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Elimination of potential self-reactiveT cells in the thymus is crucial for preventing the onset
of autoimmune diseases. Epithelial cell subsets localized in thymic medulla [medullary
thymic epithelial cells (mTECs)] contribute to this process by supplying a wide range of
self-antigens that are otherwise expressed in a tissue-specific manner (TSAs). Expres-
sion of some TSAs in mTECs is controlled by the autoimmune regulator (AIRE) protein, of
which dysfunctional mutations are the causative factor of autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (APECED). In addition to the elimination of self-reactive
T cells, recent studies indicated roles of mTECs in the development of Foxp3-positive reg-
ulatory T cells, which suppress autoimmunity and excess immune reactions in peripheral
tissues.TheTNF family cytokines, RANK ligand, CD40 ligand, and lymphotoxin were found
to promote the differentiation of AIRE- andTSA-expressing mTECs. Furthermore, activation
of NF-κB is essential for mTEC differentiation. In this mini-review, we focus on molecular
mechanisms that regulate induction of AIRE and TSA expression and discuss possible
contributions of these mechanisms to prevent the onset of autoimmune diseases.
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INTRODUCTION
The thymus contributes to self-tolerance of T cells by eliminating
potentially self-reactive T cells and generating immunosuppressive
T cells, which are essential for preventing the onset of autoimmune
disease. Epithelial cells localized in the thymic medulla [medullary
thymic epithelial cells (mTECs)] are non-hematopoietic in origin
and play non-redundant roles in the elimination of self-reactive
T cells (1–4). Recent studies have revealed that mTECs also
contribute to the selection and survival of immunosuppressive
Foxp3-positive regulatory T cells (Tregs) (5–8).

Medullary thymic epithelial cells express several functional
molecules required for the selection of self-tolerant T cells and
Tregs (3). Mature types of mTECs express MHC molecules and
co-stimulatory molecules essential for antigen presentation to
developing T cells. In addition, mTECs secrete several types of
chemokines (e.g., CCL19, CCL21, and CCL22) that attract T
cells or dendritic cells in the medulla (2, 9). Moreover, a recent
study has shown that the expression of CD70 in mTECs enhances
the development and survival of Tregs via an interaction with
its receptor, CD27, which is expressed on thymic T cells (5).
A key feature of mTECs is their ability to express hundreds of
self-antigens that are normally expressed in a tissue-specific man-
ner (TSAs) (4, 10). TSAs are processed and directly presented by
mTECs or indirectly presented by thymic DCs receiving TSAs from
mTECs (4, 7, 11–13). T cells that recognize TSAs with high avid-
ity undergo apoptosis (so-called negative selection) or survive as
regulatory T cells (4, 14). Many studies have suggested significant

roles of mTEC-dependent self-tolerance in preventing the onset of
some autoimmune diseases in humans. Expression of some TSAs
requires a nuclear protein autoimmune regulator (AIRE), the dys-
functional mutations of which are responsible for an inherited
human autoimmune disease, autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (APECED) (15, 16). Whereas
the expression of AIRE mRNA is detected in different cell types,
AIRE expression at the protein level is remarkably high in mTECs
(17). A previous study using AIRE-deficient mice provided evi-
dence that autoimmunity, provoked by dysfunction of AIRE, is
thymic stroma-dependent (18). In addition to APECED, recent
studies have demonstrated that single-nucleotide polymorphisms
(SNPs) in the AIRE gene are associated with rheumatoid arthri-
tis (19, 20). In addition to mutations in the AIRE gene, reduced
expression of the muscle acetyl choline receptor (CHRNA1) in
mTECs was shown to be associated with the onset of myasthe-
nia gravis (21). Moreover, impairment of the mTEC-dependent
tolerance might explain the relationship between myocarditis and
autoimmunity (22). These findings also imply that the onsets of
various human autoimmune diseases could be related to dysreg-
ulation of mTEC-dependent tolerance. Interestingly, in addition
to relationships with autoimmune diseases, recent studies have
uncovered roles for mTEC-dependent T-cell tolerance in tumor
tolerance (8, 23, 24).

