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Abstract

Random Positioning Machines (RPMs) are widely used as tools to simulate microgravity

on ground. They consist of two gimbal mounted frames, which constantly rotate biological

samples around two perpendicular axes and thus distribute the Earth’s gravity vector in all

directions over time. In recent years, the RPM is increasingly becoming appreciated as a

laboratory instrument also in non-space-related research. For instance, it can be applied for

the formation of scaffold-free spheroid cell clusters. The kinematic rotation of the RPM, how-

ever, does not only distribute the gravity vector in such a way that it averages to zero, but it

also introduces local forces to the cell culture. These forces can be described by rigid body

analysis. Although RPMs are commonly used in laboratories, the fluid motion in the cell cul-

ture flasks on the RPM and the possible effects of such on cells have not been examined

until today; thus, such aspects have been widely neglected. In this study, we used a numeri-

cal approach to describe the fluid dynamic characteristic occurring inside a cell culture flask

turning on an operating RPM. The simulations showed that the fluid motion within the cell

culture flask never reached a steady state or neared a steady state condition. The fluid

velocity depends on the rotational velocity of the RPM and is in the order of a few centime-

ters per second. The highest shear stresses are found along the flask walls; depending of

the rotational velocity, they can reach up to a few 100 mPa. The shear stresses in the “bulk

volume,” however, are always smaller, and their magnitude is in the order of 10 mPa. In con-

clusion, RPMs are highly appreciated as reliable tools in microgravity research. They have

even started to become useful instruments in new research fields of mechanobiology.

Depending on the experiment, the fluid dynamic on the RPM cannot be neglected and

needs to be taken into consideration. The results presented in this study elucidate the fluid

motion and provide insight into the convection and shear stresses that occur inside a cell

culture flask during RPM experiments.
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Introduction

The behavior and development of biological cells are largely governed by their complex interac-

tion with external stimuli. Besides a variety of signals, including electrical and chemical signals,

cells also respond to mechanical stimulations. Cells react to a variety of mechanical stresses,

such as tensile, compressive and shear stresses [1–5]. The influence of mechanical stimulation

on cells is of such great importance and complexity that a new research field called mechano-

mics evolved [6, 7]. In order for cells to respond to mechanical stimuli, they need to adhere

through focal adhesion (FA) junctions [8–10], for example. Most cells communicate with the

extracellular matrix by bridging FA with intracellular connectors such as fibronectin and other

related bridge molecules. Research on cell adherence has revealed many findings on how cells

can sense their environment and transduce mechanical forces into intracellular signals [2, 11].

As a fundamental and omnipresent force, gravity greatly influences the development of

multicellular organisms, such as humans. At the onset of human space flight, it became clear

that reduced gravity have profound effects on human health and physiology [12]. For instance,

short and long-term space flights cause severe muscle wasting (atrophy) [12–15]. Additionally,

certain shock-absorbing tissues, such as the intervertebral discs (IVD) of the spine, react to

microgravity (or weightlessness) with increased water uptake and increased swelling. This is

thought to be one major reason for the back pain frequently experienced by astronauts during

space travel; it is also associated with the increased risk of disc herniation after prolonged

space flights [16, 17]. The degenerative effect of microgravity on IVDs has been further dem-

onstrated in space-flown experiments [18–20].

In order to study the influence of gravity on biological systems (in the field of gravitational

biology), various technical platforms are employed in order to expose samples to either hyper-

gravity or lowgravity. While hypergravity experiments can be conducted quite easily through

centrifuges, lowgravity experiments tend to be more problematic. Depending on the desired

lowgravity exposure duration, various research platforms, such as drop towers, parabolic

flights and space flights, can be used. Due to the extensive preparation efforts of space-flown

experiments, ground-based microgravity simulation models are frequently used as a test

method or as an alternative to space flights. As such, the clinostat and the Random Positioning

Machine (RPM) are among the most successful machines and are widely used around the

world [21].

RPMs basically consist of two gimbal mounted frames that constantly rotate biological sam-

ples around two perpendicular axes. Their working principle is based on gravity vector averaging

to zero [22]. Through dedicated algorithms, the gravity vector is distributed in all directions over

time. Therefore, observed from the samples’ point of view, the gravity vector’s trajectory aver-

aged over time converges to zero. It is assumed that the Earth’s gravity vector needs to point in a

specific direction for a minimum amount of time in order to allow biological samples to adapt to

gravity. If the samples are rotated constantly and fast enough, no adaptation will be possible any-

more; thus, they will experience a “microgravity-like condition” [23]. Experiments on the RPM

have shown comparable results to space-flown experiments in several studies (reviewed in [24]).

Despite the fact that the RPM was originally developed for gravitational research, it has become

an interesting tool for other mechanobiological research and applications as well. For example,

the RPM has been used to simulate a mechanical disuse condition and provoke decreased bone

formation in preosteoblast cells [25]. Further spheroid cell clusters could be formed on the RPM

with several cells, making the machine a promising approach to generating scaffold-free three-

dimensional cell constructs (reviewed in [26]). These spheroids are highly interesting for cancer

research (reviewed in [27]) or for tissue engineering. For example, the RPM has recently been

used to create scaffold-free human articular chondrocyte cell clusters [28].
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The kinematic rotation of the RPM does not only distribute the Earth’s gravity vector over

time, but it also introduces local forces to the cell culture containment, which can be described

by rigid body analysis [24, 29]. Because these forces are not fully controllable, scientists are

advised to place the samples close to the center of rotation in order to minimize them [24].

However, to date, the fluid motion within a culture chamber and its possible effects on the

cells have been the subject of very few publications and have only been discussed rudimentarily

[30]. When filming macroscoping particles inside a water-filled culture chamber that is

mounted on an operating RPM, rapid fluid motion can be observed (unpublished observa-

tions). The fluid appeared to frequently invert the flow direction within the chamber. In this

study, we used a numerical approach to describe the complex fluid dynamic characteristic

inside such culture chambers on an RPM in order to elucidate the actual stresses working on

the cells. Such analysis is crucial when interpreting the biological results from the RPM. Thus,

it should be taken into consideration for every biological experiment involving the use of an

RPM as a microgravity simulation tool.

For explanatory reasons and for the sake of completeness, the fluid dynamics appearing on

the two simpler and related machines, the centrifuge and the clinostat, are discussed as well.

Both rotate their samples around or on a single axis, respectively. Centrifuges are typically

used for hypergravity experiments, rotating around a vertical axis with the samples being a cer-

tain radius from the rotational axis. Clinostats represent an alternative model for microgravity

simulation. They rotate about a horizontal axis, and the samples are fixed on the rotational

axis in order to avoid centrifugal forces.

