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ABSTRACT

Motivation: To further our understanding of the mechanisms
underlying biochemical pathways mathematical modelling is used.
Since many parameter values are unknown they need to be
estimated using experimental observations. The complexity of
models necessary to describe biological pathways in combination
with the limited amount of quantitative data results in large parameter
uncertainty which propagates into model predictions. Therefore
prediction uncertainty analysis is an important topic that needs to
be addressed in Systems Biology modelling.
Results: We propose a strategy for model prediction uncertainty
analysis by integrating profile likelihood analysis with Bayesian
estimation. Our method is illustrated with an application to a model of
the JAK-STAT signalling pathway. The analysis identified predictions
on unobserved variables that could be made with a high level of
confidence, despite that some parameters were non-identifiable.
Availability and implementation: Source code is available at:
http://bmi.bmt.tue.nl/sysbio/software/pua.html.
Contact: j.vanlier@tue.nl
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Mathematical modelling is used to integrate hypotheses about a
biochemical network in such a manner that such networks can be
simulated. In addition to the formulation and testing of biochemical
properties, computational models are used to predict unmeasured
behaviour. Despite great advances in measurement techniques, the
amount of data is still relatively scarce and therefore parameter
uncertainty is an important research topic.

We focus on biochemical networks modelled using ordinary
differential equations (ODEs). Such models consist of equations
which contain parameters �p, inputs �u(t) and state variables �x(t). In
many cases, these systems are only partially observed, which means
that measurements �y(t) are performed on a subset or a combination
of the total number of states N in the model. This results in a mapping
from an internal state to an output. Additionally, these measurements
are hampered by noise �ξ. Moreover, many techniques used in biology
(e.g. western blotting) necessitate the use of scaling and offset
parameters �q (Kreutz et al., 2007). For ease of notation, we define �θ
as �θ={θ1,θ2,...,θn}={�p,�q,�x0}, which lists all the parameters that
should be defined in order to simulate the model.
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�̇x(t) = f (�x(t),�u(t),�p)

�y(t) = g(�x(t),�q)+�ξ(t) (1)

�x(0) = �x0

Considering M time series of length Ni with additive independent
Gaussian noise, we can obtain (2) for the probability density function
of the output data.

P(y|�θt)=
M∏

i=1

Ni∏
j=1

P(yi(tj),�θt) (2)

=Ke
−

M∑
i=1

Ni∑
j=1

(
yi,j−yt

i (tj ,�θt )√
2σi,j

)2

(3)

In this equation yt represents the true system with true parameters
�θt , whereas σi,j indicates the SD of a specific datapoint and K serves
as a normalization constant. In maximum likelihood estimation
(MLE), the goal is to find model parameters for which the probability
density function most likely produced the data. In MLE one attempts
to maximize the likelihood function L(yD|�θ) whose formula is
identical to (2).

A second formalism commonly applied to inferential problems
is known as Bayesian inference. In contrast to MLE, Bayesian
inference does attach a notion of probability to the parameter values.
Applying Bayes’ theorem to the parameter estimation problem, we
obtain (4). Since the probability of the data does not depend on the
parameters, it merely acts as a normalizing constant. The posterior
probability distribution is given by normalizing the likelihood
multiplied with the prior to a unit area.

P(�θ|yD) = P(yD|�θ)P(�θ)

P(yD)

= P(yD|�θ)P(�θ)∫ ···∫ P(yD|�θ)P(�θ)dθ1 ···dθn
(4)

Whereas MLE tends to focus on estimating best fit parameters,
the Bayesian methodology attempts to elucidate posterior parameter
probability distributions. In this article, we provide a strategy for
uncertainty analysis consisting of multiple steps. By performing
these steps sequentially we show how to avoid problems associated
with the different techniques.
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2 METHODS
We propose a strategy for performing prediction uncertainty analysis of
biochemical networks. The four steps are discussed succinctly below. For
further information, the reader is referred to the Supplementary Materials.

