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MicroRNAs (miRNAs, miRs) are short, endogenously initiated, non-coding RNAs that

bind to target mRNAs, leading to the degradation or translational suppression of

respective mRNAs. They have been reported as key players in physiological processes

like differentiation, cellular proliferation, development, and apoptosis. They have gained

importance as gene expression regulators in the immune system. They control antibody

production and release various inflammatory mediators. Abnormal expression and

functioning of miRNA in the immune system is linked to various diseases like inflammatory

disorders, allergic diseases, cancers etc. As compared to the average human genome,

miRNA targets the genes of immune system quite differently. miRNA appeared to

regulate the responses related to both acquired and innate immunity of the humans.

Several miRNAs importantly regulate the transcription and even, dysregulation of

inflammation-related mediators. Many miRNAs are either upregulated or downregulated

in various inflammatory and infectious diseases. Hence, modifying or targeting the

expression of miRNAs might serve as a novel strategy for the diagnosis, prevention,

and treatment of various inflammatory and infectious conditions.
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INTRODUCTION

Inflammation is a protective mechanism of the body against any infection or tissue damage. The
biological purpose of inflammation is to restore tissue homeostasis and to manage deregulation
occurring during any sort of injury (1). According to Cornelius Celsus, inflammation can be
characterized by pain (dolor), heat (calor), redness (rubor) and swelling (tumor). Physiologically,
white blood cells (WBCs) and plasma components infiltrate from dilated vessels and migrate to
injured tissues (2, 3). These inflammatory cells, not only act as a defense to the host body against
the invasion of pathogens via phagocytosis but also, maintains tissue homeostasis once the danger
signal has been abolished (4). However, chronic inflammation leads to a plethora of diseases
including autoimmune and metabolic disorders (5). Persistent inflammation is not only related
to typical inflammatory diseases but is also an essential feature in the pathogenesis of diseases like
atherosclerosis, cardiovascular disease, Alzheimer’s disease, and cancer (6, 7).

Our body has a rich variety of flora and fauna, which helps in digestion, pH maintenance
and development of the immune system (8). However, exogenous pathogenic microorganisms like
bacteria, viruses, fungi, and parasites can cause disorders termed as infectious diseases (9). These
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exogenic pathogens either disrupt the normal physiological
processes or modulate the responses of the immune system
resulting in high fever and inflammation. These pathogens
mainly enter into the human body via a vector or through
contact with body fluids. Successful entry of pathogens to the host
body leads to invasion of host immune response by pathogen
and its replication and dissemination to the host cell and
tissues. A large number of bacterial, viral and fungal species
have been reported to be pathogenic, which overcome host
immune defenses, invade the tissues and cause various infectious
diseases (10, 11). Molecular pathways that regulate the extent
of inflammatory and infectious responses have been discovered.
miRNAs play important role in these pathways (12). miRNAs are
generally small (20–22 nt) non-coding parts of RNA accounting
for about 1–2% of mammalian genes. They act by binding to the
targeted mRNAs, which either gets degraded or translationally
inhibited. It was first reported in a nematode C. elegans in 1993,
where it was seen that miRNA lin-4 regulates the expression
of gene lin-14. Researchers have reported that the expression
of multiple genes can be regulated by a single miRNA (13–15).
miRNAs are important in the survival and functioning of various
immune cell types and have been reported to play an important
role in mediating responses to infections. This property of
miRNAs make them potential candidates for the management of
immunity as well as controlling infectious diseases (16).

Pathogens encoded miRNA is utilized for the survival
and multiplication of pathogens in the host body. These
microorganisms either interfere with various physiological
processes for their survival during infection or alter the host
machinery for their own benefit by changing the pattern of
miRNA expression (17). Several reports are present in literature
that showed the influence of miRNA in various infections.
Kincaid and collaborators discovered miRNAs from a bovine
leukemia virus (BLV) possessing RNA as genetic material (17).
The viral encoded miRNAs promote viral replication and control
latency. These viruses use host cell machinery to make their
ownmiRNA. ThesemiRNAs downregulate the factors promoting
the inflammatory response of the host (18–20). The herpes
simplex virus type 1 (HSV-1) gene encodes miRNA-H2-3p,
which promotes the replication of HSV-1 and reactivation
from latency. Similarly, the response of CD8+ T-cells has
been inhibited by Cytomegalovirus (CMV) via expression
of miRNA-US4-1 targeting endoplasmic aminopeptidase-1 (a
protein responsible for trimming peptides for presentation by
major histocompatibility complex (MHC) class I molecules)
(20). miRNA-K5 and miRNA-K9 associated with Kaposi’s
sarcoma target myeloid differentiation primary response gene-
88 (MyD88) and Interleukin 1 receptor-associated kinase 1
(IRAK1), which further reduces the expression of inflammatory
cytokine and clearance by the immune system (21). Cai and
their team explored the Japanese encephalitis virus (JEV)-
infected PK15 cell line and found upregulated and downregulated
miRs specific for the infection. Sharma and colleagues studied
JEV infected human microglial cell line CHME3 and found
that miRNA-146a targets the cytokine signaling system via
transcriptional downregulation of IRAK1 and TNF Receptor
Associated Factor 6 (TRAF6). Additionally, miRNAs of the

immune system are reported to have important roles in
signaling, differentiation, or pathogenic defense (17). In this
review, we have summarized the role of host- and pathogen-
derived miRNAs in immune regulation during infectious and
inflammatory diseases.

BIOSYNTHESIS OF miRNA

MicroRNA is synthesized by enzymes called RNA polymerase
II and III. Primary miRNA (pri-miRNA), formed after
transcription, is processed to form precursor miRNA (pre-
miRNA) in the presence of microprocessor multi-protein
complex, and the co-factor DiGeorge syndrome Critical Region 8
(DGCR8/Pasha) (22). This complex is exported to the cytoplasm
from the nucleus by exportin 5 (XPO5). XPO5 is a 22 nucleotide
duplex, designed by RNAse type III enzyme- Dicer. Dicer
along with Trans-Activation responsive RNA-binding protein
2 (TARBP2) and Argonaute (AGO) family proteins form a
complex, which further triggers the association of RNA-induced
silencing complex (RISC). One strand of miRNA is degraded
and the other strand ushers the RISC to the target mRNA
through base pairing. Although both strands are functional,
only one strand is used. The identification of the target site by
miRNA depends upon the seed sequence (conserved heptameric
sequence) of the miRNA (23).