Numerical Methods

Geometry and Setup

For clinostat and RPM experiments, the biological samples are kept in either custom-made

containers or in commercially available flasks, which are entirely filled with cultivation

medium (bubble-free). Despite the chemical additives, the cultivation medium is very much

aqueous. Therefore, the cultivation medium was represented by water at 37˚C, implying a den-

sity of 993.336 kg/m3 and a dynamic viscosity of 6.91519�10-4 Pa�s. The cell culture flask was

modeled as a rectangular box (55.56 x 45 x 25 mm), which roughly approximated the shape of

a commercially available T25 flask (culture surface of 25 cm2). In order to separate the shear

stresses along the wall from the shear stresses within the bulk volume during post processing

of the results, two domains were defined. The outer domain represents the flask geometry. The

inner domain, being 4 mm smaller than the flask (51.56 x 41 x 21 mm), is referred to as the

“bulk volume.” The geometry was designed with the CAD software “NX8” (Siemens).

All simulations were performed with “ANSYS CFX 16.0” (ANSYS, Inc.) using a second

order upwind scheme and the shear stress transport (SST) turbulence model with transition

modeling, as explained in more detail below. The mesh consisted of 4.014 million hexa ele-

ments and was generated with the software “Pointwise V17.3R3” (Pointwise, Inc.). A first wall

distance of 7.5 μm assured a y+ smaller than 1 for all cases. Using a low-Reynolds mesh resolu-

tion (i.e. no adoption of wall functions) with y+ being smaller than 1 and a growing ratio for

the mesh of 1.06, it is ensured that boundary layer and core are properly resolved. This is also a

requirement for the used SST model with transition. Accordingly the shear stresses at the walls

are computed from the boundary and the local flow conditions, i.e. not using universal wall

functions based on flat plate equilibrium conditions. Using this approach and the above men-

tioned growth rate, leads to a fine mesh up to the center of the flask. A mesh dependency study

was therefore not considered necessary.
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The RPM’s rotation about two perpendicular axes was accomplished with the approach of

mesh movement, where the corresponding displacement was given by expressions represent-

ing the rotation matrix in three dimensions. So the orientation of the mesh was calculated for

every time step and the high quality of the hexa mesh was conserved. In order to simplify the

setup, the rotational velocities of the two axis were assumed to be constant and identical. In

these transient simulations, a one-time step covers one degree of rotation. This means that in

the case of a rotating velocity of 40 deg/s, the time step is 25 ms; for 60 deg/s, it is 16.66 ms,

and for 90 deg/sec, it is 11.11 ms. The Earth’s gravity vector was defined as pointing in the neg-

ative z-direction (-9.81 m/s2). This method was chosen in regard to the fact that vector rota-

tions in ANSYS CFX are only realizable around one axis and not two, which is inevitable for

simulating an RPM. The container walls were defined as no-slip boundary conditions. The ini-

tial internal pressure was set to 1 bar.

Governing Equations

The simulations were performed solving the Navier Stokes equation for incompressible flow

using a pressure based formulation. It consists of continuity and momentum equations,

respectively. (Refer to Table 1 for the declaration of the variables in the equations.)

@r
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@
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þ

@
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� �
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Table 1. Declaration of the variables used in the equations.

Symbol Description

E Transition sources

g Earth gravity (9.81 m/s2)

P Transition sources

p Pressure

p! Position vector

r Radius

fReyt
Critical Reynolds number

Rx, Ry, Rz Rotation around the x- y- or z-axis, respectively

SM Momentum source

t Time

U Velocity vector

u Fluctuating velocity component in turbulent flow

α Inclination towards the rotational axis

γ Intermittency

μ Molecular (dynamic) viscosity

μt Turbulent viscosity

ρ Density

σ Constant

τ Molecular stress

ω Angular velocity

δij Kronecker delta

ruiuj Reynolds stresses

doi:10.1371/journal.pone.0170826.t001
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Due to the uncertainty of the flow’s characteristic, a turbulence model capable of transition

was used [31, 32]. This approach ensures maximum flexibility and accuracy: depending on the

local flow conditions the model uses laminar or turbulent flow modeling, thus ensuring a cor-

rect treatment of the dissipation in the flask. The Reynolds number for the simulations 40 deg/

s, 60 deg/s and 90 deg/s were 1434, 2172 and 3267 respectively. They were calculated by Ansys

CFX using the cube root of the volume to calculate the length scale. The shear stress transport

(SST) turbulence model is a two-equation model, where the Re-stresses are computed using

the Boussinesq assumption [31, 32]. In addition the Gamma-Theta transition model was used,

which is based on two additional equations: the transport equation for the intermittency, and

the transport equation for the transition momentum thickness Reynolds number, respectively.
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The interested reader is referred to the publications of Menter and Langtry [31, 32] for

more details.

Centrifuge. On the centrifuge, the samples are rotated about a vertical axis with a certain

radius r in order to expose them to increased acceleration (Fig 1). The governing equation for

the centrifuge’s rotation is therefore:

p!ðtÞ ¼ Rz � p!t0 ð5Þ

p!ðtÞ ¼

cosðo � tÞ sinðo � tÞ 0
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@
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where p!ðtÞ represents the position of any arbitrary point in space at the time t, which was at

the point p!t0 at t = 0 and is transformed under the angular velocity ω.

On a centrifuge, the samples are normally mounted on a swinging gondola. This ensures

that the flask will always orient itself normally to the resulting acceleration vector. Therefore,

the culture flask is inclined toward the rotational axis by the angle α:

a ¼ tan� 1 o2 � r
g

� �

ð7Þ

where r is the radial distance to the rotation axis and g is the Earth’s gravity (g = 9.81 m/s2).

Clinostat. The clinostat rotates the samples around a horizontal axis. In order to avoid

centrifugal forces, the samples are normally placed exactly on the rotational axis (Fig 1). Using
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the same convention as above, the governing equation is:

p!ðtÞ ¼ Rx � p!t0 ð8Þ

p!ðtÞ ¼
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Random positioning machine. The RPM rotates the samples around two perpendicular

axes (Fig 1). Depending on the RPM’s developer, the algorithms responsible for distributing

the gravity vector are different [24]. One previously implemented algorithm lets the frames

rotate at a constant speed and inverts the rotating direction at random points in time [29]. As

mentioned above, for this study, only the simplified case, where the two frames’ rotation is

constant and equal, is used. Similar to above, the governing equation is:

p!ðtÞ ¼ Rx � Ry � p!t0 ð10Þ
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Post Processing

The following quantities were extracted from the simulations: (1) the average and maximum

values of the relative fluid velocity within the flask; (2) the maximum shear stress appearing on

the two largest surfaces, on which normally adherent cells are cultured—therefore, we refer to

them as the “cultivation surface”; (3) the ratio of the area of the cultivation surface, which is

exposed to a shear stress exceeding defined thresholds; (4) the average and maximum shear

stress in the “bulk volume”; and (5) the mixing (convection) induced by the fluid motion.

Fig 1. Schematic illustration of the working principles of the centrifuge (left), clinostat (middle) and Random Positioning Machine (RPM,

right). Centrifuges are used for hypergravity experiments. Thereby, the sample (red dot) is rotated around a vertical axis within a certain radius from the

axis. Clinostats and RPMs are used for simulated microgravity experiments. Whereas the clinostat rotates the samples around one horizontal axis, the

RPM rotates the samples around two perpendicular axes.

doi:10.1371/journal.pone.0170826.g001
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The relative fluid velocity within the flask was calculated by subtracting the mesh velocity,

representing the rigid body velocity due to the rotation around the two axes, from the absolute

fluid velocity in the global coordinate system. For averaging, the volume average was used.