Step 1. Obtaining parameters (MLE and MAP): MLE corresponds to finding
the maximum of L. The quantity to be minimized becomes:

χ2(�θ)=
M∑

i=1

Ni∑
j=1

(
yD

i,j −yi(tj,�θ)

σi,j

)2

(5)

This can be recognized as a weighted sum of squared differences between
model and data. Its Bayesian counterpart is the maximum a posteriori
(MAP) estimator, which minimizes the log of the likelihood multiplied by
the prior. Finding the optimum can be challenging due to the existence of
multiple locally optimal solutions. Our approach begins by using a Monte
Carlo multiple minimization (MCMM) approach, which basically entails
performing the minimization for a large number of widely dispersed initial
values. Such an initial run enables the modeller to probe the solution space
for the existence of multiple minima at low computational cost.

Step 2. Parameter bounds and identifiability: When model predictions
sufficiently describe the experimental data, confidence intervals (CIs) are
obtained using the profile likelihood (PL) method (Raue et al., 2009). Given
that two models [M(�θPL) and M(�θopt)] are nested (which means that one
model can be transformed in the other by imposing linear constraints on
the parameters), their likelihood ratio (LR) is approximately distributed
according to a χ2

p distribution. This distribution has p degrees of freedom,
which are defined as the difference in the number of parameters. Intervals
are computed for each parameter by forcing one parameter to change, while
finding the region for which

−2 log

(
L(�θPL)

L(�θopt)

)
≤χ2

1−α,1 (6)

continues to hold. While performing this traversal, the other parameters
are continually re-optimized, hereby tracing a path through parameter space.
In this equation α denotes a desired significance level. One starts with the best
fit parameters and then changes one parameter (denoted with i) incrementally
while optimizing for all the others. The weighted residual sum of squares
(WRSSs) along the path can be written as:

χ2
PL,i(�θPL)=minθj �=i

[
χ2(�θ)

]
(7)

Confidence bounds for each parameter are then obtained as the parameter
values where (6) becomes an equality for the first time. Since one parameter
is fixed at a new value, this χ2 distribution has one degree of freedom. The
fact that each parameter is treated independently (performing only a 1D
traversal for each parameter) makes this method efficient to compute.

In some cases, model parameters can be functionally related. These
relations are referred to as structural non-identifiabilities and manifest
themselves through a constant χ2

PL,i for the involved parameters.
Consequently no parameter confidence bound can be computed for such
a parameter since a perturbation of one parameter can be negated by varying
another. In other cases parameter bounds cannot be reliably inferred due
to the measurement noise or a limited amount of information in the data.
These parameters shall be referred to as practically non-identifiable. After
performing the analysis, it is important to verify that the CI covers all the
acceptable solutions obtained from the MCMM from Step 1. If this is not
the case then this means that another local optimum apparently exists and
the analysis should be repeated starting from this optimum. The profiles can
then be merged afterwards.

Step 3. Assessing prediction uncertainty: The Bayesian approach is
somewhat different in the sense that the aim is to use the measurement data
to infer a posterior distribution (8) rather than a single parameter set with
CIs.

P(�θ|yD)∝P(yD|�θ)P(�θ) (8)

P(yD|�θ) represents the conditional probability of the data given a
parameter set. In our case, this is replaced by the likelihood function (which
is proportional to this probability). P(�θ) refers to the prior distribution of
the parameters. Such a prior usually represents either the current state of
knowledge or attempts to be non-informative or ‘objective’. Note that most
priors are not re-parameterization invariant which demonstrates that uniform
priors do not reflect complete objectivity (Jeffreys, 1946; Zwickl and Holder,
2004) in the Bayesian setting.

The next issue to address is how to actually sample from this posterior
distribution. One class of methods that is often applied are Markov Chain
Monte Carlo (MCMC) samplers. MCMC can generate samples from
probability distributions whose probability densities are known up to a
normalizing factor (Geyer, 1992). The Metropolis-Hastings algorithm is
generally considered as the workhorse of MCMC methods. This algorithm
performs a random walk through parameter space, where each step is
based on a proposal distribution and an acceptance criterion based on
the proposal and probability densities at the sampled points. Rather than
sampling purely at random (where most of the samples would be from
regions of low likelihood), such a chain samples proportionally to the
likelihood multiplied by a prior. The histogram of such a parameter walk with
respect to a specific parameter corresponds to the marginalized (integrated
over all other variables) posterior parameter distribution for that specific
parameter. The algorithm proceeds by iteratively performing a number
of steps:

(1) Generate a sample �θn+1 by sampling from a proposal distribution
based on the current state �θn

(2) Compute the likelihood of the data L(yD|�θn+1) and calculate
P(�θn+1|yD)=L(yD|�θn+1)P(�θn+1), where P(�θn+1) refers to the prior
density function.