Because expression of AIRE and TSAs is characteristic of
mTEC, mTECs should harbor specific mechanisms to direct AIRE
and TSA expression. Expression of TSAs appears to be correlated
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with the differentiation of mTECs. In this mini-review, we spe-
cially focus on molecular mechanisms regulating the expression
of AIRE and TSAs and the process of mTEC differentiation.

DEVELOPMENT OF mTECs
Thymic epithelial cells are classified into mTECs and cortical
thymic epithelial cells (cTECs) (2). Several lines of evidence
indicate the existence of a bi-potent TEC progenitor capable of
differentiating into mTECs and cTECs in the fetal and adult thy-
mus (25–29). The bi-potent TEC progenitor seems to give rise
to each progenitor of mTECs and cTECs in the next stage (30,
31). Recent studies revealed that mTECs differentiate from prog-
enitors expressing cTEC-markers (32, 33). These data imply that
mechanisms determining the mTEC commitment suppress the
cTEC-driving program. However, master molecules that decide
the fate of the bi-potent TEC progenitor expressing cTEC-markers
to the mTEC lineage have not been determined yet.

Currently, mTECs are classified based on the expression of
MHC II, CD80, AIRE, and involucrin (Figure 1). mTECs (typ-
ically defined as CD45− EpCAM+ Ly51− and UEA-1+ by flow
cytometric analysis) in adult mice are divided into two sub-
populations, according to the expression levels of MHC II and
CD80 (34). mTECs expressing high levels of MHC II and CD80
(mTEChi) express a more diverse set of TSAs than mTECs express-
ing lower levels of MHC II and CD80 (mTEClo) do (35). Moreover,
precursor-product relationship analysis has suggested that the
mTEClo fraction can differentiate into mTEChi (36, 37). There-
fore, the mTEChi fraction would be the more mature type of mTEC
than mTEClo.

The mTEChi fraction is further separated on the basis of
AIRE expression (36, 38). Because previous studies have indi-
cated that the AIRE-expressing mTECshi (AIRE+ mTEChi) are
postmitotic and susceptible to apoptosis (36), AIRE+ mTECshi

are postulated to be the more differentiated cell types than
AIRE-negative mTECshi. mTECs expressing involucrin, a marker
of terminally differentiated keratinocytes, are considered to be
terminally differentiated mTECs that may be derived from
AIRE+mTEChi (39, 40).

REGULATION OF AIRE mRNA EXPRESSION
Molecular mechanisms regulating the expression of AIRE, which
are likely critical for preventing autoimmunity, remain unclear.
In the fetal thymus, expression of AIRE starts at embryonic day
14.5 (41). Consistently, mature mTECs emerge around this embry-
onic day (42). Thus, AIRE expression seems to be closely linked
to mTEC differentiation. However, because mTEChi is separated
into AIRE+ and AIRE-fractions, the mTEC differentiation mech-
anism might be necessary but is not entirely sufficient for AIRE
expression.

A study using a luciferase reporter assay identified a plausi-
ble minimal promoter region of the AIRE gene (43). This region
contains binding sequences for Sp1, AP-1, NF-Y, and ETS fam-
ily of transcription factors. Indeed, luciferase reporter analysis
suggested regulation of the AIRE gene promoter by ETS family
proteins (44). However, in vivo genetic studies are necessary to
prove that these sequence-specific transcription factors are critical
for the regulation of AIRE expression.

FIGURE 1 | Proposed model for differentiation of mTECs. Both mTECs
and cTECs are generated from a bi-potent progenitor in the fetal and adult
thymus. mTECs are classified by expression of MHC class II (MHC II),
CD80, AIRE, and involucrin. mTECs expressing low levels of MHC II and
CD80 are considered immature and give rise to mature mTECs, expressing
high levels of MHC II and CD80, and a more diverse set of tissue-specific
antigens (TSAs). MHC II-high and CD80-high mature mTECs are further
separated into AIRE-positive and AIRE-negative subpopulations.
AIRE-positive mature mTECs are postmitotic and undergo apoptosis or
otherwise differentiate into involucrin-positive mTECs.

