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Abstract

Aims This study aimed to assess the ability of a voice analysis application to discriminate between wet and dry states in
chronic heart failure (CHF) patients undergoing regular scheduled haemodialysis treatment due to volume overload as a result
of their chronic renal failure.
Methods and results In this single-centre, observational study, five patients with CHF, peripheral oedema of ≥2, and pulmo-
nary congestion-related dyspnoea, undergoing haemodialysis three times per week, recorded five sentences into a standard
smartphone/tablet before and after haemodialysis. Recordings were provided that same noon/early evening and the next morn-
ing and evening. Patient weight was measured at the hospital before and after each haemodialysis session. Recordings were
analysed by a smartphone application (app) algorithm, to compare speech measures (SMs) of utterances collected over time.
On average, patients provided recordings throughout 25.8 ± 3.9 dialysis treatment cycles, resulting in a total of 472 recordings.
Weight changes of 1.95 ± 0.64 kg were documented during cycles. Median baseline SM prior to dialysis was 0.87 ± 0.17, and rose
to 1.07 ± 0.15 following the end of the dialysis session, at noon (P = 0.0355), and remained at a similar level until the following
morning (P = 0.007). By the evening of the day following dialysis, SMs returned to baseline levels (0.88 ± 0.19). Changes in patient
weight immediately after dialysis positively correlated with SM changes, with the strongest correlation measured the evening of
the dialysis day [slope: �0.40 ± 0.15 (95% confidence interval: �0.71 to �0.10), P = 0.0096].
Conclusions The fluid-controlled haemodialysis model demonstrated the ability of the app algorithm to identify cyclic
changes in SMs, which reflected bodily fluid levels. The voice analysis platform bears considerable potential as a harbinger
of impending fluid overload in a range of clinical scenarios, which will enhance monitoring and triage efforts, ultimately opti-
mizing remote CHF management.
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Introduction

Heart failure (HF) can emerge either rapidly or gradually, with
minimal or subtle symptomatic eruption in either case before
critical decompensation. Even frequent and routine

assessments often fail to predict or alert on imminent fluid
overload. New technologies developed to tighten surveillance
of pulmonary fluid status include the implantable, wireless
pulmonary artery pressure and heart rate monitoring
CardioMEMS™ System, indicated for patients with New York
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Heart Association (NYHA) Class III HF with a recent history of
hospitalization,1 and intrathoracic impedance-based assess-
ment devices.2,3 These technologies though are invasive and
generally reserved for those with severe Class III HF and
who have recently been hospitalized. Non-invasive telemedi-
cine platforms, which involve synchronous and asynchronous
transfer of measured or self-reported parameters (e.g. elec-
trocardiogram, blood pressure, body weight, and heart rate),
have had conflicting impacts on HF patient care, monitoring,
and management, with some reports of no change in
all-cause mortality4 or all-cause readmission rates.5,6 Recent
advances in voice and sound analysis algorithms have raised
awareness for the potential clinical benefits of
non-invasively distinguishing speech features in disease set-
tings. Such classifiers have been shown to successfully iden-
tify patients suffering from depression, pneumonia–asthma,
coronary artery disease, and autism spectrum disorder.7–11

In line with these applications, altered phonation patterns
were detected in the context of pulmonary congestion, likely
arising from the reduced viscosity of hyperhydrated vocal
fold tissue and its consequentially atypical vibration mechan-
ics. Murton et al.12 report on measurable acoustic speech
markers indicative of HF status in patients with acute heart
failure (AHF).

The current study exploited the well-controlled volume sta-
tus in patients with HF undergoing chronic haemodialysis
treatments to further assess the capacity of the app-based al-
gorithm to discriminate significant volume shifts. Fluid re-
moval leads to lower circulating volume and cardiac filling
pressure after each haemodialysis session, which is followed
by gradual increases in fluid volume until maximizing just be-
fore the next haemodialysis session. Therefore, such patients
present a ‘clinical model’ for the assessment of the sensitivity
of vocal analysis in detecting changes in fluid status. Accord-
ingly, fluid status-identifying speech measures (SMs) were
analysed from voice recordings collected over the course of
fluid management with haemodialysis of five patients with
chronic HF and haemodialysis-dependent chronic renal failure.

Methods

Patients and study design

This single-centre, observational, single-arm study was ap-
proved by the ethics committee of Hadassah Medical Center,
Jerusalem, Israel.