In order to analyze the mixing quality of the RPM, the flask domain was split in two along

the xz-plane at y = 0. We refer to these two compartments as the “y-positive compartment”

(for y� 0) and the “y-negative compartment” (for y< 0). A virtual variable was implemented

at the concentration of 10 units/m3 in the “y-positive compartment” only. Thus, the concentra-

tion of the variable in the “y-negative compartment” was 0 units/m3. Subsequently, the variable

was left to spread by convection over three periods. To monitor the concentration of the vari-

able over time, 1000 monitor points were equally distributed in the flask (10 points along each

axis). After the simulations, for every time step, the concentration average of the two compart-

ments was computed.

Limitations

For the centrifuge and the clinostat, the mechanics is straightforward and depends mainly on

the rotational velocity and the radius from the rotational axis. The mechanics of the RPM is

considerably more complex because it depends on the rotational velocities of both frames and

the exact position of the sample in space. In order to reduce the solution space substantially,

we restricted ourselves to the simplified case, where both frames rotate at a constant and equal

speed and when the flask is placed at the center of rotation. In a screening study, the orienta-

tion of the flask leading to maximal shear stresses (worst case) was determined. All results

presented below refer to the following orientation: At the initial position (t0), the edges are

aligned with the axis of the global coordinate system such that the longest side of the flask is

parallel to the x-axis and the shortest side is parallel to the y-axis (Figs 2 and 3). Furthermore,

we do not discuss the influence of the flask’s geometry on the fluid dynamics in this study.

Results

Centrifuge

After centrifuges reach nominal speed, a steady-state condition is established. After an initial

phase, the motion of the liquid within the culture flask also becomes steady and can be described

with rigid body analysis. Thus, there is no relative velocity motion within the culture flask and

therefore no shear stresses appear. In centrifuge experiments, the samples are normally placed

within a certain radius to the rotational axis in order to increase the centrifugal acceleration (a in

m/s2) according to a = ω2 � r, where ω is the rotation velocity (in rad/s) and r is the radial distance

from the center of rotation (in meters). In order to avoid spatial gradients of the radial forces

within the culture flask, it is beneficial to minimize the size of the culture flask and maximize the

radius of the centrifuge [33]. The simulations, which were conducted with radii of 0, 10, 20 and

30 cm, showed no detectable effects that could be explained by spatial force gradients. The small

residual velocity detectable in the simulations was attributed to numerical imprecisions.

Clinostat

In comparison to centrifuges, the samples in clinostat experiments are ideally placed exactly

on the rotational axis in order to avoid centrifugal forces [34]. Additionally, the rotational axis

is horizontal, meaning that the gravitational force from the samples’ point of view is no longer

steady (as in centrifuges), but rotating. Nevertheless, the medium within the flask becomes

steady after an initial phase and can be described by rigid body analysis [34]. The simulations
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did not show any effect of the rotating gravity vector (from the samples’ point of view) on the

fluid motion.

Random Positioning Machine

For RPM experiments, scientists are advised to place their samples close to the center of rota-

tion in order to minimize centrifugal accelerations [24]. Because multiple culture flasks are

often placed on the RPM, not all of them can be placed at the center of rotation. Also, flasks

can be placed in any arbitrary orientation on the RPM. This makes the possible solution space

of the numerical simulations very large. To reduce complexity, an analysis for the worst case

with the highest shear stress was done. For simplification reasons, the culture flask was placed

at the center of rotation in the simulations. Our analysis showed that the highest shear stresses

appeared if the flask was oriented with its longest side parallel to the x-axis and its shortest side

parallel to the y-axis at the initial position (Fig 2) when rotating around the x and y axes.

The simulations showed that the fluid motion within the cell culture flask on the RPM

never reached a steady state or neared a steady state condition (Figs 2 and 4), as was the case

on the centrifuge and the clinostat. The circulating fluid periodically inverted its circulation

Fig 2. Velocity profile during one period on the RPM. Both frames rotate with constant and equal velocity; the

flask is placed at the center of rotation. The rotational velocity is 60 deg/s. The time interval between the illustrations is

1 second (top left: 0 s; top middle: 1 s; top right: 2 s; bottom left: 3 s; bottom middle: 4 s; bottom right: 5 s).

doi:10.1371/journal.pone.0170826.g002
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direction. This observation can be explained by the following consideration: The rotating flask

will transfer its momentum into the fluid, leading to a circulating fluid similar to the centrifuge

or the clinostat. Since the RPM rotates around two axes, the rotation of the flask will soon not

coincide with the rotation of the fluid motion anymore and will actually oppose the fluid circu-

lation. Therefore, the fluid motion will eventually be inverted. By the time the fluid picks up

velocity again, the flask will have moved farther and will soon oppose the fluidic circulation

again. If both frames of the RPM rotate with a constant velocity (as done in our analysis), a

periodically inverting circulating fluid motion can be observed in the flask. Because the

momentum transfer happens mainly in the boundary layer along the flask wall, the highest

shear stresses are also found along the flask wall (Figs 3 and 5). The point experiencing the

highest shear stresses moves along the flask wall over time (Fig 3). Since many cell culture anal-

yses are done on a population of cells, the effects experienced by individual cells are averaged

out. Assuming that adherent cells are evenly distributed on the cultivation area, the ratio of

cells experiencing a shear stress greater than a certain threshold can be computed (Fig 6). With

increasing rotational velocity, the ratio of cells experiencing a certain minimal shear stress

increases. For instance, less than 5% of the cells are exposed to a shear stress greater than 25

Fig 3. Shear stresses along the walls during one period on the RPM. Both frames rotate with constant and equal

velocity; the flask is placed at the center of rotation. The rotational velocity is 60 deg/s. The time interval between the

illustrations is 1 second (top left: 0 s; top middle: 1 s; top right: 2 s; bottom left: 3 s; bottom middle: 4 s; bottom right: 5 s).

doi:10.1371/journal.pone.0170826.g003
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mPa at 40 deg/s. The percentage, however, increases to about 18% when rotating at 60 deg/s

and to about 50% at 90 deg/s (Fig 6).

The fluid motion in the cell culture flask does not only lead to shear stresses, but also to a

very rapid mixing (convection) of the medium (Fig 7). The simulations showed that thorough

mixing is achieved only within two periods. Depending on the rotational velocity, complete

mixing is established within 8 seconds at 90 deg/s, or within 16 seconds at 40 deg/s (arrows in

Fig 7).