The promoter region of AIRE contains a high ratio of CpG sites
(43). These CpG sites are hypermethylated in established cell lines
defective in the AIRE expression. A subsequent study showed that
these CpG sites are hypomethylated in isolated mTECs compared
to thymocytes (45). These findings suggest that DNA demethyla-
tion might be prerequisite for AIRE expression. However, interest-
ingly, hypomethylation was also observed in cTECs and thymoma
with defective AIRE expression (45). Hence, DNA hypomethyla-
tion appears to be required but not sufficient for inducing AIRE
expression.

Overall, AIRE expression seems to be regulated by combi-
nations of chromatin modification and sequence-specific tran-
scription factors. However, precise mechanisms and regulatory
molecules remain to be determined.

REGULATION OF TSA mRNA EXPRESSION
TSA expression appears to be regulated by complicated mecha-
nisms. Single-cell PCR analyses revealed a stochastic nature of TSA
expression in mTECs (38, 46). Each TSA is expressed in a subset of
mTECs (38, 46). The frequency of mTECs expressing a particular
TSA was different, depending on the TSA (38, 46). Interestingly,
various combinations of TSAs are expressed in individual mTECs
(38, 46). These studies suggest that regulatory mechanisms of TSA
expression in mTECs are different from those used in inherent
tissues.

Several studies suggest that TSA expressions are epigenetically
controlled. A comprehensive mRNA expression study revealed
that TSA gene loci tend to co-localize in chromosomal clus-
ters (35, 47). Moreover, genomic imprinting of the Igf2 gene, a
TSA, was lost in mTECs (35), implicating the involvement of
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a DNA demethylation mechanism in TSA expression. Interest-
ingly, another imprinted gene, Cdkn1c, was not affected. These
data imply the existence of mTEC-specific mechanisms for
demethylation of DNA.

Control of TSA gene expression by AIRE has been intensively
studied (48–50). Several studies have revealed a function of AIRE
as a transcription factor that directly promotes TSA expression
(51, 52). Furthermore, AIRE binds to hypomethylated Histone 3
Lys 4 (H3K4) through its plant homology domain (53, 54). This
finding suggests that AIRE modifies the chromatin structure in the
TSA genes. AIRE also binds to DNA-PK (55–57), which functions
in the repair of DNA-double strand breakage. A study using an
mTEC cell line suggested that interactions of AIRE with H3K4
and DNA-PK are critical in recruiting AIRE to TSA gene loci and
promoting TSA expression (57). Additionally, it was reported that
AIRE interacts with P-TEFb, a component of the super elongation
complex (58). It is generally accepted that transcription elonga-
tion, via the release of “paused” RNA polymerase II, is critical for
the regulation of many genes (58, 59). AIRE may recruit P-TEFb
to the TSA gene locus and promote elongation of the arrested TSA
transcripts by releasing RNA polymerase II from the proximal
promoter (60). Recent comprehensive analysis of mRNA tran-
scripts in mTECs supports this mechanism (61). In addition to the
TSA expression, the AIRE-dependent expression of some microR-
NAs (miRNAs) was recently revealed (62, 63). Consistently, genetic
studies revealed important roles played by miRNA expressions in
functions and maintenance of mTECs (63–65).

Compared to the mechanisms underlying Aire-dependent TSA
expression, molecular mechanisms underlying Aire-independent
TSA expression are less understood. As described above, whereas
epigenetic regulations of TSA genes would be critical, mechanisms
underlying epigenetic changes specific for mature mTECs remain
unclear. Moreover, unidentified transcription factors may be
involved in the promotion of Aire-independent TSA expressions.

