variety Innovation (PZCZ201732), the Construction of
Huaian Academy of Nanjing Agricultural University (BM2017020), and the Project of Jiangsu Agricultural (pig)
Industry Technology System (JATS(2019)418, JATS(2019)189).



Animals 2020, 10, 449 11 of 12

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Leeson, S. Future considerations in poultry nutrition. Poult. Sci. 2012, 91, 1281–1285. [CrossRef]
2. Sookwong, P.; Mahatheeranont, S. Some Strategies for Utilization of Rice Bran Functional Lipids and

Phytochemicals. J. Oleo Sci. 2018, 67, 669–678. [CrossRef]
3. Law, B.M.H.; Waye, M.M.Y.; So, W.K.W.; Chair, S.Y. Hypotheses on the Potential of Rice Bran Intake to

Prevent Gastrointestinal Cancer through the Modulation of Oxidative Stress. Int. J. Mol. Sci. 2017, 18, 1352.
4. Wiboonsirikul, J.; Kimura, Y.; Kanaya, Y.; Tsuno, T.; Adachi, S. Production and characterization of functional

substances from a by-product of rice bran oil and protein production by a compressed hot water treatment.
Biosci. Biotechnol. Biochem. 2008, 72, 384–392. [CrossRef]

5. Ryan, E.P. Bioactive food components and health properties of rice bran. J. Am. Vet. Med. Assoc. 2011, 238,
593–600. [CrossRef]

6. Park, H.Y.; Lee, K.W.; Choi, H.D. Rice bran constituents: Immunomodulatory and therapeutic activities. Food
Funct. 2017, 8, 935–943. [CrossRef] [PubMed]

7. Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on Mechanisms of In Vitro Antioxidant Activity of
Polysaccharides. Oxid. Med. Cell. Longev. 2016, 2016, 5692852. [CrossRef] [PubMed]

8. Barszcz, M.; Taciak, M.; Skomial, J. The effects of inulin, dried Jerusalem artichoke tuber and a multispecies
probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Arch.
Anim. Nutr. 2016, 70, 278–292. [CrossRef] [PubMed]

9. Che, L.; Chen, H.; Yu, B.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Chen, D. Long-term intake of pea fiber
affects colonic barrier function, bacterial and transcriptional profile in pig model. Nutr. Cancer 2014, 66,
388–399. [CrossRef] [PubMed]

10. Pu, G.; Huang, R.H.; Niu, Q.; Wang, H.; Fan, L.j.; Gao, C.; Niu, P.P.; Zhuang, Z.P.; Wu, C.W.; Zhou, J.; et al.
Effects of Dietary Defatted Rice Bran Substitute Corn Levels on Growth Performance, Intestinal Development
and Apparent Digestibility of Nutrients of Suhuai Pigs. Acta Veterinaria et Zootechnica Sinica 2019, 50, 758–770.

11. Allaire, J.M.; Crowley, S.M.; Law, H.T.; Chang, S.Y.; Ko, H.J.; Vallance, B.A. The Intestinal Epithelium: Central
Coordinator of Mucosal Immunity. Trends Immunol. 2018, 39, 677–696. [CrossRef]

12. Onyiah, J.C.; Colgan, S.P. Cytokine responses and epithelial function in the intestinal mucosa. Cell. Mol. Life
Sci. 2016, 73, 4203–4212. [CrossRef] [PubMed]

13. Wang, B.; Li, P.; Zhou, W.; Gao, C.; Liu, H.; Li, H.; Niu, P.; Zhang, Z.; Li, Q.; Zhou, J.; et al. Association of
Twelve Candidate Gene Polymorphisms with the Intramuscular Fat Content and Average Backfat Thickness
of Chinese Suhuai Pigs. Animals 2019, 9, 858. [CrossRef] [PubMed]

14. Xun, W.; Shi, L.; Zhou, H.; Hou, G.; Cao, T.; Zhao, C. Effects of curcumin on growth performance,
jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with
enterotoxigenic Escherichia coli. Int. Immunopharmacol. 2015, 27, 46–52. [CrossRef] [PubMed]

15. Zhang, Y.; Zheng, P.; Yu, B.; He, J.; Yu, J.; Mao, X.B.; Wang, J.X.; Luo, J.Q.; Huang, Z.Q.; Cheng, G.X.; et al.
Dietary spray-dried chicken plasma improves intestinal barrier function and modulates immune status in
weaning piglets. J. Anim. Sci. 2016, 94, 173–184. [CrossRef] [PubMed]

16. Xiong, H.; Guo, B.; Gan, Z.; Song, D.; Lu, Z.; Yi, H.; Wu, Y.; Wang, Y.; Du, H. Butyrate upregulates endogenous
host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Sci. Rep.
2016, 6, 27070. [CrossRef] [PubMed]

17. Chen, J.; Wang, F.; Zhou, X.; Cao, Y.; Li, Y.; Li, C. Bama miniature pigs’ liver possess great heat tolerance
through upregulation of Nrf2-mediated antioxidative enzymes. J. Therm. Biol. 2017, 67, 15–21. [CrossRef]