Discussion and Conclusion

Even though RPMs have been in use for several years, the fluid dynamic appearing in the cul-

ture flask has never been analyzed deeply; thus, it has been widely neglected. Besides distribut-

ing the Earth’s gravity vector, the motion of the RPM induces enhanced convection and

increased shear stresses. In this study we elucidated the fluid velocity, shear stresses and con-

vection for a specific and simplified case: (1) The flask has the approximate geometry of a stan-

dard T25 cell culture flask. (2) It is placed at the center of rotation. (3) The two frames of the

RPM rotate with equal and constant velocity. Multiple RPMs have been developed with differ-

ent controlling algorithms implemented. Some RPMs rotate the frames with random veloci-

ties, while other RPMs rotate with constant velocities, inverting periodically the rotational

direction (reviewed in [24]). Therefore, some deviation from the results presented here should

be expected on the various RPM systems. In general, larger shear stresses can be expected with

Fig 4. Velocity of the fluid in the flask during three periods on the RPM for three different rotational velocities (40, 60 and

90 deg/s). Both frames rotate with constant and equal velocity, and the flask is placed at the center of rotation. Top: Volume

average of the velocity plotted over time. Bottom: Fastest velocity plotted over time.

doi:10.1371/journal.pone.0170826.g004
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increasing rotational velocities. The largest shear stresses in the “bulk volume” are in the order

of a magnitude of 10 mPa. The highest shear stresses always appear along the flask’s wall. In

the simulations, they were around 50 mPa, 100 mPa and 200 to 300 mPa for rotational veloci-

ties of 40 deg/s, 60 deg/s and 90 deg/s, respectively. Thus, the shear stress appearing on the

RPM was in the range that provoked a cellular effect in previously published experiments

Fig 5. Shear stresses in the flask during three periods on the RPM for three different rotational velocities (40, 60 and 90 deg/s). Both frames

rotate with constant and equal velocity, and the flask is placed at the center of rotation. Top: Volume average of the shear stresses in the “bulk volume”

over time. The “bulk volume” is 4 mm smaller than the flask and thus has a 2 mm clearance from the flask wall. Middle: Maximum shear stresses in the

“bulk volume” over time. Bottom: Maximum shear stresses along the “cultivation surface” (the two largest flask walls).

doi:10.1371/journal.pone.0170826.g005
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(compare to Table 2). However, only a small portion of the cell population is exposed to the

highest shear stresses along the flask walls. This means that for adherent cells less than 5% of

the cell population is exposed to shear stresses greater than 50 mPa for rotational velocities up

to 60 deg/s. Even rotational velocities up to 90 deg/s do not expose more than 5% of the cell

population to shear stresses greater than 100 mPa.

Nevertheless, RPMs and clinostats are much appreciated tools in microgravity-related

research [21]. On the RPM, several cell types showed similar effects as under real microgravity

in space [24]. Furthermore, the RPM is becoming a frequently used instrument in non-space-

Fig 6. The ratio of the “cultivation surface” (the two largest flask walls) exposed to a shear stress larger than a certain threshold. The

thresholds are chosen at 10, 25, 50, 75 and 100 mPa. The time represents three periods on the RPM for three rotational velocities (40, 60 and 90 deg/s).

Both frames rotate with constant and equal velocity, and the flask is placed at the center of rotation.

doi:10.1371/journal.pone.0170826.g006
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related research fields, as the RPM can be used, for instance, for three-dimensional cell cultur-

ing (spheroid cell cluster) [26, 27] and in tissue engineering. The results presented here sug-

gest, however, that experiments on the RPM need to be designed carefully. Having a static

condition as a control group, as done in most experiments, does not allow one to separate

Fig 7. Convection on the RPM over three periods for three different rotational velocities (top: 40 deg/s; middle: 60 deg/s; bottom: 90 deg/s). Both

frames rotate with constant and equal velocity, and the flask is placed at the center of rotation. The flask was divided into two compartments, denoted as the

“y-positive compartment” (for y� 0) and “y-negative compartment” (for y < 0). A virtual variable was placed in the “y-positive compartment” only. Subse-

quently, the variable was left to mix by convection, and the average concentration in the two compartments was monitored. The rapid fluid motion leads to

thorough mixing within two to three periods (arrows).

doi:10.1371/journal.pone.0170826.g007
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gravitational from fluid dynamic effects. The enhanced convection supplies the cells quickly

with fresh medium and transports secreted (waste) products away. This can have a strong

influence on cell growth and cell behavior in general. Especially on the RPM, the mixing is

very efficient (Fig 7). In addition, shear stresses appearing within the cell culture flask can

affect the cells as well. Since the maximum shear stresses always appear along the flask’s wall,

adhered cells are generally exposed to higher shear stresses than suspended cells. Suspended

cells, which stay in the “bulk volume,” are, at maximum, exposed to shear stresses in the order

of a magnitude of 10 mPa. This does not hold if the cells temporarily come in close proximity

to the flask’s walls, either through sedimentation or convection. Adherent cells, in contrast, are

Table 2. Effects of shear stresses on various cells.

Shear Cell Effect Ref.

1.3. . .75.3 mPa ENaC overexpressing

Oocytes

Activated Epithelial Na+ Channels (ENaC) [35]

20. . .400 mPa Vascular endothelial cells Modulated cytosolic-free calcium [36]

20. . .17000 mPa Endothelial cell Activated K+ current [37]

60. . .1500 mPa Aortic endothelial cells Modulated expression of Cu/Zn superoxide dismutase [38]

100. . .1500 mPa Aortic endothelial cells Increases in pinocytotic rate [39]

120. . .1500 mPa Endothelial cell Induction of ecNOS mRNA in a dose-dependent manner [40]

150. . .1000 mPa Embryonic stem cells Increased the expression of vascular endothelial cell-specific markers at the protein

level and the mRNA level

[41]

160, 410, 820 mPa and

1.64 Pa

Chondrocytes Upregulated nitric oxide, membrane phosphatidylserine and nucleosomal degradation [42]

200 mPa Arterial vascular

endothelial cells

Induction of endothelial stress fibers [43]

350. . .11700 mPa Endothelial cells Stimulated mitogen-activated protein kinase [44]

500. . .1000 mPa Aortic endothelial cells Changes in cell morphology [45]

500. . .2500 Pa Aortic smooth muscle cells Reduced proliferation rate [46]

600. . .2500 mPa Endothelial cells Induced nitric oxide production [47]

600. . .2600 mPa Endothelial cells Reorganization of the cytoskeleton [48]

800. . .1500 mPa Vascular endothelial cell Cell alignment in the direction of flow without initiating the cell cycle [49]

1 Pa Osteoblasts Induced β-catenin signaling [50]

1. . .2 Pa Smooth muscle cell Inhibited migration [51]

1, 2 Pa Osteoblastic cells Produced higher magnitude and more abundant [Ca2+]i-oscillations than spontaneously [52]

1, 3, 8.5 Pa Endothelial cells Shape change and cytoskeleton reorganization [53]

1. . .8.5 Pa Vascular endothelial cells Orientation with the flow direction [54]

1.2 Pa Endothelial cells Reorganization of the surface topography [55,

56]

1.2 Pa Vascular endothelial cells Enhanced activation of transcription factors [57]

1.5 Pa Venous endothelial cells Stimulated phosphorylation of Akt [58]

1.52 Pa Endothelial cells Reorganization of the cytoskeleton [59]

1.6 Pa Chondrocytes Down-regulation of the aggrecan gene expression [60]

1.6 Pa Chondrocytes Stimulated glycosaminoglycan synthesis [61]

1.64 Pa Chondrocytes Upregulated NO synthase gene expression and increased NO release; inhibited type II

collagen and aggrecan mRNA levels

[62]