ROLE OF miRNAs IN IMMUNE
REGULATION

Massive reports have been published which states the role
of miRNA in regulating immunological responses including
development, maturation, activation, functioning, and aging of
various immune cells (Figure 1). It has been observed that several
miRNAs exhibit highly specific expression patterns of organs
associated with the immune system. Even the differentiation
of hematopoietic progenitor cells into either the lymphoid or
myeloid lineage is modulated by the expression profile of various
miRNAs. This clearly suggests a significant role of miRNAs in
immune cell development and functioning (24). Both innate and
adaptive immune responses are influenced by miRNAs, leading
to their impact on the outcome of a variety of diseases. Therefore,
it is necessary to understand how miRNAs regulate different
physiological processes of the immune system in the normal and
diseased state (25).

miRNAs as Regulators of Innate Immune
Response
Innate immune response acts as a primary line of defense
against foreign pathogens and is considered as the spark
plug of various inflammatory responses. These responses are
originated by pattern recognition receptors (PRRs) that respond
to pathogen-associated molecular patterns (PAMPs) (26). PRRs
are classified into five classes: C-type lectin receptors (CLRs),
Nod-like receptors (NLRs), RIG-like receptors (RLRs), AIM2-
like receptors (ALR) and Toll-like receptors (TLRs). They play
an important role in regulating the innate immune response.
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FIGURE 1 | The role of miRNAs in immune regulation. They are expressed in immune cells and play a role in the regulation of innate and adaptive immune responses.

They create regulatory networks in innate immunity, regulate functions of immune cells such as monocytes, dendritic cells (DCs), macrophages, neutrophils, natural

killer (NK) cells, megakaryocytes, and granulocytes. In adaptive immunity, they also regulate immune signaling pathways involved in the T- and B-cell development,

differentiation, central and peripheral tolerance, as well as their function.

Particularly, TLRs usually mediate the identification of a variety
of pathogens (27). TLR3 recognizes double-stranded RNA
present in viruses whereas TLR4 is for identifying bacterial
products, especially ligand lipopolysaccharide (LPS). Recognition
of pathogens by TLRs triggers various intercellular signaling.
This cascade is further divided into two pathways: MyD88 and
Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF)
dependent pathway.MyD88 is used by TLR2, TLR5, TLR7, TLR8,
and TLR9; TRIF is used by TLR3 wheres TLR4 utilizes both
these pathways for the activation of pro-inflammatory cytokines
and interferon (IFN) stimulated gene (28). Both these pathways
have been reported to trigger Nuclear Factor Kappa B (NF-κB)
signaling, a crucial regulator of the innate immune response.
NF- κB is targeted by a number of miRNAs and these are
found to modulate an innate immune response. Stimulation
of these pathways also activates other cascades like mitogen-
activated protein kinase (MAPK) and interferon regulatory factor
3 (IRF3) (29). Recent literature evidences the regulation of acute
inflammatory response by several miRNAs, namely miRNA-
155, miRNA-146, and miRNA-223 subsequent to recognition
pathogen (30).

Regulation of miRNA of Macrophage and Monocytes
Macrophages and monocytes are implicated in the regulation
of inflammatory and infectious diseases. These cells, when
exposed to any inflammatory/infectious stimuli, initiate the
production of cytokines. Additionally, microbial phagocytosis
is observed during innate responses by these cells (31, 32). It
has been highlighted that miRNA can affect and modify all
stages of the macrophage life cycle (starting from production
to differentiation) (32). An experiment by O’Connell and
colleagues in 2007 identified the changes induced in miRNA-
155 of primary murine macrophages when they were exposed
to polyriboinosinic: polyribocytidylic acid [poly (I: C)] or
cytokines IFN-β. They have demonstrated that miRNA-155
can be activated/regulated by TLR ligands. In this experiment,
macrophages were stimulated with LPS, which signals through
TLR4/TLR9/ hypomethylated DNA or Pam3CSK4, a synthetic
activator of TLR2 (33). Tili and collaborators in 2007 observed
miRNA-155 targets the transcript coding proteins of TNF-
α gene, which led to TNF-α stimulation. miRNA-155 acted
by targeting SH-2 containing inositol 5′ polyphosphatase
1 (SHIP1) directly, leading to increase activation of Akt
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kinase thus, driving the inflammatory response. This provides
evidence for both positive and negative post-transcriptional
activity of miRNA-155 via regulation of target proteins
such as Fas-associated death domain (FADD), IκB kinase
ε (IKKε) and receptor-interacting serine-threonine kinase
1(Ripk1) (33).

Another miRNA, miRNA-146 worked by regulating the NF-
κB pathway, directing the expression of IRAK1 and TRAF6
in macrophages. IRAK1 and TRAF6 are adaptor molecules of
the MyD88-dependent signaling pathway. Stimulation of TLR
stimulated activator protein 1 (AP-1) and NF-κB transcription
factors mediated various immune responses (34). Type-I IFN
production initiated by vesicular stomatitis virus was also
negatively inhibited by the expression of miRNA-146a through
the RIG-1 pathway. The possible targets reported are IRAK1,
IRAK2, and TRAF6 in macrophages. Hence, during innate
responses, miRNA−146a negatively regulate TLR and cytokine
signaling. Similarly, miRNA-9 induction by TLR and cytokines
activation in monocytes controlled NF-kB dependent responses.
miRNA-125 has been found to repress mRNA transcripts of
TNF- α and is downregulated by the action of LPS (29,
34). In macrophages, the excessive inflammatory response is
inhibited by miR-147 via activation of TLR2, TLR3, and TLR4
in both MyD88 and TRIF dependent manner (34). During RNA
virus infection, miR-21 has been reported to inhibit MyD88
and IRAK1 expression, which further, upregulated JNK/c-Jun
signaling pathway, ERK/c-Fos pathway and interferon signaling
pathway (35). During the process of monocyte-macrophage
differentiation, decreased expression of miRNA-223 has been
observed. This decreased expression increased the expression
of IKKα, a serine-threonine kinase, in human monocytes and
macrophages. Higher expression of IKKα along with stabilization
of the kinase NIK elevated p52, which resulted in the repression
of NF-κB target genes (36). Another miR, miR-92a, is found to
target MAKK4, inhibiting the inflammatory response triggered
by TRL4 in macrophages (37).