18. Borregaard, N. Neutrophils, from marrow to microbes. Immunity 2010, 33, 657–670. [CrossRef]
19. Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of

innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [CrossRef]
20. Amulic, B.; Cazalet, C.; Hayes, G.L.; Metzler, K.D.; Zychlinsky, A. Neutrophil function: From mechanisms to

disease. Annu. Rev. Immunol. 2012, 30, 459–489. [CrossRef]

http://dx.doi.org/10.3382/ps.2012-02373
http://dx.doi.org/10.5650/jos.ess17257
http://dx.doi.org/10.1271/bbb.70464
http://dx.doi.org/10.2460/javma.238.5.593
http://dx.doi.org/10.1039/C6FO01763K
http://www.ncbi.nlm.nih.gov/pubmed/28224159
http://dx.doi.org/10.1155/2016/5692852
http://www.ncbi.nlm.nih.gov/pubmed/26682009
http://dx.doi.org/10.1080/1745039X.2016.1184368
http://www.ncbi.nlm.nih.gov/pubmed/27216555
http://dx.doi.org/10.1080/01635581.2014.884229
http://www.ncbi.nlm.nih.gov/pubmed/24611475
http://dx.doi.org/10.1016/j.it.2018.04.002
http://dx.doi.org/10.1007/s00018-016-2289-8
http://www.ncbi.nlm.nih.gov/pubmed/27271753
http://dx.doi.org/10.3390/ani9110858
http://www.ncbi.nlm.nih.gov/pubmed/31652864
http://dx.doi.org/10.1016/j.intimp.2015.04.038
http://www.ncbi.nlm.nih.gov/pubmed/25937483
http://dx.doi.org/10.2527/jas.2015-9530
http://www.ncbi.nlm.nih.gov/pubmed/26812324
http://dx.doi.org/10.1038/srep27070
http://www.ncbi.nlm.nih.gov/pubmed/27230284
http://dx.doi.org/10.1016/j.jtherbio.2017.04.012
http://dx.doi.org/10.1016/j.immuni.2010.11.011
http://dx.doi.org/10.1038/nri3024
http://dx.doi.org/10.1146/annurev-immunol-020711-074942


Animals 2020, 10, 449 12 of 12

21. Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev.
Immunol. 2013, 13, 159–175. [CrossRef] [PubMed]

22. Mayadas, T.N.; Cullere, X.; Lowell, C.A. The multifaceted functions of neutrophils. Annu. Rev. Pathol. 2014,
9, 181–218. [CrossRef] [PubMed]

23. Phutthaphadoong, S.; Yamada, Y.; Hirata, A.; Tomita, H.; Hara, A.; Limtrakul, P.; Iwasaki, T.; Kobayashi, H.;
Mori, H. Chemopreventive effect of fermented brown rice and rice bran (FBRA) on the inflammation-related
colorectal carcinogenesis in ApcMin/+ mice. Oncol. Rep. 2010, 23, 53–59. [PubMed]

24. Farid, S.G.; Iqbal, A.; Khan, S.; Morris-Stiff, G. Comment on Mallappa et al.: Preoperative neutrophil to
lymphocyte ratio >5 is a prognostic factor for recurrent colorectal cancer. Colorectal Dis. 2013, 15, 909–910.
[CrossRef] [PubMed]

25. Chandrashekara, S.; Mukhtar Ahmad, M.; Renuka, P.; Anupama, K.R.; Renuka, K. Characterization of
neutrophil-to-lymphocyte ratio as a measure of inflammation in rheumatoid arthritis. Int. J. Rheum. Dis.
2017, 20, 1457–1467. [CrossRef] [PubMed]

26. Paramanathan, A.; Saxena, A.; Morris, D.L. A systematic review and meta-analysis on the impact of
pre-operative neutrophil lymphocyte ratio on long term outcomes after curative intent resection of solid
tumours. Surg. Oncol. 2014, 23, 31–39. [CrossRef]

27. Casas, G.A.; Stein, H.H. Effects of full fat or defatted rice bran on growth performance and blood characteristics
of weanling pigs. J. Anim. Sci. 2016, 94, 4179–4187. [CrossRef]

28. Praveena, P.E.; Periasamy, S.; Kumar, A.A.; Singh, N. Cytokine profiles, apoptosis and pathology of
experimental Pasteurella multocida serotype A1 infection in mice. Res. Vet. Sci. 2010, 89, 332–339. [CrossRef]

29. McGuckin, M.A.; Linden, S.K.; Sutton, P.; Florin, T.H. Mucin dynamics and enteric pathogens. Nat. Rev.
Microbiol. 2011, 9, 265–278. [CrossRef]