(3) Draw a random number γ from a uniform distribution between 0 and

1 and accept the new step if γ<min
(

P(�θn+1|yD)Q(�θn+1→�θn)
P(�θn |yD)Q(�θn→�θn+1)

,1
)

.

The ratio of Q is known as the Hastings correction which ensures detailed
balance, a sufficient condition for the Markov Chain to converge to the
equilibrium distribution. It corrects for the fact that the proposal density
going from parameter set �θn to �θn+1 and �θn+1 to �θn is unequal when the
proposal distribution depends on the current parameter set and is given by
the inverse of this ratio.

The apparent simplicity of the algorithm makes it conceptually attractive.
Note, however, that naive approaches can lead to MCMC samplers that
converge slowly and/or stay in the local neighbourhood of a local mode
(Calderhead and Girolami, 2009).

Proposals: Each iteration requires a new proposal, which is taken from a
proposal distribution. In order to effectively generate samples the proposal
distribution adapts to the local geometry of the cost function. This becomes
particularly important in the non-identifiable case as the parameters will be
strongly correlated (Rannala, 2002). In such cases, large steps along the
parameter correlations help accelerate convergence. To this end, we employ
an adaptive Gaussian proposal distribution whose covariance matrix is based
on a quadratic approximation to the cost function at the current parameter set
(Gutenkunst et al., 2007). This matrix is computed by taking the inverse of an
approximation to the Hessian matrix of the model under consideration. This
proposal distribution is subsequently scaled by a problem specific proposal
scaling factor that is tuned using short exploratory runs of the sampler.
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In practical cases, some directions in parameter space can be so poorly
constrained that this leads to a (near) singular Hessian. As a result, the
proposal distribution will become extremely elongated in these directions,
leading to propositions with extremely large or small parameter values and
acceptance ratios decline. One approach to avoid such numerical difficulties
is to set singular values below a certain threshold to a specific minimal
threshold (prior to inversion) or to make use of a trust region approach.
Additionally, we include second derivatives of the non-uniform priors (when
available) in the Hessian approximation. For implementational details, the
reader is referred to the supplement.

Parameter representation and non-identifiability: The posterior
distribution is required to be ‘proper’ (finitely integrable) otherwise
the sampler will not converge and inference is not possible (Gelfand and
Sahu, 1999). Without a proper prior that is finitely integrable to constrain
the posterior distribution, improper likelihoods can lead to improper
posteriors. It is clear that this becomes an issue when it comes to parameter
non-identifiability where the data contains insufficient information about a
specific parameter in order to result in a proper likelihood for that parameter.
In such a case, empirical priors can ensure that parameters which are
non-identifiable from the data do not drift off to extreme values (Gelfand
and Sahu, 1999) hampering ODE integration and resulting in numerical
instabilities. Note, however, that although such a prior makes the following
analysis feasible, it artificially reduces the parameter uncertainty.

In order to deal with the large difference in scales, parameters can be
considered in log-space. Note, however, that most prior distributions are not
invariant to re-parameterization. The transformation between parameters can
be described by the matrix of partial derivatives with respect to the equations
which transform the parameters from one parameterization to another (the
Jacobian of the transformation). In order to calculate the prior density that is
equivalent under a different parameterization, one needs to multiply the prior
probability density by the absolute value of the determinant of the Jacobian of
the transformation. For further information see the Supplementary Material.

Convergence: Burn in refers to the time it takes the chain to get to
a region of high probability and samples taken during this period are
generally discarded in order to avoid assigning too much weight to highly
improbable samples. One approach to avoid a long burn-in period is by
using a deterministic minimizer to obtain a best fit parameter set (Gutenkunst
et al., 2007) which is likely to be a reasonable sample within the posterior
probability distribution. Determining whether a sufficient number of samples
has been acquired is hard to assess, and in practical situations only non-
convergence can be diagnosed (Cowles and Carlin, 1996). In order to try
and detect possible non-convergence, we divided one long chain into several
batches and looked for systematic differences.