miRNA Regulation of Granulocytes
MiRNAs play an essential role in the proliferation and
functioning of granulocytes. In particular, miRNA-223 and
miRNA-155 have been brought into the highlight. Both negative
and positive regulation of miRNA-223 have been observed by
the researchers. Fazi and colloborators in 2005 displayed that
granulocyte differentiation is positively regulated bymiRNA-223.
The activity of miRNA-223 expression is mediated by nuclear
factor-IA (NF-IA) and the CCAAT enhancer proteins (C/EBPa).
NF-IA is necessary to maintain low levels of miR-223 but while
differentiation, it is substituted by C/EBPa leading to increased
expression of miRNA-223 (38). Knockout of miR-223 show
its negative role in regulating differentiation and activation of
granulocyte by directly targeting Mef2c, (a transcription factor
necessary for myeloid progenitor proliferation). miRNA-223 has
also been found to control cell functions in human neutrophils
induced by LPS via regulation of MYD88/NF-κB. Another miR,
miRNA-155 has been found to act on SHIP1 in granulocyte or
macrophage expansion during inflammation (39).

miRNA Regulation of Dendritic Cells
Dendritic cells (DCs) are antigen-presenting cells originated
from hematopoietic progenitor cells and circulating monocytes.
They promote an immune response to exogenous bodies and
maintains self-tolerance. These cells serve as a bridge between
innate and adaptive immune systems of our body (40). Providing
co-stimulation and cytokines necessary for T-cell activation is
also a function of DCs. They express a variety of pathogen
recognition receptors like TLRs to initiate their maturation
and migration to the lymph nodes. In cells of the innate and
adaptive immune system, the expression of more than 100
miRNAs have been reported. miR-21 and miRNA-34 inhibitors
stalled monocyte-derived dendritic cells (MDDC) differentiation
in monocytes, an effect that was boosted upon inhibition of
both miRNAs. These miRs regulated the expression of the Wnt
Family Member 1 (WNT1) and Jagged Canonical Notch Ligand
1 (JAG1) gene. Importantly, during MDDC differentiation, the
expression of mRNAs of WNT1 and JAG1 was found to be
increased (41). Naturally, DCs express low levels of miR-146a but
during the differentiation of DCs, the expression ofmiR-146a was
upregulated using granulocyte/macrophage colony-stimulating
factor (GM-CSF) and IL-4. It modulate the production of pro-
inflammatory cytokines in mature DCs. This miRNA also targets
TRAF6 and IRAK-1 in these cells and therefore, increased
the apoptosis of DCs (42). miRNA-155 is important for the
functioning of dendritic cells. It increase the pathogen uptake
of DCs by downregulating DC-SIGN via repression of PU.1
expression. It also modulate IL-1 signaling by regulating levels of
TAB2, which decreases the production of cytokines in activated
human MDDCs (42). These reports shows that miRNAs play
important roles in modulating DC function in both types of
immune responses.

miRNA Regulation of Adaptive Immunity
Response
Adaptive immune responses are majorly characterized by
activation and clonal expansion of T- and B-cells. This
activation and expansion lead to cytotoxic effector response and
the production of antibodies in response to infections (43).
miRNA has been widely associated with modulating adaptive
immunity by regulating the development, activation, survival,
and proliferation of T- and B-cells (25).

miRNAs Regulation of T-Cell Differentiation and

Activation
T-cells are responsible for specific inflammatory responses. This
activity is mediated by the presence of specific antigens in
the context of MHC (44). The development of T-cells involves
the role of various signaling cascades, mediated by miRNAs.
The significance of miRNAs in controlling functions of T-
cells is revealed in miRNA-deficient mice. Additionally, few
expressed miRNAs were observed while profiling effector and
memory CD8+ cells. Increasing levels of CD8+ T-cells are
found to be linked with the downregulation of miRNAs in
effector CD8+ T-cells (45). Also, it has been observed that
miRNAs with shorter 3′UTRs are expressed more during the
activation of CD4+ T- cells. A large number of studies put
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forward the potential of miRNAs during the activation and
differentiation of T-cells. Disruption in the biogenesis of miRNA
can cause conditional removal of dicer in the early developmental
stage, resulting in a reduced T-cell count. Additionally, deviant
differentiation of T-helper cells and cytokine production, along
with decreased survival of αβ-expressing thymocytes are also
observed. Reduction in the number, poor proliferation, and
increased apoptosis are also observed in peripheral T-cells (46,
47). Certain dynamic changes are observed in the expression
pattern of miRNAs in the T-cell subsets. Differential expression
of various miRNAs, namely, miRNA-181 family, miRNA-
17-92 clusters, miRNA-214, miRNA-146a, miRNA-155, let-7,
miRNA-29, miRNA-125, and miRNA-216 has been observed
in the signaling cascade downstream of T-cell activation (48).
Upregulation of miRNA-181 affect multiple targets, including
SH2 domain-containing protein tyrosine phosphatase 2 (SHP2),
protein tyrosine phosphatase non-receptor type 22 (PTPN22),
dual-specificity protein phosphatase 5 (DUSPS5) and DUDPS6,
to heighten TCR signaling. This enhances the phosphorylation of
the activation site of the cytosolic TCR/CD3 complex. Expression
of miR-181 leads to the deletion of some T-cell clones, allowing
the maintenance of central tolerance (49). Similarly, miRNA-
155 has been observed to play an essential role in CD4+ T-cell
differentiation. The overexpression of this miRNA is associated
with the differentiation of these cells into Th1 cells and reduced
expression show a bias toward cell differentiation (50). Another
miR, miRNA-17-92 enhanced the production of IFN- γ and
suppressed the differentiation of regulatory T (Treg) cells while
promoting Th1differentiation (51). miRNA-326 targets ETS-
1 (negative regulator of Th17) promotes Th17 differentiation
and development its overexpression is linked to production of
IL-17 (52). miRNAs have also been confirmed to upregulate
miRNA-214 and miRNA-17-92 cluster, promoting the activation
and proliferation of T-cells by targeting phosphatase and tensin
homolog (PTEN) in the PI3K/Akt strain transforming (AKT)
pathway (48). Another miRNA, miRNA-146 modulates the
response of the immune system by targeting TRAF6 and IRAK1
of the NF- κB signaling in activated T-cells (52).