Adult (>18 years) patients with acute and chronic Class C,
NYHA Classes II–IV, congestive HF, undergoing haemodialysis
2–3 times weekly, with a fluid overload of 2–4 L above their
currently known dry weight, peripheral oedema of ≥2, and
pulmonary congestion-related dyspnoea were eligible to par-
ticipate in the study. Patients with significant chronic

obstructive pulmonary disease, a congenital heart disease, ev-
idence of an active infection or restrictive cardiomyopathy, or
constrictive pericarditis were not eligible to participate in the
study. Signed informed consent was obtained from each
participant.

Patients undergoing routine haemodialysis treatment were
asked to record five sentences, in their native language
(Hebrew or Arabic) into a standard smartphone 3–4 times
immediately before (wet state) dialysis. They were then
asked to record the sentences an additional four times at
home: 2–3 h following haemodialysis end (noon/early
evening) in the late evening/before bed time, in the morning
following dialysis, and before breakfast, and in evening of the
day following dialysis. The duration of each recording was
2–5 s. Patient weight before and after dialysis was recorded
to determine the volume of fluid removed during each cycle.
Each patient was monitored over multi-dialysis cycles.

Speech analysis application

The HearO™ voice capturing application (Cordio Medical Ltd.,
Or Yehuda, Israel) runs on a standard smartphone/tablet, and
transmits data to an analysis software which executes on a
server in the cloud. The analysis algorithm compares SMs
between utterances collected at a baseline state and
different points of interest. In this study, baseline is the pre-
dialysis SM and different points of interest are the post-
dialysis SMs (Supporting Information).

Speech analysis

The generation of speech sounds can be modelled as the pas-
sage of an excitation signal, originating from the lungs,
through a linear filter. The filter represents the shape of the
vocal tract, which includes the air pathways from the glottis
upwards to the lips and nostrils.

Speech measure represents the dissimilarity (larger values
mean greater dissimilarity) between patient utterances of a
reference set R, when the patient was at a baseline physio-
logical state, and a test set T, obtained later when the pa-
tient’s state may have changed. The method is based on a
similarity measure D(t,r) between a test and reference utter-
ances, which is a weighted sum of short-term spectral (trans-
formed filter) distortions between non-linear aligned frames
in the test and the reference utterances. The SM can formally
be defined as

SM T ; Rð Þ ¼ medianr ∈ RD t; rð Þ:

That is, for each test utterances, the similarity measures
are computed relative to every one of the reference utter-
ances and the median distortion is presented as the
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representative distortion. The SM between the repeated ut-
terances within each class measures intra-class variability,
whereas the SM between the test and the reference classes
measures inter-class variability. Thus, if SM(T,R) is signifi-
cantly larger than SM(R,R), this indicates a difference be-
tween the underlying physiological conditions.

Results

Voice recordings were collected from five patients, each of
whom underwent haemodialysis treatments two to three
times each week. On average, patients participated through-
out 25.8 ± 3.9 dialysis treatment cycles, during which they
lost a mean 1.93 ± 0.19 kg. No acute respiratory events or in-
flammations were reported throughout the study period. Pa-
tients provided a mean 94.4 recordings; in total, 472
recordings were analysed. Four patients were male, and
one was female; mean patient age was 78.8 ± 7.8 years. In
three cases, chronic HF was classified as NYHA 2 and in two
cases as NYHA 3. Baseline N-terminal prohormone brain na-
triuretic peptide levels averaged 7016.6 ± 3404.0 pg/mL.
Co-morbidities included coronary artery disease (n = 3), dia-
betes (n = 3), and hypertension (n = 4) (Table 1).

Mean ± SD of median wet-state SM was 0.87 ± 0.17,
which rose to 1.07 ± 0.15 by the end of the dialysis session
(noon) and remained at a similar level until the following
morning. By the evening of the day after dialysis, mean SM
dropped to 0.88 ± 0.19 (Table 2). Similarly, from the MMRM
analysis model, the estimate ± standard error (SE) of
wet-state SM was 0.982 ± 0.086, which rose to

1.176 ± 0.086 by the end of the dialysis session (noon) and
remained at a similar level until the following morning. By
the evening of the day after dialysis, mean SM dropped to
0.98 ± 0.086 (Table 3 and Figure 1). There was a statistically
significant difference between median SMs measured