Step 4. Analysis of the posterior parameter and predictive distribution:
Having determined the posterior distribution of model predictions, there is
now a direct link between different predictions and parameters, which can
be exploited by determining how predictions relate to each other and to the
model parameters. The uncertainty in the predictions y can be obtained by
integrating the output over the posterior distribution of parameter values.
Note that y can be any prediction obtained using the model. In other words,
marginalizing the predictions over the converged MCMC chain provides us
the prediction uncertainty as shown in Equation (9). Note that y can be any
prediction that can be made with the model.

P(y|yD)=
∫ ∞

−∞
P(y|�θ)P(�θ|yD)d�θ (9)

The posterior predictive distribution of simulations can be visualized
by discretizing the state space and computing histograms per time point.
Alternatively, we can compute credible intervals by selecting a desired
probability and determining bounds that enclose this fraction of the posterior

area. These bounds are chosen in such a way that the posterior density
between the bounds is maximal. The posterior predictive distribution forms
a link between the various predictions of interest, while being constrained by
the available data and prior knowledge. By examining correlations between
different states of interest it is possible to determine which states would
be interesting to measure considering interest in a specific unmeasurable
prediction. Similarly, such correlations can be explored between states and
parameters, in order to determine which measurement could be used to avoid
the necessity of having to use a prior.

In summary, the entire strategy consists of the following steps:

(1) Detection of (multiple) acceptable parameter modes using an
exploratory large scale search.

(2) Detection of structural and practical non-identifiabilities using the PL.

(3) Perform a Bayesian analysis considering detected non-identifiabilities
from the PL method.

(4) Perform an analysis of the posterior parameter and prediction space.

3 IMPLEMENTATION
All algorithms were implemented in Matlab (Natrick, MA).
Numerical integration was performed using compiled MEX files
using numerical integrators from the SUNDIALS CVode package
(Lawrence Livermore National Laboratory, Livermore, CA).

To perform the initial large scale search, we performed random
sampling using a uniform hypercube to obtain initial parameter
values. These were subsequently optimized using the Levenberg–
Marquardt minimizer from the MATLAB optimization toolbox. The
best fit was subsequently selected and used for determining the PL.
In order to attain an adequate acceptance rate and good mixing, the
proposal scaling for the MCMC was determined during an initial
tuning stage. This tuning was performed by running many short
chains (100 iterations each), targeting an acceptance rate between 0.2
and 0.4 (Gilks et al., 1996). Furthermore, the MCMC was performed
in log-space.

4 RESULTS
We illustrate our approach using a model of the JAK-STAT signaling
pathway (Raue et al., 2009; Toni et al., 2009). The model is
based on a number of hypothesized steps (see the Supplementary
Material for model equations). First erythropoietin (EpoR) activates
the EpoR receptor which phosphorylates cytoplasmic STAT
(x1). This phosphorylated STAT (x2) dimerizes (x3) and is
subsequently imported into the nucleus (x4). Here dissociation and
dephosphorylation occurs, which is associated with a delay. Similar
to the implementation given in the original article, the driving input
function was approximated by a spline interpolant, while the delay
was approximated using a linear chain approximation.

We used data from the article by Swameye et al. (dataset 1) for
parameterization and inference (Swameye et al., 2003). Observables
were the total concentration of STAT and the total concentration of
phosphorylated STAT in the cytoplasm, both reported in arbitrary
units thereby requiring two additional scaling parameters s1 and s2.
The initial cytoplasmic concentration of STAT is unknown while all
other forms of STAT are assumed zero at the start of the simulation.
The vector of unknown parameter values consists of the elements
�θ=

(
p1,p2,p3,p4,s1,s2,x0

1

)
.

In order to investigate the existence of multiple modes, we first
performed a large scale search using MCMM with initial parameters
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Fig. 1. Left: histogram of final parameter values for parameter p4 post optimization (bars), and their associated WRSSs (dots). Note that all of the optimized
parameter sets shown are acceptable with respect to the LR ratio. Right: model predictions from parameter sets taken from location A, B and C for two
measured outputs as well as one unmeasured internal state.