EXTRACELLULAR SIGNALING TO PROMOTE
DIFFERENTIATION OF mTECs EXPRESSING AIRE AND TSAs
Differentiation of TECs is well known to be correlated to differ-
entiation of T cells in the thymus (so-called thymic cross-talk)
(3). mTEC maturation was reported to be abolished in severe
combined immunodeficiency (SCID) patients (66). This finding
supports the idea that failure of the thymic cross-talk results in the
onset of autoimmune manifestation through inhibition of mTEC
function. Interestingly, a recent study showed that administra-
tion of anti-CD3ε antibody ameliorated autoimmunity in leaky
SCID model mice possibly through improvement of the thymic
cross-talk (67).

Molecular basis of the thymic cross-talk in mTEC develop-
ment has been reported. Several lines of evidence revealed that
TNF family cytokines expressed in thymocytes and other cells
of hematopoietic origin (2) and their receptors expressed in
mTEC are critical for the thymic cross-talk. Briefly, signaling of
TNF receptor family members, RANK, CD40, and lymphotoxin-β
receptor (LtβR), play essential roles in the development of mTECs
expressing Aire and TSAs. This topic has been summarized in a
recent review (1).

DOWNSTREAM OF TNF RECEPTOR FAMILY SIGNALING
TNF receptor family signaling induces the activation of NF-κB
and MAPK pathways (68). To date, the involvement of the MAPK
pathway in the development of mTEC remains to be addressed.
However, several lines of evidence have indicated that the NF-κB
family plays a critical role in the development of mTECs expressing
AIRE and TSAs.

NF-κB members are sequestered in the cytoplasm in an inactive
state by the binding of the inhibitory protein IκB in resting cells
(69–71). Ligations of receptors induce phosphorylation and sub-
sequent degradation of IκB proteins, thereby leading to nuclear
localization of NF-κB to activate transcription. Two distinct NF-
κB activation pathways, the classical pathway and the non-classical
pathway, are currently known (70–72) (Figure 2). The classical
pathway is required in inflammatory responses and lymphocyte
activation (71). On the other hand, the non-classical pathway
mainly promotes development and architecture formation of lym-
phoid organs, including the thymus. In the non-classical pathway,
receptor ligation induces accumulation of the NF-κB-inducing
kinase (NIK), which is normally degraded by the ubiquitin-
dependent proteasome in resting cells. Subsequently, accumulated
NIK phosphorylates and activates IKKα, which induces partial
degradation of p100 to p52. p100 preferentially binds to and
sequesters RelB in the cytoplasm, and the partial degradation of
p100 to p52 induces translocation of RelB and p52 as a heterodimer
into the nucleus.

The requirement for NF-κB activation in the development of
mTEC was initially identified by the analysis of RelB-deficient
mice (73, 74). RelB-deficient mice showed severe reduction in
medulla size, accompanied by a lack of UEA-1-positive mTECs.
Consistently, the expression of AIRE was abolished in the RelB-
deficient thymus (6, 41, 75). As expected, RelB-deficient mice
showed severe autoimmune diseases. A recent study demonstrated
that autoimmunity of RelB mice was due to the defect in thymic
stroma function (6). Mice carrying a dysfunctional mutation, NIK
(aly/aly), also showed a similar defect in mTEC development and
autoimmune phenotypes (76–78). Whereas IKKα-deficient mice
die shortly after birth, neonatal IKKα-deficient mice and trans-
plantation of IKKα-deficient thymic stroma indicates a require-
ment of IKKα in the development of mTECs (79, 80). mTEC
development in p100-deficient mice is partially defective (81, 82),
but this appears to be due to a partial rescue of p100 function by
p105 (or its processed product, p50) because the double deficien-
cies of p100 and p105 resulted in severe defects in mTEC devel-
opment, similar to the RelB- and NIK-mutant mice (83). Overall,
these results support the idea that activation of the non-classical
NF-κB pathway is essential for the development of mTECs.