30. Sovran, B.; Lu, P.; Loonen, L.M.; Hugenholtz, F.; Belzer, C.; Stolte, E.H.; Boekschoten, M.V.; van Baarlen, P.;
Smidt, H.; Kleerebezem, M.; et al. Identification of Commensal Species Positively Correlated with Early
Stress Responses to a Compromised Mucus Barrier. Inflamm. Bowel Dis. 2016, 22, 826–840. [CrossRef]

31. Montagne, L.; Piel, C.; Lalles, J.P. Effect of diet on mucin kinetics and composition: Nutrition and health
implications. Nutr. Rev. 2004, 62, 105–114. [CrossRef] [PubMed]

32. Baird, L.; Dinkova-Kostova, A.T. The cytoprotective role of the Keap1-Nrf2 pathway. Arch. Toxicol. 2011, 85,
241–272. [CrossRef] [PubMed]

33. Gloire, G.; Legrand-Poels, S.; Piette, J. NF-kappaB activation by reactive oxygen species: Fifteen years later.
Biochem. Pharmacol. 2006, 72, 1493–1505. [CrossRef] [PubMed]

34. Jones, R.M.; Luo, L.; Ardita, C.S.; Richardson, A.N.; Kwon, Y.M.; Mercante, J.W.; Alam, A.; Gates, C.L.;
Wu, H.; Swanson, P.A.; et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated
generation of reactive oxygen species. EMBO J. 2013, 32, 3017–3028. [CrossRef]

35. Wu, W.; Wang, S.; Liu, Q.; Wang, X.; Shan, T.; Wang, Y. Cathelicidin-WA attenuates LPS-induced inflammation
and redox imbalance through activation of AMPK signaling. Free Radic. Biol. Med. 2018, 129, 338–353.
[CrossRef]

36. Suzuki, T.; Motohashi, H.; Yamamoto, M. Toward clinical application of the Keap1-Nrf2 pathway. Trends
Pharmacol. Sci. 2013, 34, 340–346. [CrossRef]

37. Mezes, M.; Erdelyi, M. [Antioxidant effect of the fibre content of foods]. Orv. Hetil 2018, 159, 709–712.
38. Zhao, W.; Wang, Y.; Liu, S.; Huang, J.; Zhai, Z.; He, C.; Ding, J.; Wang, J.; Wang, H.; Fan, W.; et al. The

dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS
ONE 2015, 10, e0117441. [CrossRef]

39. Looft, T.; Allen, H.K.; Cantarel, B.L.; Levine, U.Y.; Bayles, D.O.; Alt, D.P.; Henrissat, B.; Stanton, T.B. Bacteria,
phages and pigs: The effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 2014,
8, 1566–1576. [CrossRef]

40. DiBaise, J.K.; Zhang, H.; Crowell, M.D.; Krajmalnik-Brown, R.; Decker, G.A.; Rittmann, B.E. Gut microbiota
and its possible relationship with obesity. Mayo Clin. Proc. 2008, 83, 460–469. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nri3399
http://www.ncbi.nlm.nih.gov/pubmed/23435331
http://dx.doi.org/10.1146/annurev-pathol-020712-164023
http://www.ncbi.nlm.nih.gov/pubmed/24050624
http://www.ncbi.nlm.nih.gov/pubmed/19956864
http://dx.doi.org/10.1111/codi.12195
http://www.ncbi.nlm.nih.gov/pubmed/23692051
http://dx.doi.org/10.1111/1756-185X.13157
http://www.ncbi.nlm.nih.gov/pubmed/28952205
http://dx.doi.org/10.1016/j.suronc.2013.12.001
http://dx.doi.org/10.2527/jas.2016-0565
http://dx.doi.org/10.1016/j.rvsc.2010.04.012
http://dx.doi.org/10.1038/nrmicro2538
http://dx.doi.org/10.1097/MIB.0000000000000688
http://dx.doi.org/10.1111/j.1753-4887.2004.tb00031.x
http://www.ncbi.nlm.nih.gov/pubmed/15098857
http://dx.doi.org/10.1007/s00204-011-0674-5
http://www.ncbi.nlm.nih.gov/pubmed/21365312
http://dx.doi.org/10.1016/j.bcp.2006.04.011
http://www.ncbi.nlm.nih.gov/pubmed/16723122
http://dx.doi.org/10.1038/emboj.2013.224
http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.045
http://dx.doi.org/10.1016/j.tips.2013.04.005
http://dx.doi.org/10.1371/journal.pone.0117441
http://dx.doi.org/10.1038/ismej.2014.12
http://dx.doi.org/10.4065/83.4.460
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Animals and Design 
	Diets and Feeding Management 
	Sample Collection 
	Blood Sample Analysis 
	Assays of Secretory Immunoglobulin A (SIgA), IgM, and Cytokines Concentration 
	RNA Extraction and Gene Expression Analysis 
	Statistical Analysis 

	Results 
	Blood Cell Counts 
	Serum Biochemistry Parameters 
	Intestinal Immune Barrier 
	Intestinal Chemical Barrier 
	Oxidative Stress Index 

	Discussion 
	Conclusions 
	References