Table 1 Patient demographics and baseline characteristics

Subject Gender
Age

(years) Race
LVEF
(%) CAD

History
of MI

History of
CABG/PCI Diabetes HT

NT-proBNP
(pg/mL)

Blood
pressure
(mmHg) NYHA

Concomitant
medications

HDS-0001 F 83 Caucasian >70 No No No No Yes 5710 166/93 3 Anti-platelet
HDS-0003 M 69 Caucasian 24 Yes Yes Yes Yes No 3872 136/55 2 Anti-platelet

Hyperlipidaemic
Vasodilator
Loop diuretics

HDS-0004 M 83 Caucasian 41–50 Yes Yes No No Yes 5446 145/43 2 Anti-platelet
Loop diuretics
Hyperlipidaemic
Ca+ channel blocker

HDS-0005 M 72 Caucasian 45–50 No No No Yes Yes 7367 130/52 2 Anticoagulant
Beta-blocker
Cardiac glycoside

HDS-0006 M 87 Caucasian 50–55 Yes Yes Yes Yes Yes 12 688 151/62 3 Ca+ channel blocker
ACE inhibitor
Βeta-blocker
Anti-platelet
Hyperlipidaemic

CABG, coronary artery bypass grafting; CAD, coronary artery disease; HT, hypertension; LVEF, left ventricular ejection fraction; MI, myocar-
dial infarction; NT-proBNP, N-terminal prohormone brain natriuretic peptide; NYHA, New York Heart Association; PCI, percutaneous cor-
onary intervention.

Table 2 Descriptive statistics of median speech measures

Recording time
point

SM (median)

N Mean SD Min Median Max

Dialysis day morning 5 0.87 0.17 0.64 0.91 1.04
Dialysis day noon 5 1.07 0.15 0.87 1.10 1.23
Dialysis day evening 5 1.04 0.20 0.76 1.14 1.23
Non-dialysis Day 1 morning 5 1.14 0.23 0.80 1.09 1.38
Non-dialysis Day 1 evening 5 0.88 0.19 0.64 1.00 1.03

SD, standard deviation; SM, speech measure.

Table 3 Adjusted means of median speech measures from
MMRMa analysis

Recording
time point Estimate SE P-value

Lower
95%

CI limit

Upper
95%

CI limit

Dialysis day morning 0.98 0.09 0.0027 0.68 1.28
Dialysis day noon 1.18 0.09 0.0017 0.88 1.47
Dialysis day evening 1.15 0.09 0.0018 0.85 1.44
Non-dialysis Day 1
morning

1.24 0.09 0.0014 0.95 1.54

Non-dialysis Day 1
evening

0.99 0.09 0.0026 0.69 1.29

CI, confidence interval; MMRM, mixed model repeated measures;
NT-proBNP, N-terminal prohormone brain natriuretic peptide; SE,
standard error.
aExplanatory variables: day and time, age, NT-proBNP, and gender.
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immediately before vs. immediately after dialysis [�0.19,
SE = 0.08, P-value = 0.04, 95% confidence interval (CI):
�0.37 to �0.01]. There was also a significant difference
between SMs measured immediately before dialysis and
those measured the following morning (�0.26, SE = 0.08,
P-value = 0.0070, 95% CI: �0.44 to �0.08) (Table 4).
Changes in patient weight immediately after dialysis posi-
tively correlated with SM changes, with the strongest corre-
lation measured the evening of dialysis [slope ± SE:
�0.40 ± 0.15 (95% CI: �0.71 to �0.10), P = 0.0096], which
paralleled the window in which SM changes were highest
and patients were likely driest.

Discussion

The present study utilized a highly accessible clinical model to
assess the ability of a sound-based algorithm to distinguish
between wet and dry states in patients with AHF undergoing
haemodialysis. The voice analysis platform identified signifi-
cant changes in SMs, which paralleled the cyclic
haemodialysis treatment-removal fluid patterns. Specifically,
pre-dialysis SMs were distinct from those of recordings col-
lected immediately after or the morning following treatment.
These differences waned with gradual systemic fluid accumu-
lation as patients progressed towards their next treatment

Figure 1 Speech measures (SMs) of acute heart failure patients during haemodialysis cycles. Five chronic heart failure patients undergoing
haemodialysis two to three times weekly recorded five sentences using the HearO™ app, before and immediately after dialysis, as well as later that
same evening, and the next morning and evening. Median SMs per patient are shown, as well as the adjusted mean ± standard error (SE) SMs, esti-
mated from a mixed model repeated measures analysis, which included median SM as the response variable and time, gender, age, and N-terminal
prohormone brain natriuretic peptide at baseline as explanatory variables and compound symmetry as variance covariance matrix structure. *Exclud-
ing subject HDS-0006 dialysis day evening data that included only three cycles.