TRAF6 is a signal transducer that mediates signaling from TNF
receptor family members (84, 85). TRAF6-deficient mice exhibit
severe autoimmune disease (86, 87). Additionally, recent studies
suggest possible associations between SNPs of the TRAF6 gene
with rheumatoid arthritis and systemic lupus erythematosus in
humans (88, 89). Previous studies showed that TRAF6 promotes
the development of mTECs expressing AIRE and TSAs, thereby
suppressing autoimmunity (86). Moreover, RANK-mediated dif-
ferentiation of mTECs requires TRAF6 in in vitro organ culture
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FIGURE 2 | NF-κB activation pathways triggered byTNF family
signaling. Interaction of TNF family ligand (RANK ligand, CD40 ligand, and
lymphotoxin α and β complex) with their respective receptors (RANK,
CD40, and LtβR) induces activation of NF-κB pathways. Interaction between
the ligand and its receptor induce the binding of TRAF-family proteins to the
cytoplasmic domains of TNF receptors. TRAF-family proteins in turn activate
downstream serine/threonine kinase cascade. These kinases trigger the
degradation of inhibitory proteins that sequester NF-κB in cytosol, thereby
leading to the translocation and transcriptional activation of NF-κB
members. NF-κB pathways are classified into classical and non-classical
pathway. In the non-classical pathway, NF-κB complex consisting of RelB
and p52 is activated. NIK is critical for the non-classical NF-κB pathway.
TRAF6, a member of the TRAF protein family, was reported to regulate only
the classical NF-κB pathway, which causes nuclear translocation of mainly
the RelA complex. On the other hand, other TRAF members function in the
non-classical NF-κB pathway by binding to the TNF family receptors.

of fetal thymic stroma (90). Notably, TRAF6 is a signal transducer
that mediates the activation of the classical NF-κB pathway but
not the non-classical NF-κB pathway (84, 85). Thus, these data
imply a role for TRAF6-mediated activation of the classical NF-κB
pathway in mTEC differentiation.

In addition to the above findings, a scaffold protein, Sin (also
called Efs), was proposed to be expressed downstream of TNF
receptor family signaling. Sin-deficient mice showed reduced
numbers of mTECs and thymic stroma-dependent autoimmunity
(91). In addition to the role of Sin in FGF-mediated proliferation
signaling (91), a recent study suggested that Sin might regulate the
non-classical NF-κB pathway activated by RANKL signaling (92).
Because the SH3 domain and phosphorylation of tyrosine residues
of Sin might be critical for its function (93, 94), these studies also
imply unrecognized roles of Src-type tyrosine kinases in mTEC
development.

CONCLUDING REMARKS
Whereas significant roles for NF-κB in signal activation of mTEC
differentiation and subsequent expression of AIRE and TSAs are
indisputable, molecular events connecting these signaling path-
ways to induction of AIRE and TSA remain unclear. It was reported
that LtβR signaling induces the expression of AIRE in an mTEC
line in the presence of a DNA methylation inhibitor (95). How-
ever, it is still unclear whether NF-κB binds to the promoter of
the AIRE gene. Moreover, a wide variety of TSA expression would
not be explained only by NF-κB-dependent transcriptional acti-
vation because NF-κB family members are generally known to
be sequence-specific transcription factors. Thus, the link between
NF-κB activation and expression of AIRE and TSAs remains largely
enigmatic.

In addition, differentiation stages regulated by these sig-
naling molecules and their mechanisms need to be clarified.
mTECs have different properties in each developmental stage,
with regard to TSA expression, AIRE expression, and DNA
methylation status. Therefore, it is important to clarify types
of mTECs in which each TNF receptor family signal func-
tions. Overall, more studies are needed to understand the mol-
ecular and cellular mechanisms regulating the development of
mTECs with the final aim to develop novel therapeutic strate-
gies preventing autoimmune diseases caused by defective thymic
functions.
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