1.7. . .2.0 Pa Osteoblast-like SaOS-2

cells

Increased TGF-β1 mRNA expression [63]

2 Pa Endothelial cells Shape change and cytoskeletal remodeling [64]

2 Pa Osteoblast Increased proliferation [65]

3.5 Pa Chondrocytes Promoted chondrocyte proliferation [66]

doi:10.1371/journal.pone.0170826.t002
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exposed to maximal shear stresses around 50 mPa, 100 mPa and 300 mPa for rotational veloci-

ties of 40 deg/s, 60 deg/s and 90 deg/s, respectively. Depending on the rotational velocity,

about 20% or more of the cell population is exposed to shear stresses larger than 10 mPa for

rotational velocities of 40 deg/s, 25 mPa for 60 deg/s and 50 mPa for 90 deg/s. For experiments

that require one to distinguish between gravitational and fluid dynamic effect, we therefore

propose to introduce an additional control condition with cells being exposed to fluid move-

ments, such as on a swing or a rocker. Both machines cause enhanced convection but will not

rotate the cell culture flask upside down. Therefore, the Earth’s gravity vector always points

predominantly in one direction. However, swings and rockers cannot fully mimic the velocity

profile seen on RPMs.

Several scientists have excluded fluid motion from gravitational effects by using controls

placed on a shaker. In several studies, the test samples were compared to shaken control samples

in clinostat [67–70] and RPM experiments [71, 72]. Introducing a shaken control beside the

static control allows one to make a distinction between gravitational and fluid-mixing effects.

Mouse embryonic stem cells showed increased proliferation on the clinostat and the shaker

compared to a static control [73]. However, in the same study, these cells revealed a decreased

differentiation ability, which could not be explained by simple mixing. Mouse myoblast showed

increased cell proliferation and modest inhibition of differentiation on the clinostat, which

could be partly explained by a stirred control group [74]. A study with an Arabidopsis thaliana
cell line detected an increased number of cells in the G1 phase on clinorotated and shaken sam-

ples. At the same time, only in the clinostat group, a decreased nucleolus area staining could

be observed, but not in the shaken and non-shaken control groups [75]. Similar several RPM

experiments on mammalian cells have shown effects due to RPM exposure, which could not be

explained by fluid dynamic medium mixing alone [76–78].

In conclusion, the RPM and the clinostat are well known as reliable tools in gravitational

research. Furthermore, they have the potential to expand into new applications of the mechan-

obiological research field. However, depending on the experiment, the fluid dynamic on the

RPM cannot be neglected and needs to be taken into consideration while designing the experi-

ment and analyzing the results. Using appropriate control groups, this can give clues to possi-

ble undesired side effects. Due to the nature of the RPM, fluid motion within the cell culture

flask is not avoidable. Nevertheless, the results presented here now provide scientists with an

idea of the convection and shear stresses that have to be expected for such experiments.
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7. Wang J, Lü D, Mao D, Long M. Mechanomics: an emerging field between biology and biomechanics.

Protein Cell. 2014:1–14.

8. Bershadsky AD, Balaban NQ, Geiger B. Adhesion-dependent cell mechanosensitivity. Annual review of

cell and developmental biology. 2003; 19:677–95. doi: 10.1146/annurev.cellbio.19.111301.153011

PMID: 14570586

9. Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E, et al. Mechanosensing in actin

stress fibers revealed by a close correlation between force and protein localization. Journal of cell sci-

ence. 2009; 122(Pt 10):1665–79. doi: 10.1242/jcs.042986 PMID: 19401336

10. Geiger B, Bershadsky A. Assembly and mechanosensory function of focal contacts. Current opinion in

cell biology. 2001; 13(5):584–92. PMID: 11544027

11. Little WC, Smith ML, Ebneter U, Vogel V. Assay to mechanically tune and optically probe fibrillar fibro-

nectin conformations from fully relaxed to breakage. Matrix biology: journal of the International Society

for Matrix Biology. 2008; 27(5):451–61.

12. Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology.

CMAJ: Canadian Medical Association journal = journal de l’Association medicale canadienne. 2009;

180(13):1317–23. PubMed Central PMCID: PMC2696527. doi: 10.1503/cmaj.090628 PMID: 19509005

13. Fitts RH, Trappe SW, Costill DL, Gallagher PM, Creer AC, Colloton PA, et al. Prolonged space flight-

induced alterations in the structure and function of human skeletal muscle fibres. The Journal of Physiol-

ogy. 2010; 588(18):3567–92

14. Riley DA, Bain JL, Thompson JL, Fitts RH, Widrick JJ, Trappe SW, et al. Decreased thin filament den-

sity and length in human atrophic soleus muscle fibers after spaceflight. Journal of applied physiology.

2000; 88(2):567–72. PMID: 10658024

15. Trappe SW, Trappe TA, Lee GA, Widrick JJ, Costill DL, Fitts RH. Comparison of a space shuttle flight

(STS-78) and bed rest on human muscle function. Journal of applied physiology. 2001; 91(1):57–64.

PMID: 11408413

16. Sayson JV, Hargens AR. Pathophysiology of low back pain during exposure to microgravity. Aviation,

space, and environmental medicine. 2008; 79(4):365–73. PMID: 18457293

17. Zwart SR, Pierson D, Mehta S, Gonda S, Smith SM. Capacity of omega-3 fatty acids or eicosapentae-

noic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells

to bed rest to astronauts. Journal of bone and mineral research: the official journal of the American Soci-

ety for Bone and Mineral Research. 2010; 25(5):1049–57.

Fluid Dynamics on the Random Positioning Machine

PLOS ONE | DOI:10.1371/journal.pone.0170826 January 30, 2017 16 / 19

http://dx.doi.org/10.1146/annurev.biophys.35.040405.102013
http://dx.doi.org/10.1146/annurev.biophys.35.040405.102013
http://www.ncbi.nlm.nih.gov/pubmed/16689645
http://dx.doi.org/10.1038/nrm1890
http://www.ncbi.nlm.nih.gov/pubmed/16607289
http://dx.doi.org/10.1016/j.ceb.2009.01.002
http://www.ncbi.nlm.nih.gov/pubmed/19217273
http://dx.doi.org/10.1007/s10237-005-0012-z
http://www.ncbi.nlm.nih.gov/pubmed/16489478
http://dx.doi.org/10.1016/S1937-6448(08)01207-0
http://www.ncbi.nlm.nih.gov/pubmed/19081546
http://dx.doi.org/10.1146/annurev.cellbio.19.111301.153011
http://www.ncbi.nlm.nih.gov/pubmed/14570586
http://dx.doi.org/10.1242/jcs.042986
http://www.ncbi.nlm.nih.gov/pubmed/19401336
http://www.ncbi.nlm.nih.gov/pubmed/11544027
http://dx.doi.org/10.1503/cmaj.090628
http://www.ncbi.nlm.nih.gov/pubmed/19509005
http://www.ncbi.nlm.nih.gov/pubmed/10658024
http://www.ncbi.nlm.nih.gov/pubmed/11408413
http://www.ncbi.nlm.nih.gov/pubmed/18457293


18. Bailey JF, Hargens AR, Cheng KK, Lotz JC. Effect of microgravity on the biomechanical properties of

lumbar and caudal intervertebral discs in mice. Journal of biomechanics. 2014; 47(12):2983–8. doi: 10.