In addition, miRNAs play a critical role in regulating Treg
cells function. Treg cells are required for maintaining immune
cell homeostasis by limiting immune responses and preventing
autoimmunity. Deletion of dicer in forkhead box protein P3+
(Foxp3+), mainly due to deficiency of miRNAs, also induce fatal
auto-immune pathologies. Among various miRNAs, miRNA-
10a, miRNA-146a, and miRNA-155 have contributed to Treg
homeostasis and functions (53).

miRNA-10a restricts the transformation of Treg cells into T-
follicular helper cells by acting on transcriptional repressor Bcl-6,
hence contributing to the stability of the Treg cell phenotype.
Induction of Treg occurs by TGF-β and retinoic acid is during
inducible Treg cell differentiation from CD4+ T-cells. Retinoic
acid is stimulated by TGF-β, which upon stimulation regulates
miRNA-10 expression (54). miRNA-10a directly targets Bcl-6,
and nuclear receptor corepressor 2 (Ncor2), which co-represses
RARα, initiating positive feedback. Downregulation of Bcl-6 by
miRNA-10a, has also been reported this elicits higher levels of T-
cell specific T-box transcription factor (Tbet), which is a known

inhibitor of Th17 differentiation (55). miRNA-17-92 increases T-
cell survival during development by suppressing the expression
of pro-apoptotic proteins (including BIM and BCL2L11) and
PTEN (51).

miRNAs Regulation of B-Cell Development,

Differentiation, and Activation
B-cells begin to develop in primary lymphoid tissue and mature
in secondary lymphoid tissues. These cells are responsible for the
antibody-mediated response. Recent literature highlights the role
of various miRNAs in the development and differentiation of B-
cells. Expression of miRNA in naive, germinal central (GC) and
post-germinal central B-cells has been observed, implying the
role of miRNAs in the development andmaturation of B-cells (6).
Xu and co-workers in 2012 have highlighted the role of miRNA
in B-cell differentiation. A hematopoietic defect in Ago2 has
not only affect early pro-B-cell generation but also significantly
impairs pre- and peripheral B-cell generation. Also, the deletion
of dicer or Ago2 blocks the transition of pro-B to pre-B-cell
development, underscoring the role of miRNAs (56, 57).

B-cell population reducts has been observed due to the
conditional deletion of dicer. The possible target is C-Myb, which
is critically important in B-cell development. The expression
pattern of C-Myb was inversely correlated to the expression
of miRNA-150 in B-cells. Higher expression of miRNA-150 is
observed in progenitor cells whereas mature B-cells represent its
downregulation. Ectopic expression of miRNA-150 followed the
premature downregulation of C-Myb, trigger apoptosis during
the pro-B stage. Higher levels of miRNA-150 are necessary for
the conversion of pre-B to mature B-cells (to downregulate C-
Myb expression), guaranteeing normal B-cell development (58).
The expression of miRNA-34a block the conversion of pro-B to
the pre-B-cell. This blocking is probably mediated by miRNA-
34a, which inhibits the expression of forkhead box transcription
factor, Foxp1. The loss of Foxp1 resulted in a severe blockade
in the development of B-cells (59). In naïve CD4 positive cells,
miRNA-155 represses the expression of c-MAF (transcription
factors) and IFNγ receptor 1, whereas, in B-cells, it blocks the
expression of PU.1 and SHIP1. The absence of miRNA−155
produces defected antibodies and hence, impaired response to
antigenic stimulation. Murine model deficient in miRNA-155
show an increased number of GC B-cell, decrease IgG production
and maturation. This regulation of GC cells is mediated via
regulation of transcription factor PU.1 at the post-transcriptional
level (59).

The list of miRNAs involved in the development and function
of the immune system is provided in Table 1 (60–68).

miRNAs IMMUNE REGULATION IN
INFLAMMATORY DISEASE

The role of miRNA in regulating the responses of the immune
system and inflammatory processes has been reported a few
years ago. Recent literature highlights the association of miRNAs
and inflammatory processes in various metabolic disorders.
Proteins involved in inflammatory processes can be regulated by
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TABLE 1 | miRNAs Involved in the Development and Function of the Immune System.

miRNA Target Function References

miR-181 SHP2, PTPN22, DUSPS5 Enhance TCR signaling and enhances the phosphorylation of immunoreceptor (49)

Ox-LDL Increased DC maturation (60)

miR-155 SHIP1 Increasing activation of the kinase Akt, which drives the inflammatory response (33)

PU.1 Decreased production of cytokine (59)

CTLA-4 differentiation and activation of Th cells and effectively inhibit inflammation (61)

MMP-1 Induces proinflammatory cytokines and activation of TLR ligands (62)

Mir-10a TGF-β Treg cell differentiation from CD4+ T- cells (54)

IL-12/IL-23p40, NOD Decrease mucosal inflammatory response and inhibiting Th1 and Th17 cell function (63)

TAK1, IL-1, β-TrCP Inhibitor κB (IκB) degradation and NF-κB activation (64)

miR-145 SMAD3 Inhibits the release of IL-6 and CXCL8 in chronic pulmonary disease (64)

miR-21 RASGRP1 Control T cell activation and induced T cell receptor (TCR) (65)