Table 4 Difference of adjusted means of median speech measures from MMRMa analysis model

Comparison Estimate SE P-value Lower 95% CI limit Upper 95% CI limit

Dialysis day morning–dialysis day noon �0.19 0.08 0.04 �0.37 �0.01
Dialysis day morning–dialysis day evening �0.17 0.08 0.069 �0.34 0.01
Dialysis day morning–non-dialysis Day 1 morning �0.26 0.08 0.0070 �0.44 �0.08
Dialysis day morning–non-dialysis Day 1 evening �0.01 0.08 0.94 �0.19 0.17
Dialysis day noon–dialysis day evening 0.03 0.08 0.74 �0.15 0.21
Dialysis day noon–non-dialysis Day 1 morning �0.07 0.08 0.44 �0.25 0.11
Dialysis day noon–non-dialysis Day 1 evening 0.19 0.08 0.041 0.01 0.37
Dialysis day evening–non-dialysis Day 1 morning �0.10 0.08 0.27 �0.27 0.08
Dialysis day evening–non-dialysis Day 1 evening 0.16 0.08 0.078 �0.02 0.34
Non-dialysis Day 1 morning–non-dialysis Day 1 evening 0.25 0.08 0.0082 0.08 0.43

CI, confidence interval; MMRM, mixed model repeated measures; NT-proBNP, N-terminal prohormone brain natriuretic peptide; SE, stan-
dard error.
aExplanatory variables: day and time, age, NT-proBNP, and gender.
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session. A deviation from this cyclic pattern was consistently
noted on the evening of haemodialysis, which may be related
to the patients being in their minimal fluid overload on the
day of the haemodialysis itself.13

The potential of SMs to inform on pathophysiological states
is likely rooted in the hydration-sensitive viscoelastic proper-
ties and associated oscillatory behaviour of the vocal fold tis-
sue and in respiratory muscle biomechanics. Well-known
clinical examples of fluid state-related voice changes include
the characteristically deep and hoarse voice of patients with
Reinke’s oedema, a condition in which fluid accumulates be-
low the outer layer of the vocal cords, subsequently reducing
their vibration frequency.14 Similarly, bronchophony, whis-
pered pectoriloquy, and egophony15 are common presenta-
tions of alveolar or interstitial space fluid overload. Aligning
with these are the reports on the negative fluid balance effect
of haemodialysis on vocal acoustics parameters,16–19 respira-
tory muscle strength and endurance,20 and total lung
capacity,21,22 all with bearings on phonation aerodynamics.
These effects resonate with the commonly reported transient
(≤24 h) post-dialysis hoarseness,23,24 shown to correlate with
decreased vocal fold thickness.25 Indeed, in a previous study
assessing voice recordings of patients with AHF at hospital ad-
mission and at discharge, HearO discriminated between re-
cordings collected at admission and those collected at
discharge, following intense diuretic treatment and reduction
of extracellular fluid. In the current controlled AHF model, the
algorithm immediately translated the reduced systemic fluid
overload achieved with haemodialysis into discriminating
SMs extractable from simple voice recordings.

In the context of the increasing attention being placed on
remote access technologies of transitional care programmes,
this algorithm promises to serve as a valuable monitoring and
triage tools in HF management protocols. Such an addition to
the expanding alternatives to traditional in-person follow-up
visits is expected to advance the global efforts towards opti-
mized HF healthcare response and patient care.

Several limitations of the current study should be noted.
The study tested a small cohort of patients and was a sin-
gle-centre, open-label study. In addition, patients with HF
on dialysis treatment do not necessarily represent the classi-
cal worsening pattern of HF. Nevertheless, as in this unique
model, each patient had multiple and separate dialysis cycles,
and the data analysed here actually represent a larger cohort.
Further studies will be needed to assess the performance of

the voice analysis algorithm in larger cohorts of HF patients
under less rigorous clinical surveillance. In conclusion, this
unique clinical model of patients with HF undergoing
haemodialysis assisted in the validation of this smartphone
app algorithm and its ability to deploy sophisticated vocal
analysis to determine the pulmonary hydration status of pa-
tients with HF.
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