1016/j.jbiomech.2014.07.005 PMID: 25085756

19. Maynard JA. The effects of space flight on the composition of the intervertebral disc. The Iowa ortho-

paedic journal. 1994; 14:125–33. PubMed Central PMCID: PMC2329046. PMID: 7719767

20. Sinha RK, Shah SA, Hume EL, Tuan RS. The effect of a 5-day space flight on the immature rat spine.

The spine journal: official journal of the North American Spine Society. 2002; 2(4):239–43.

21. Brungs S, Egli M, Wuest SL, M. Christianen PC, W. A. van Loon JJ, Ngo Anh TJ, et al. Facilities for Sim-

ulation of Microgravity in the ESA Ground-Based Facility Programme. Microgravity science and technol-

ogy. 2016:1–13.

22. Borst AG, van Loon JJWA. Technology and Developments for the Random Positioning Machine, RPM.

Microgravity science and technology. 2008; 21(4):287–92.

23. Mesland D. Novel ground-based facilities for research in the effects of weight. ESA Microgravity News.

1996; 9:5–10.

24. Wuest SL, Richard S, Kopp S, Grimm D, Egli M. Simulated Microgravity: Critical Review on the Use of

Random Positioning Machines for Mammalian Cell Culture. BioMed research international. 2015;

2015:8.

25. Patel MJ, Chang KH, Sykes MC, Talish R, Rubin C, Jo H. Low magnitude and high frequency mechani-

cal loading prevents decreased bone formation responses of 2T3 preosteoblasts. Journal of cellular bio-

chemistry. 2009; 106(2):306–16. PubMed Central PMCID: PMC2737721. doi: 10.1002/jcb.22007

PMID: 19125415

26. Grimm D, Wehland M, Pietsch J, Aleshcheva G, Wise P, van Loon J, et al. Growing tissues in real and

simulated microgravity: new methods for tissue engineering. Tissue engineering Part B, Reviews. 2014;

20(6):555–66. PubMed Central PMCID: PMC4241976. doi: 10.1089/ten.TEB.2013.0704 PMID:

24597549

27. Becker JL, Souza GR. Using space-based investigations to inform cancer research on Earth. Nature

reviews Cancer. 2013; 13(5):315–27. doi: 10.1038/nrc3507 PMID: 23584334

28. Aleshcheva G, Bauer J, Hemmersbach R, Egli M, Wehland M, Grimm D. Tissue Engineering of Carti-

lage on Ground-Based Facilities. Microgravity science and technology. 2015:1–9.

29. Wuest S, Richard S, Walther I, Furrer R, Anderegg R, Sekler J, et al. A Novel Microgravity Simulator

Applicable for Three-Dimensional Cell Culturing. Microgravity science and technology. 2014:1–12.

30. Leguy CA, Delfos R, Pourquie MJ, Poelma C, Krooneman J, Westerweel J, et al. Fluid motion for micro-

gravity simulations in a random positioning machine. Gravitational and space biology bulletin: publica-

tion of the American Society for Gravitational and Space Biology. 2011; 25(1).

31. Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal.

1994; 32(8):1598–605.

32. Langtry R, Menter F. Transition modeling for general CFD applications in aeronautics. AIAA paper.

2005; 522(2005):14.

33. van Loon JJ, Folgering EH, Bouten CV, Veldhuijzen JP, Smit TH. Inertial shear forces and the use of

centrifuges in gravity research. What is the proper control? Journal of biomechanical engineering. 2003;

125(3):342–6. PMID: 12929238

34. Klaus DM, Todd P, Schatz A. Functional weightlessness during clinorotation of cell suspensions.

Advances in space research: the official journal of the Committee on Space Research. 1998; 21(8–

9):1315–8.

35. Carattino MD, Sheng S, Kleyman TR. Epithelial Na+ channels are activated by laminar shear stress.

The Journal of biological chemistry. 2004; 279(6):4120–6. doi: 10.1074/jbc.M311783200 PMID:

14625286

36. Shen J, Luscinskas FW, Connolly A, Dewey CF, Jr., Gimbrone MA, Jr. Fluid shear stress modulates

cytosolic free calcium in vascular endothelial cells. The American journal of physiology. 1992; 262(2 Pt

1):C384–90.

37. Olesen SP, Clapham DE, Davies PF. Haemodynamic shear stress activates a K+ current in vascular

endothelial cells. Nature. 1988; 331(6152):168–70. doi: 10.1038/331168a0 PMID: 2448637

38. Inoue N, Ramasamy S, Fukai T, Nerem RM, Harrison DG. Shear stress modulates expression of Cu/Zn

superoxide dismutase in human aortic endothelial cells. Circulation research. 1996; 79(1):32–7. PMID:

8925565

39. Davies PF, Dewey CF Jr., Bussolari SR, Gordon EJ, Gimbrone MA Jr. Influence of hemodynamic forces

on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells.

The Journal of clinical investigation. 1984; 73(4):1121–9. PubMed Central PMCID: PMC425126. doi:

10.1172/JCI111298 PMID: 6707208

Fluid Dynamics on the Random Positioning Machine

PLOS ONE | DOI:10.1371/journal.pone.0170826 January 30, 2017 17 / 19

http://dx.doi.org/10.1016/j.jbiomech.2014.07.005
http://dx.doi.org/10.1016/j.jbiomech.2014.07.005
http://www.ncbi.nlm.nih.gov/pubmed/25085756
http://www.ncbi.nlm.nih.gov/pubmed/7719767
http://dx.doi.org/10.1002/jcb.22007
http://www.ncbi.nlm.nih.gov/pubmed/19125415
http://dx.doi.org/10.1089/ten.TEB.2013.0704
http://www.ncbi.nlm.nih.gov/pubmed/24597549
http://dx.doi.org/10.1038/nrc3507
http://www.ncbi.nlm.nih.gov/pubmed/23584334
http://www.ncbi.nlm.nih.gov/pubmed/12929238
http://dx.doi.org/10.1074/jbc.M311783200
http://www.ncbi.nlm.nih.gov/pubmed/14625286
http://dx.doi.org/10.1038/331168a0
http://www.ncbi.nlm.nih.gov/pubmed/2448637
http://www.ncbi.nlm.nih.gov/pubmed/8925565
http://dx.doi.org/10.1172/JCI111298
http://www.ncbi.nlm.nih.gov/pubmed/6707208


40. Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, et al. Regulation of endothelial

cell nitric oxide synthase mRNA expression by shear stress. The American journal of physiology. 1995;

269(6 Pt 1):C1371–8.

41. Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, et al. Fluid shear stress induces

differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. American

journal of physiology Heart and circulatory physiology. 2005; 288(4):H1915–24. doi: 10.1152/ajpheart.

00956.2004 PMID: 15576436

42. Lee MS, Trindade MC, Ikenoue T, Goodman SB, Schurman DJ, Smith RL. Regulation of nitric oxide

and bcl-2 expression by shear stress in human osteoarthritic chondrocytes in vitro. Journal of cellular

biochemistry. 2003; 90(1):80–6. doi: 10.1002/jcb.10611 PMID: 12938158

43. Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D. Induction of human vascu-

lar endothelial stress fibres by fluid shear stress. Nature. 1984; 307(5952):648–9. PMID: 6537993

44. Tseng H, Peterson TE, Berk BC. Fluid shear stress stimulates mitogen-activated protein kinase in endo-

thelial cells. Circulation research. 1995; 77(5):869–78. PMID: 7554140

45. Dewey CF Jr., Bussolari SR, Gimbrone MA Jr., Davies PF. The dynamic response of vascular endothe-

lial cells to fluid shear stress. Journal of biomechanical engineering. 1981; 103(3):177–85. PMID:

7278196

46. Papadaki M, McIntire LV, Eskin SG. Effects of shear stress on the growth kinetics of human aortic

smooth muscle cells in vitro. Biotechnology and bioengineering. 1996; 50(5):555–61. doi: 10.1002/

(SICI)1097-0290(19960605)50:5<555::AID-BIT10>3.0.CO;2-I PMID: 18627018

47. Kuchan MJ, Jo H, Frangos JA. Role of G proteins in shear stress-mediated nitric oxide production by

endothelial cells. The American journal of physiology. 1994; 267(3 Pt 1):C753–8.

48. Wechezak AR, Viggers RF, Sauvage LR. Fibronectin and F-actin redistribution in cultured endothelial

cells exposed to shear stress. Laboratory investigation; a journal of technical methods and pathology.

1985; 53(6):639–47. PMID: 4068668

49. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr., Gimbrone MA Jr. Turbulent fluid shear stress

induces vascular endothelial cell turnover in vitro. Proceedings of the National Academy of Sciences of

the United States of America. 1986; 83(7):2114–7. PubMed Central PMCID: PMC323241. PMID:

3457378

50. Norvell SM, Alvarez M, Bidwell JP, Pavalko FM. Fluid shear stress induces beta-catenin signaling in

osteoblasts. Calcified tissue international. 2004; 75(5):396–404. doi: 10.1007/s00223-004-0213-y

PMID: 15592796

51. Garanich JS, Pahakis M, Tarbell JM. Shear stress inhibits smooth muscle cell migration via nitric oxide-

mediated downregulation of matrix metalloproteinase-2 activity. American journal of physiology Heart

and circulatory physiology. 2005; 288(5):H2244–52. doi: 10.1152/ajpheart.00428.2003 PMID:

15637127

52. Donahue SW, Jacobs CR, Donahue HJ. Flow-induced calcium oscillations in rat osteoblasts are age,

loading frequency, and shear stress dependent. American journal of physiology Cell physiology. 2001;

281(5):C1635–41. PMID: 11600427

53. Sato M, Levesque MJ, Nerem RM. Micropipette aspiration of cultured bovine aortic endothelial cells

exposed to shear stress. Arteriosclerosis. 1987; 7(3):276–86. PMID: 3593075

54. Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial cells in response to

shear stress. Journal of biomechanical engineering. 1985; 107(4):341–7. PMID: 4079361

55. Barbee KA, Davies PF, Lal R. Shear stress-induced reorganization of the surface topography of living

endothelial cells imaged by atomic force microscopy. Circulation research. 1994; 74(1):163–71. PMID:

8261591

56. Barbee KA, Mundel T, Lal R, Davies PF. Subcellular distribution of shear stress at the surface of flow-

aligned and nonaligned endothelial monolayers. The American journal of physiology. 1995; 268(4 Pt 2):

H1765–72.

57. Nagel T, Resnick N, Dewey CF Jr., Gimbrone MA Jr. Vascular endothelial cells respond to spatial gradi-

ents in fluid shear stress by enhanced activation of transcription factors. Arteriosclerosis, thrombosis,

and vascular biology. 1999; 19(8):1825–34. PMID: 10446060

58. Dimmeler S, Assmus B, Hermann C, Haendeler J, Zeiher AM. Fluid shear stress stimulates phosphory-

lation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circulation research.

1998; 83(3):334–41. PMID: 9710127

59. Galbraith CG, Skalak R, Chien S. Shear stress induces spatial reorganization of the endothelial cell

cytoskeleton. Cell motility and the cytoskeleton. 1998; 40(4):317–30. doi: 10.1002/(SICI)1097-0169

(1998)40:4<317::AID-CM1>3.0.CO;2-8 PMID: 9712262

Fluid Dynamics on the Random Positioning Machine

PLOS ONE | DOI:10.1371/journal.pone.0170826 January 30, 2017 18 / 19

http://dx.doi.org/10.1152/ajpheart.00956.2004
http://dx.doi.org/10.1152/ajpheart.00956.2004
http://www.ncbi.nlm.nih.gov/pubmed/15576436
http://dx.doi.org/10.1002/jcb.10611
http://www.ncbi.nlm.nih.gov/pubmed/12938158
http://www.ncbi.nlm.nih.gov/pubmed/6537993
http://www.ncbi.nlm.nih.gov/pubmed/7554140
http://www.ncbi.nlm.nih.gov/pubmed/7278196
http://dx.doi.org/10.1002/(SICI)1097-0290(19960605)50:5&lt;555::AID-BIT10&gt;3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1097-0290(19960605)50:5&lt;555::AID-BIT10&gt;3.0.CO;2-I
http://www.ncbi.nlm.nih.gov/pubmed/18627018
http://www.ncbi.nlm.nih.gov/pubmed/4068668
http://www.ncbi.nlm.nih.gov/pubmed/3457378
http://dx.doi.org/10.1007/s00223-004-0213-y
http://www.ncbi.nlm.nih.gov/pubmed/15592796
http://dx.doi.org/10.1152/ajpheart.00428.2003
http://www.ncbi.nlm.nih.gov/pubmed/15637127
http://www.ncbi.nlm.nih.gov/pubmed/11600427
http://www.ncbi.nlm.nih.gov/pubmed/3593075
http://www.ncbi.nlm.nih.gov/pubmed/4079361
http://www.ncbi.nlm.nih.gov/pubmed/8261591
http://www.ncbi.nlm.nih.gov/pubmed/10446060
http://www.ncbi.nlm.nih.gov/pubmed/9710127
http://dx.doi.org/10.1002/(SICI)1097-0169(1998)40:4&lt;317::AID-CM1&gt;3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1097-0169(1998)40:4&lt;317::AID-CM1&gt;3.0.CO;2-8
http://www.ncbi.nlm.nih.gov/pubmed/9712262


60. Hung CT, Henshaw DR, Wang CC, Mauck RL, Raia F, Palmer G, et al. Mitogen-activated protein

kinase signaling in bovine articular chondrocytes in response to fluid flow does not require calcium

mobilization. Journal of biomechanics. 2000; 33(1):73–80. PMID: 10609520

61. Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, et al. Effects of fluid-induced shear on

articular chondrocyte morphology and metabolism in vitro. Journal of orthopaedic research: official pub-

lication of the Orthopaedic Research Society. 1995; 13(6):824–31.