PDCD4 Elevated production of IL-10, regulate T-cell response and negatively regulate the inflammatory response to LPS (66)

miR-146 STAT1 Th1 effector cell differentiation, and suppress Th1 responses (67)

IRAK1, TRAF6 Negative regulator of the IFN pathway and immune response, reduce inflammatory cytokine production (17)

(AP)-1, IL-2 Immune cell activation and cytokines production, a negative regulator of adaptive immunity (34)

MiR-29 IFN-γ Suppress immune response (68)

miRNAs at the transcriptional level (69, 70). Also, initiation of
inflammation and other physiological responses like oxidative
stress, adipogenesis, and macrophage activation are regulated
by miRNAs (Figure 2). Therefore, the deregulation of miRNAs
linked to the immune system may lead to chronic inflammation,
which is a hallmark of sustained inflammatory diseases (71).
Some detailed examples of inflammatory disease that are
regulated by miRNAs are discussed as follows.

Psoriasis and Atopic Eczema
Psoriasis and atopic dermatitis (AD) are chronic inflammatory
skin diseases that are described by various immunological
abnormalities. Psoriasis is mainly characterized by Th1/Th17
response whereas patients suffering from AD have shown an
imbalance of T-cells and dysfunction in the cytokine and
chemokine synthesis (72). Various miRNAs have been shown to
be involved in the pathogenesis of psoriasis and atopic dermatitis
(61, 73). In a study conducted by Fu and coworkers it is
observed that decreased expression of miRNA-138 in CD4+ T-
cells increases the expression of runt-related transcription factor
3 (RUNX3) and the ratio of Th1/Th2 in the cells obtained from
patients suffering from psoriasis. Overexpression of miRNA-31
targets SKT40 (a negative regulator of NF-κB), and modulates
the production of IL-1β, CXCL1/5/8, and IL-8 in in vitro and in
vivomodels of psoriasis (74). Excessive expression of miRNA-203
and miRNA-146a inhibited the suppressor of cytokine signaling-
3 (SOCS-3) (cytokine signaling 3), which is followed by increased
proliferation of keratinocytes. Deregulation in the expression of
miR-146a affect the functioning of T-helper and dendritic cells,
increasing the severity of lesions by increased TNF-α production
(73). Similarly, the literature reflect the differential expression
profile of miRNA-22, miRNA-24-1, miRNA-498, and miRNA-
551a in the skin of healthy and affected patients (73). miRNA-
155 is observed to be highly expressed in the tissue samples
obtained from patients suffering from AD. This expression is

initiated by exposure of allergens or super-antigens and is highly
specific during Th cell differentiation and activation. miR-155
has been reported to alleviate the expression of cytotoxic T-
lymphocyte associated antigen- 4 (CTLA-4), which leads to
increased Th cell response. CTLA-4 is a key player in inhibiting
T-cell response and its expression is suppressed by miR-155 in Th
cells (61). Other miRNAs that are reported in the tissue samples
obtained from AD patients are miRNA-146a, miRNA-10b,
miR10a, miRNA-10a∗, miRNA-216, miRNA-921-1∗, miRNA-454
and miRNA-29b-1∗(upregulated); and miRNA-99a∗, miRNA-
34a∗, miRNA34c-5p and miRNA-30a (downregulated) (61).

Asthma
Asthma is a chronic respiratory disease of the airways
characterized by up-modulated expression of inflammatory
proteins, at the molecular level (75). The proliferation of
smooth muscle and epithelial cells of lungs are the hallmarks
in asthma. In both these cell types, the role of miRNAs
has been widely observed. The expression of miRNA-221 is
found to be elevated in the smooth muscle cells in asthmatic
patients (76). miRNA-155 has a key role in the development
and maintenance of the Th2 phenotype via modulation of IL-
13. IL-13 (Th2 derived effector cytokine) is an essential factor
in the pathogenesis of asthma and it induces allergic airway
inflammation. Inhibition of miRNA-155 increases the levels of
transcription factors involved in the Th2 microenvironment
(77). The upregulation of miR-19a in asthma patients promotes
the in vitro cytokines production. This miRNA acts on the
mRNA that encodes PTEN, SOCS1, and A20, which collectively
suppresses several physiological cascades (76). The expression
of IL-12p35 is influenced by miRNA-21 in macrophages and
dendritic cells. IL-12 is centrally involved in the polarization
of Th1 cells in the adaptive immune response. This shows that
miR-21 mediate expression of IL-12p35 potentially regulates the
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FIGURE 2 | The miRNAs are associated with regulation and control the inflammatory response. They act as anti-inflammatory miRNAs, serve in important negative

feedback loops in inflammation processes and inflammatory diseases. By targeting signal transduction proteins involved in the initiation of the innate immune

response, and by directly targeting mRNAs that encode specific inflammatory mediators.

Th1/Th2 balance (78). In patients with severe asthma, TGF-
β induces the expression of miRNA-122 in the airway smooth
muscle cells. Further, this miRNA increases the secretion of
IL-6 (79).

Rheumatoid Arthritis
Rheumatoid arthritis (RA) an is irreversible joint damage,
which occurs due to inflammation of synovial tissue. T- and
B-cells, monocyte/macrophages, neutrophils, and proliferating
synovial fibroblast-like cells are the major contributors to the
cellular damage in RA (80). Various miRNAs like miRNA-
203, miRNA-16, miRNA-146a, miRNA-124a, miRNA-155,
miRNA-15a, and miRNA-346 have been recognized in RA
tissues (81). Stanczyk and colleagues in 2008 have identified
TNF-α regulated miRNA-155 in synovial fibroblasts of RA
patients. Overexpression of miRNA-155 in RA tissue induces
proinflammatory cytokines and activation of TLR ligands via
suppression of metalloproteinases MMP-1 and 3 (62, 82).
miRNA-146a modulates MMP-13 by acting onIRAK1 and
TRAF6. Studies have demonstrated its active role in T-cell
apoptosis and in suppressing functions of Treg cells (83).