Fig. 2. PLs of the JAK-STAT model. Top: without prior on the initial
condition, Bottom: with prior on the initial condition.

based on a log uniform random sampling between the ranges 10−3

and 102 (N=10 000). After optimization, samples are either accepted
or rejected based on the LR bound based on the best fit value. The
resulting distribution and associated WRSS are shown in Figure 1.
It is clear that there are at least three local minima in the likelihood.
Although all three modes describe the data adequately, they show
different prediction results for the unobserved internal states of the
model.

Subsequently, a PL analysis was performed. In order to increase
confidence that no acceptable regions of parameter space were
missed, we started PLs from each mode detected using the MCMM
method (Step 1). Subsequently we merged these profiles and verified
whether they covered the full span of acceptable parameter sets
obtained in Step 1. Based on the PL, shown in the top panel of
Figure 2, it can be concluded that the model based on first principles
is structurally non-identifiable (Raue et al., 2009). From scatter plots
of the PLs (shown in the supplement), it was determined that the
parameters x0

1, s1 and s2 were structurally related and therefore
unidentifiable. Analogously to (Raue et al., 2009) we specify a
Gaussian prior (μ=200nM,σ =20nM) for the initial condition
(which is comparable to assuming that the initial concentration was
measured with this accuracy). In order to check whether the prior
affects the profiles in the desired manner one can compute new
profiles using MAP estimation (by incorporating the prior in the
procedure). In our case, the Gaussian prior constrains both the initial
condition as well as both scaling factors (see Fig. 2). We can also
observe that parameter p2 is practically non-identifiable at α=0.05.

In the case of JAK-STAT, at least three priors are required to
render the model ‘identifiable’ for all levels of significance. As the
name suggests, priors based on prior belief are preferred. However,
in many cases, little is known beforehand regarding the parameters
of a system. For the initial condition we specify a Gaussian prior
(μ=200nM,σ =20nM), while we apply a log uniform prior with

Fig. 3. Histograms of the posterior distribution. Shown on the diagonal are
the marginal (integrated) distributions of the parameters, where different
colours indicate different batches of samples. Off the diagonal are the joint
probability distributions between two parameters. The correlated nature of
several parameters can clearly be observed. Lines indicate PL trajectories
where blue and red corresponds to a good and bad fit, respectively. Note that
the PL includes the prior on the scaling.

support from 10−8 to 102 and 10−8 to 101.5 for parameters p2
and p3. The other parameters are given unbounded log uniform prior
distributions.

As shown in Figure 3, the parameter bounds based on PL
agree well with those based on the MCMC sampling for the
identifiable parameters. What can also be observed, however, is
that parameter sets that would be considered likely based only
on data can still be improbable when the prior probabilities are
also taken into account. This can be observed for parameter p3
where the PL path reveals two modes that are almost equally
likely, yet show large difference in terms of probability density.
The posterior parameter distribution does contain a few samples
in this region, but relatively little mass. It is an example of the
difference between integration and maximization and indicates that
this region corresponds to a sharp ridge in the likelihood. This
observation was verified using a second MCMC method (Girolami
and Calderhead, 2011) (see Supplementary Material). As shown in
Figure 4, the current approach makes it possible to infer a posterior
predictive distribution. Regarding the MCMC results, the assumed
prior distributions could be a point of debate. Correlation analysis on
the predictions revealed that state two had a strong dependence on
the prior distribution of parameter p2. This indicates that predictions
regarding state two should be made with care.
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Fig. 4. Posterior predictive distribution of model predictions (colours)
with 95% credible intervals (black lines). Top: unmeasured internal model
predictions. Bottom: measured model output, data ±SD and residual
distributions.

Once a sample from the posterior distribution is obtained, the
results can be used for a wide array of model analysis techniques.
Using a sample of parameter sets that reflects the uncertainty in
the parameter estimates avoids conclusions that are not supported
by the given data and prior knowledge. Relations within the
posterior distribution and also its relation to the posterior predictive
distribution can be probed in order to determine how different
predictions in the model relate to each other. One example for this
specific case is shown in the Supplementary Materials, where we
can observe a transient correlation between states 3 and 4.

5 DISCUSSION
In this article, we proposed a new strategy for prediction uncertainty
analysis. By performing PL analysis, we were able to specify
sufficient priors to ensure that the posterior distribution was
proper and could be sampled from. Using MCMC a sample
of parameter sets proportional to the probability density of that
parameter set was obtained. The strategy enables a comprehensive
analysis on the effect of parameter uncertainty on model predictions
and enables the modeller to relate these effects to the model
parameters.