62. Lee MS, Trindade MC, Ikenoue T, Schurman DJ, Goodman SB, Smith RL. Effects of shear stress on

nitric oxide and matrix protein gene expression in human osteoarthritic chondrocytes in vitro. Journal of

orthopaedic research: official publication of the Orthopaedic Research Society. 2002; 20(3):556–61.

63. Sakai K, Mohtai M, Iwamoto Y. Fluid shear stress increases transforming growth factor beta 1 expres-

sion in human osteoblast-like cells: modulation by cation channel blockades. Calcified tissue interna-

tional. 1998; 63(6):515–20. PMID: 9817947

64. Malek AM, Izumo S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in

response to fluid shear stress. Journal of cell science. 1996; 109 (Pt 4):713–26.

65. Kapur S, Mohan S, Baylink DJ, Lau KH. Fluid shear stress synergizes with insulin-like growth factor-I

(IGF-I) on osteoblast proliferation through integrin-dependent activation of IGF-I mitogenic signaling

pathway. The Journal of biological chemistry. 2005; 280(20):20163–70. doi: 10.1074/jbc.M501460200

PMID: 15778506

66. Malaviya P, Nerem RM. Fluid-induced shear stress stimulates chondrocyte proliferation partially medi-

ated via TGF-beta1. Tissue engineering. 2002; 8(4):581–90. doi: 10.1089/107632702760240508

PMID: 12201998

67. Arunasri K, Adil M, Venu Charan K, Suvro C, Himabindu Reddy S, Shivaji S. Effect of simulated micro-

gravity on E. coli K12 MG1655 growth and gene expression. PloS one. 2013; 8(3):e57860. PubMed

Central PMCID: PMC3589462. doi: 10.1371/journal.pone.0057860 PMID: 23472115

68. Ryu HW, Choi SH, Namkoong S, Jang IS, Seo DH, Choi I, et al. Simulated microgravity contributes to

autophagy induction by regulating AMP-activated protein kinase. DNA and cell biology. 2014; 33

(3):128–35. doi: 10.1089/dna.2013.2089 PMID: 24387300

69. Siamwala JH, Majumder S, Tamilarasan KP, Muley A, Reddy SH, Kolluru GK, et al. Simulated micro-

gravity promotes nitric oxide-supported angiogenesis via the iNOS-cGMP-PKG pathway in macrovas-

cular endothelial cells. FEBS Lett. 2010; 584(15):3415–23. doi: 10.1016/j.febslet.2010.06.039 PMID:

20600009

70. Siamwala JH, Reddy SH, Majumder S, Kolluru GK, Muley A, Sinha S, et al. Simulated microgravity per-

turbs actin polymerization to promote nitric oxide-associated migration in human immortalized Eahy926

cells. Protoplasma. 2010; 242(1–4):3–12. doi: 10.1007/s00709-010-0114-z PMID: 20174953

71. Majumder S, Siamwala JH, Srinivasan S, Sinha S, Sridhara SR, Soundararajan G, et al. Simulated

microgravity promoted differentiation of bipotential murine oval liver stem cells by modulating BMP4/

Notch1 signaling. Journal of cellular biochemistry. 2011; 112(7):1898–908. doi: 10.1002/jcb.23110

PMID: 21433062

72. Rudimov EG, Buravkov SV, Andreeva EP, Buravkova LB. Effect of proinflammatory activation on F-

actin distribution in cultured human endothelial cells under conditions of experimental microgravity. Bul-

letin of experimental biology and medicine. 2015; 158(4):573–80. doi: 10.1007/s10517-015-2809-9

PMID: 25705044

73. Buravkova LB, Romanov YA, Konstantinova NA, Buravkov SV, Gershovich YG, Grivennikov IA. Cul-

tured stem cells are sensitive to gravity changes. Acta astronautica. 2008; 63(5–6):603–8.

74. Slentz DH, Truskey GA, Kraus WE. Effects of chronic exposure to simulated microgravity on skeletal

muscle cell proliferation and differentiation. In vitro cellular & developmental biology Animal. 2001; 37

(3):148–56.

75. Kamal KY, Hemmersbach R, Medina FJ, Herranz R. Proper selection of 1 g controls in simulated micro-

gravity research as illustrated with clinorotated plant cell suspension cultures. Life sciences in space

research. 2015; 5:47–52. doi: 10.1016/j.lssr.2015.04.004 PMID: 26177849

76. Gershovich PM, Gershovich Iu G, Buravkova LB. Cytoskeleton structures and adhesion properties of

human stromal precursors under conditions of simulated microgravity. Tsitologiia. 2009; 51(11):896–

904. PMID: 20058807

77. Gershovich YG, Buravkova LB. Effects of microgravity simulation on the production of interleukins in

culture of human mesenchymal stromal cells. Hum Physiol. 2011; 37(7):860–5.

78. Sokolovskaya AA, Ignashkova TI, Bochenkova AV, Moskovtsev AA, Baranov VM, Kubatiev AA. Effects

of simulated microgravity on cell cycle in human endothelial cells. Acta astronautica. 2014; 99:16–23.

Fluid Dynamics on the Random Positioning Machine

PLOS ONE | DOI:10.1371/journal.pone.0170826 January 30, 2017 19 / 19

http://www.ncbi.nlm.nih.gov/pubmed/10609520
http://www.ncbi.nlm.nih.gov/pubmed/9817947
http://dx.doi.org/10.1074/jbc.M501460200
http://www.ncbi.nlm.nih.gov/pubmed/15778506
http://dx.doi.org/10.1089/107632702760240508
http://www.ncbi.nlm.nih.gov/pubmed/12201998
http://dx.doi.org/10.1371/journal.pone.0057860
http://www.ncbi.nlm.nih.gov/pubmed/23472115
http://dx.doi.org/10.1089/dna.2013.2089
http://www.ncbi.nlm.nih.gov/pubmed/24387300
http://dx.doi.org/10.1016/j.febslet.2010.06.039
http://www.ncbi.nlm.nih.gov/pubmed/20600009
http://dx.doi.org/10.1007/s00709-010-0114-z
http://www.ncbi.nlm.nih.gov/pubmed/20174953
http://dx.doi.org/10.1002/jcb.23110
http://www.ncbi.nlm.nih.gov/pubmed/21433062
http://dx.doi.org/10.1007/s10517-015-2809-9
http://www.ncbi.nlm.nih.gov/pubmed/25705044
http://dx.doi.org/10.1016/j.lssr.2015.04.004
http://www.ncbi.nlm.nih.gov/pubmed/26177849
http://www.ncbi.nlm.nih.gov/pubmed/20058807