Expression of miRNA-346 induces the secretion of MMP1 and
IL-6 (by NF-kβ signaling) and suppresses IL-18 response (by
inhibition of Bruton’s tyrosine kinase gene transcription).
Additionally, the release of TNFα is also controlled by
miRNA-346 in RA tissue (84).

Chronic Obstructive Pulmonary Disorder
(COPD)
Chronic and systemic inflammation, along with defective
immune response is the major characteristic of chronic
obstructive pulmonary disorder (COPD) (85). Innate immune
cells sense the destruction in the lungs by damage-associated
molecular pattern/ pattern recognition receptor (DAMP/PRR)
signaling and hence, an adequate immune response is initiated
(85, 86). The role of various miRNAs (miR-1, miR-21, miR-144,
miR-145, miR-146, and miR-181) in the COPD pathogenesis
has been reflected in the literature (86). For example, miR-
145 targetsSMAD3, which is an important regulator of TGF- β

pathway. miR-145 also regulates p38 and MAPK pathways. The
upregulation of this miR significantly inhibits the release of IL-
6 and CXCL8. Similarly, miR-146 reflected a pathogenic role
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in cultured fibroblasts of COPD patients by regulating NF-κB
signaling (87).

Atherosclerosis
Atherosclerosis (AS) affects major arteries of the body, which
may result in myocardial infarction, ischemic stroke, and
peripheral artery disease (88). The expression profiles of
various miRs such as miRNA-21, miRNA-34a, miRNA-146a,
miRNA-146b-5p, and miRNA-210 have shown significant
upregulation. These miRNAs act on multiple targets in the
human atherosclerotic plaques. miRNA-146 (anti-inflammatory)
and miRNA-145 (proinflammatory) act by regulating dendritic
cell functions while, other like, miRNA-155 stimulates
inflammatory mediators (Nos2 and IL-6) through inhibition
of Akt1 pathway in macrophages. MiR-155 also acts on MAP3
K10 of the MAP kinase signaling in the patients suffering from
coronary artery disease (CAD) (88, 89). Endothelial progenitor
cells of CAD patients show higher expression of miRNA-221
and miRNA-222. miRNA-10a expression in endothelial cells
is decreased in atheroprone areas of the porcine aorta as
compared to atheroprotective regions, indicating that this
miRNA potentially behaves as an anti-atherogenic miRNA.
Analysis of the functional activity of miRNA-10a revealed that
it exhibits potent anti-inflammatory properties, mediated by the
inhibition of NF-κB activity (90).

Inflammatory Bowel Disease (IBD)
Ulcerative colitis and Crohn’s disease are collectively termed
as inflammatory bowel disease (IBD) (91). The major factors
that contribute to the pathogenesis of IBD include alterations
in the immune component, genetic material, bacteria, and
environment. Increased incidences of IBD are reported in the
developed countries in the last few decades, which clearly states
the role of various environmental and epigenetic factors in
the pathogenesis of IBD (92, 93). Also, excessive filtration of
immune cells and tissue damage has been widely observed in
IBD patients. These alterations in the architecture of cells and
tissue may be due to the production of cytokines (IL-1) family
and chemokines (92). The possible relevance of Th cells has
also been reported in the pathogenesis of IBD. Th cells act
by releasing IL-17, a strong pro-inflammatory factor. Studies
have shown how miRNAs regulate the inflammatory response in
IBD (94). miRNA-21 is significantly increased in the fibroblasts
of active UC. This miRNA is associated with nitric oxide
synthase (NOS2) and CD68 in IBD. It increased concentration
of nitric oxide (NO) and the activation of macrophages. Yang
and colleagues in 2017 have demonstrated the impairment
of intestinal epithelial function in UC patients. The possible
mechanism may be the overexpression of miRNA-21 via RhoB
signaling (93). Additionally, the regulation of NOS2 by miRNA-
221 miRNA-146a, miRNA-223, and, miRNA-126 in IBD tissue
has also been reported (95). In HCT116 cells, the suppression of
NOD2 is mediated bymiRNA-671,miRNA-495,miRNA-192, and
miRNA-512. The expression of miRNA-10a inhibits IL-12/IL-
23p40 and NOD2, decreasing mucosal inflammatory responses
in DC (96). miRNA-146a, on the other hand, targets the NUMB
gene, modulating sonic hedgehog (SHH) in macrophages of

the murine model. Reportedly, miR-29 mediates the effect in
both, direct (encodes IL-12/23 p40) and indirect (suppression of
transcription factor ATF2 of IL-23A) manner (93).

The list of miRNAs Involved in the inflammatory process and
their target genes are shown in Table 2 (97–110).

miRNA IMMUNE REGULATION IN
INFECTIOUS DISEASES

The immune system plays an important role in shielding the
human body against invasion from infectious agents. Mostly,
microorganisms are destroyed by the cells of the immune
system but any deficit in the functioning of these cells directly
associates with increased susceptibility to infections and diseases
(111). During any pathogenic attack, the environmental and
physiological conditions are altered in pathogens as well as the
host body. The intracellular pathogen invades the machinery of
the host and utilizes it for the expression of virulence genes.
Similarly, the immune system of the host acts in a coordinated
manner to combat microorganisms. Immune regulation in
infectious diseases is mediated by both innate and adaptive
immunity (112, 113). The cells of the innate system identify the
conserved region on the pathogen. This activates complement,
and targets them for phagocytosis. The phagocytic cells utilize
reactive oxygen species, peptides and degrading enzymes and
destroy the invading pathogen (114). Certain signaling molecules
are also released by these cells to activate the responses of the
adaptive immune system. The responses are produced in two
ways: the cell-mediated response is carried out by T-cells and
the humoral response is regulated by B-cells and antibodies.
Interleukins and growth factors are produced which further
regulate immune responses (115). The foreign invasion alters the
expression profile and functioning of various miRNAs, which
are directly involved in the pathogenesis of infections and
diseases (17).