Given a sufficient amount of data, such an analysis should be
relatively insensitive to the assumed priors. As observed in the
case of JAK-STAT, however, it can be seen that even for a small
model, identifiability can be problematic. It is important to realize
that in such cases the choice of priors will affect the outcome of
the analysis. Furthermore, most priors are not re-parameterization
invariant and therefore uniform priors do not reflect complete
ignorance. Although seemingly uninformative, a uniform prior in
untransformed parameter space implies that extremely large rates
have an equal a-priori probability of occurring than slow rates.
In our case, for the completely unknown kinetic parameters we
assumed a uniform prior in logarithmic space. For positively defined
parameters, a uniform distribution in logarithmic space corresponds
to an uninformative prior (Box and Tiao, 1973). Such a prior
gives equal probability to different orders of magnitude (scales). An
approximate scale invariance of kinetic parameters has indeed been
observed in biological models (Grandison and Morris, 2008). Note
that in a Bayesian analysis there is no such thing as not specifying
a prior.

Our strategy can be used to gain insight into prediction
uncertainty. Note, however, that aside from the computational model
and the prior distributions, the noise model also affects the resulting
posterior distribution. It should be stressed that investigating what
kind of noise model to use when (and subsequently determining the
appropriate likelihood function for this noise model) is important.
Practical solutions to non-additive noise can usually be found. One
example would be a multiplicative noise model (which is often
associated with non-negative data), where data preprocessing such
as taking the logarithm of both the model and data can help alleviate
problems (Kreutz et al., 2007). If the likelihood function truly
becomes intractable, then one can resort to approximate Bayesian
methods, where rather than computing the likelihood function, one
computes a distance metric between simulations (with simulated
noise) and data (Toni et al., 2009).

When the goal of prediction uncertainty analysis is model
falsification then one could opt for an approach based on interval
analysis (Hasenauer et al., 2010a, b). In these works, uncertainty
analysis is reformulated into a feasibility problem. Using this
approach, regions of parameter space that cannot describe the data
can systematically be determined. An attractive aspect of these
methods is that these methods provide guarantees on finite parameter
searches, but have up to this point only been performed on small
scale models.

Different approaches for prediction uncertainty analysis based on
optimization are proposed in (Brännmark et al., 2010; Cedersund
and Roll, 2009; Nyman et al., 2011). Such methods are useful
for probing consistent behaviour (termed core predictions) among
multiple parameter sets, even in the non-identifiable case. However,
they do not result in a probabilistic assessment of the prediction
uncertainty. Probing consistent behaviour is also the main focus of a
workflow proposed by (Gomez-Cabrero et al., 2011) for classifying
consistent model behaviours and hypotheses.

Several steps in the proposed approach are computationally
challenging and require many model evaluations. Because of this,
model simulation time is a primary concern. Many packages
(including ours) have been able to attain significant simulation
speed-ups by compiling simulation code, reducing model evaluation
time by up to two orders of magnitude [Potters Wheel (Maiwald and
Timmer, 2008); COPASI (Hoops et al., 2006); Sloppy Cell (Brown
and Sethna, 2003)]. Additionally, new computational platforms such
as general purpose programming on the graphical processing unit
are being explored (Liepe et al., 2010).

In conclusion, our strategy enables the modeller to account for
parameter uncertainty when making model predictions. In the case
of a fully identifiable model, we can work with uninformative
priors and overconfident conclusions that could result from a model
described by a single parameter set can be avoided. Regarding non-
identifiable models, a practical approach can be adopted where the
dependence with respect to the assumed prior distributions can be
determined a posteriori. Note that though this makes computing
the posterior distribution feasible, such an approach underestimates
the parameter uncertainty. Performing the analysis and obtaining a
sample from the posterior takes considerably more computational
effort than determining a single parameter set. However, once
such a sample is obtained, the results can be used for a wide
array of model analysis techniques which more than warrants
the additional computational time invested. Relations within this
posterior distribution and also its relation to the posterior predictive
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distribution can be extracted. This helps uncovering how different
predictions in the model relate to each other and therefore how the
system behaves.
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