Human Immunodeficiency Virus (HIV)
Infection
HIV infection progresses to develop acquired immunodeficiency
disease (AIDS), which is an immuno-compromised condition,
suppressing cell-mediated immunity, HIV infected or uninfected
decreased CD4+ T-cell count and weakening of the immune
system. Although, monocytes/macrophages are reported to be
susceptible to HIV-I infection, monocyte-derived macrophages
are better producers of HIV-I when compared to MDDCs.
Both these cells express various anti-HIV-1 miRNAs, modulation
of which alters the cellular susceptibility to HIV-1 infection
(116). miRNA-198 is downregulated during the differentiation
of monocyte to macrophages. It inhibits the HIV-1 replication
by downregulation cyclin T1 protein, demonstrating its anti-
HIV function. miRNA-29a and miRNA-29b has been reported
to inhibit Nef expression and HIV replication in HEK293T
and Jurkat T-cells. Inhibition of miRNA-29a and miRNA-29b
increases HIV-I production (117, 118).

HIV infected patients show different expression profiles of
both host and viral miRNAs. Thus, miRNA can be utilized
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TABLE 2 | Role of miRNAs in the inflammatory process and their target genes.

miRNA Target gene Cell type or tissue Effect References

miR-132 NF-κB In vitro differentiated adipocytes and human

adipose-derived stem cells

Overexpression induces translocation of NF-κB, acetylation of p65, and

production of IL-8 and MCP-1.

(97)

IL-6 Human adipose tissue Related to macrophage infiltration and IL-6levels in patients suffering

from nonalcoholic.

Fatty liver disease.

(97)

miR-126 VCAM-1 Human aortic endothelial cells Increased expression is observed in response to anti-atherogenic

triglyceride-rich lipoproteins or polyunsaturated fatty acids treatment.

(98)

miR-145 TNF-α Human in vitro differentiated adipocytes Increases the release/production of TNF-α. (99)

miR-146 IL-1β Primary human gingival fibroblasts in culture IRAK inhibits mir-146 leading to upregulation of IL-1 and inhibits

inflammatory response in periodontal inflammation.

(100)

TNF-α Human monocytic cell line THP-1 miR-146 is NF-κB dependent and acts as an inhibitor targeted to

signaling proteins of innate immune responses.

(101)

miR-181 NF-κB/VCAM-1/

E-selectin

Human plasma Overexpression inhibits import in a3 expression and an enriched set of

NF-κB-responsive genes.

(102)

miR-187 TNF-α, IL-6, and

IL-12

TLR4-stimulated monocytes Regulates cytokine production. (103)

miR-221 TNF-α Human preadipocytes Down-regulated by TNF-α. (104)

miR-155 IL-1 Dendritic cell During dendritic cell maturation, it regulates the TLR/IL-1 pathway. (42)

miR-222 ICAM-1 Glioblastoma multiform tissue and

colorectal cancer cells

Decreases the ICAM-1 expression and restricts the association of

cytotoxic T lymphocyte cells to tumor cells.

(106)

miR-223 PAI-1 Monocytes Avoids accumulation of NLRP3 protein and inhibits IL-1b production

from the inflammasome.

(107)

Let-7 IL-6 Bone marrow–derived mesenchymal stem

cells

Reduces expression of IL-6. (108)

miR-24 Chitinase 3-like 1 Macrophages Overexpression increases the production Arg1, CCL17, CCL22,

CD163, and CD206 but reduces the production of phenotype markers

in stimulated macrophages.

(109)

miR-124 TLRs Monocytes and macrophages Induces anti-inflammatory effects by downregulating TLR-6 and

Myd88.

(110)

to distinguish between the individual with or without HIV
infection (118). Gupta and team analyzed 704 categories
of miRNAs in peripheral blood mononuclear cells (PBMCs)
of HIV-1 infected and healthy volunteers. 28 miRNA are
upregulated and 14 are downregulated in HIV patients (119). In
particular, miRNA-150, miRNA-223, miRNA-191 and miRNA-
146b-5p are downregulated and expressed excessively in T-
cells. miRNA-223, miRNA-382, miRNA-125b and miRNA-28
target the 3′UTR region of HIV-1 mRNA and decrease HIV
replication. miRNA-150 binds to Nef-3′ LTR at 773 and 89
positions, reducing the expression of PBMC opioid receptors.
On the other hand, miRNA-223 acts on the 408th amino acid
of HIV-1 protein. Interestingly, miRNA-17-5p and miRNA-
20 downregulate p300/CBP associated factor (PCAF) histone
acetyl-transferase expression, which inhibits the growth of HIV
virus in the human body (113). Elevation of miRNA-122
and miRNA-21 is observed in patients suffering from HIV
which is linked to the development of liver cirrhosis and
pulmonary arterial hypertension by interfering with the TGF-β
signaling (120).

Hepatitis
The causative agent of hepatitis is a virus that infects the
liver and causes swelling and inflammation. Several miRNAs
namely miRNA-122, miRNA-340. miRNA-16 and miRNA-21 are
being described to play a central role in hepatitis (121). Out of

which miRNA-122 and miR-34a are considered as biomarkers of
hepatitis-related hepatocellular carcinoma (HCC) while miRNA-
21 is reported to be overexpressed in case of HCC (122).
In the case of hepatic fibrosis, the expression of miR-21 is
increased by TGF-β signaling whereas its decreased expression
cause suppression of SMADT signaling. Higher expression of
miR-34 and miRNA-122 is connected with secretion of TGF-
β from hepatic cells, leading to the development of fibrosis.
miRNA-122 particularly binds to the 5’end of the HCV gene,
increase viral replication leading to the progression of the
infection (123). miR-101 provides insights about the hepatitis-B
surface antigen by their increased expression. The upregulation
of miRNA-149, miRNA-638, and miRNA-491 enhance viral
replication by inhibiting AKT/Pi3 pathway. Upregulation of
miRNA-196 and miRNA- 448 is s observed in HCV-infected
patients, which targets the coding region and NS5A of HCV
genomic RNA. This deregulation is s associated with several
signaling pathways, namely PI3K-Akt cascade, T-cell receptor
pathway, mitogen-activated protein kinase (MAPK) signaling,
viralcarcinogenesis, chemokines signaling, TGF-β signaling and
Wnt signaling pathway (124).

Tuberculosis
Pulmonary tuberculosis (TB) is an infection caused by
Mycobacterium tuberculosis. In the majority of cases, the
bacteria are in a dormant state before it grows into an active
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form. It most commonly affects the human lungs (pulmonary
TB) but is also reported to affect lymph nodes, CNS, liver, bones,
genitourinary tract and gastrointestinal tract (extrapulmonary
TB) (125). Recent literature significantly displayed the link
between tuberculosis and miRNAs. The cellular component and
related gene expression are altered in patients suffering from
tuberculosis. These changes are likely to be regulated by miRNAs.
The existing literature reflect the role of several miRNAs in the
differentiation and functioning of T-cells (126). Differential
expression of miRNA-29c, miRNA-320, miRNA-101, miRNA-
378, miRNA-483-5p, and miRNA-22 are diagnostic markers
for tuberculosis and non-tuberculosis infections. Out of which,
miRNA-378 and miRNA-101 are linked to MAPA1 signaling
while miRNA-483-5p, miRNA-22, and miRNA-320 disturb
BCL9L and AKT-3 signaling to initiate tuberculosis infection
(127). Overexpression ofmiRNA-29 is observed in several human
cell types in case of tuberculosis infection. This overexpression
downregulates IFN-γ by acting on 3′UTR of IFN-γ mRNA.
It formed an association of IFN-γ mRNA with Ago 2 protein
forming a RISC, resulting in the post-transcriptional suppression
of IFN-γ. miRNA-29 also have a key role in regulation of
apoptotic pathways in immune cells by targeting myeloid cell
leukemia-1 (Mcl-1), B-cell lymphoma 2 (Bcl-2) and the GTP
binding protein Cdc42. Overexpression of miR-29, through
some light on the mechanism of increased apoptosis in the cells
involved in anti-tubercular response (125). The upregulation
of miRNA-365 inhibits IL-6 signaling by binding to the 3′UTR
region. Downregulated miRNA-155 corresponds to low TNF
production via the mediation of the TLR-MAPK/AKT pathway.
miRNA-155 degrades inositol phosphatase SH2 containing
inositol-5-phosphatase (SHIP1) mRNA, therefore, increasing
TNF production (127). In macrophages, the expression of
miR-147 is activated by TLRs/NF-κB pathway, which further
decreases the expression of TNF-α and IL-6. In serum or
PBMCs of active tuberculosis patients, higher level of these
inflammatory cytokines are recorded. Significant reduction
in the growth of M. tuberculosis and significant increase in
the expression of pro-inflammatory cytokines is observed
when miR-99b is blocked using antagonists and knockdown
approaches (125).

Malaria
Malaria is a protozoal disease instigated by Plasmodium vivax, P.
faliciparum, P. malariae, P. knowlesi, and P. ovale. This protozoal
parasite potentially alters the expression of erythrocytic miRNA
in blood. Downregulation of miRNA-451 and miRNA-16 have
been seen in the blood/serum of malaria patients as compared
to normal individuals. This downregulation is possibly due to
the degradation of red blood cells and the clearance of miRNA
in the case of hypersplenism during malarial infection, resulting
in increased destruction of RBC by the spleen (128). In RBCs
of malaria-infected patients, miRNA-451, miRNA-16, miRNA-
106, miRNA-7b, miRNA-91, miRNA- 142, miRNA-144, let-7a,
let-7f, and miRNA-92 are downregulated, whereas miRNA-19b
and miRNA-223 are upregulated. miRNA-92 and miRNA-17

regulates TGF-β signaling, and are found to be responsible
for renal failure by inducing apoptosis in the renal progenitor
cells (129).

Trypanosomiasis
Trypanosomiasis (sleeping sickness) is a protozoal infection
disease. During early phase, trypanosomes activate the innate
immune system and affects the B- and T-cell response.
In trypanosome infected tissues, dramatic alteration in the
macrophages and APCs have been observed. This results in the
production of proinflammatory cytokines (like TNF-α, IL-6, and
NO), mediated by variant surface glycoprotein (VSG). During the
late phase, neurological manifestations along with high levels of
TNF-α and inflammatory signatures have been widely reported
(130). Significant reduction in the levels of miRNA (miRNA-
199a-3p, miRNA-27b, and miRNA-126) have been reported in
patients suffering from trypanosomiasis. These miRs deregulate
toll-like receptor signaling and NF-κB cascade. Patients suffering
from this disease revealed a higher level of miRNA-193b and
miRNA-338 as compared to control ones (131). Downregulation
of miRNA-27b has been observed in this disease. Increased levels
of IFN- γ has been reported during trypanosomiasis infection. At
the time of infection, the expression of miRNA-144 is decreased.
miRNA-144 inhibits TNF-α and IFN-γ, suggesting the role of
miRNA as a diagnostic marker for analyzing infection (132).

SUMMARY AND CONCLUSION

In this review, we have discussed the brief outline of the
role of miRNAs in immune regulation during infectious and
inflammatory diseases. miRNAs are short RNAs, formed from
the non-coding region of the RNA, which regulates the gene
and protein expression by transcriptional inhibition. miRNAs
are modulators of inflammatory and immune responses. Some
miRNAs act as important inhibitors, while others tend to enhance
the responses of the immune system by negatively regulating
the response of the inhibitors. miRNAs either work on signal
transduction proteins or support the inflammatory or anti-
inflammatory responses of immune systems. Hence, miRNAs
can act as biomarkers or targets for treatment in a variety
of infectious diseases. Although miRNA- based therapy has
limitations, further research is required to expand our knowledge
of immuno-miRs. It can be considered as a futuristic approach for
the diagnosis and treatment of immune-related diseases (acute
and chronic inflammatory disorders) and infectious diseases.
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