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Induction of apoptosis and role of paclitaxel‑loaded 
hyaluronic acid‑crosslinked nanoparticles in the 

regulation of AKT and RhoA

ABSTRACT

Cancer is a complex multifactorial disease and leading causes of death worldwide. 
Despite the development of many anticancer drugs, there is a reduced survival rate 
due to severe side effects. The nontargeted approach of convention drugs is one of the 
leading players in context to toxicity. Hyaluronan is a versatile bio‑polymer and ligand of 
the receptor (CD44) on cancer cells. The MCF‑7 and HT‑29 cancer cell lines treated with 
hyaluronic acid‑paclitaxel (HA‑PTX) showed the distinguishing morphological features 
of apoptosis. Flow cytometric analysis showed that HA‑PTX induces apoptosis as a 
significant mode of cell death. The activation level of tumor suppressor protein (p53) 
increased after PTX treatment in MCF‑7, but no changes observed in HT‑29 might be due 
to hereditary mutations. The lack of suppression in AKT and Rho A protein suggest the 
use of possible inhibitors in future studies which might could play a role in increasing 
the sensitivity of drug towards mutated cells line and reducing the possibilities for 
cancer cell survival, migration, and metastasis.
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9.6 million cancer deaths, 18.1 million new cancer cases in 
2018. Breast cancer is the second leading cause of death, 
followed by colorectal and lung cancer.[1] By regular disease 
screening, along with improved prognosis, enhance the 
survival rate. There is a total decrease of 56% in the death 
rates from breast and colorectal cancer.[2] Nanomedicine 
has been prepared as one of the approaches for combating 
diseases.[3] The conventional method of cancer treatment 
involves chemotherapy and radiotherapy but causing 
severe side effects with a low survival rate. The poor 
solubility of potential anticancer drugs remains the major 
challenge in drug delivery.[4]

Previous studies show that polymeric nanocarriers show 
potential as therapeutic carriers.[5] The biopolymer, 
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INTRODUCTION

Cancer is an uncontrolled growth of cells that occur due to 
rapid cell division. The unchecked multiplication of cells 
often leads to tumor formation, which further undergoes 
metastasis and cancer development – there an estimated 
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hyaluronic acid (HA), a glycosaminoglycan present 
inside the human body and strong affinity towards CD44 
receptors.[6,7] The anticancer drug paclitaxel (PTX) is a 
powerful anti-mitotic agent shown remarkable results as 
an anticancer agent. However, it causes severe side effects 
and acquires resistance in various cells. The induction 
of cell death plays an essential role in the cytotoxicity of 
potential drugs. The most fundamental process of cell 
death and development is apoptosis. Apoptosis, a highly 
regulated mechanism of cell death, characterized by 
distinct morphological and biochemical features.[8] The 
up-regulation and down-regulation of cancer progression 
pathways determine the fate of the cell. Any dysregulation 
of AKT results in cancer progression and various other 
autoimmune diseases.[9] Similarly, RhoA and RhoC 
overexpressed in various human tumors. Furthermore, the 
downregulation of RhoB, activate the expression of RhoA 
in the liver, colon cancer, and skin tumor.[10]

In our previous study, the PTX-loaded HA-crosslinked 
nanoparticles (NPs) cytotoxicity on MCF-7, HT-29, and 
A549 and drug release kinetics were studied.[4] However, 
in the present study, the HA-PTX NPs induced apoptosis 
mode of cell death and regulation on AKT and Rho A as cell 
proliferation and cell survival proteins studied in MCF-7 
and HT-29 cells.

MATERIALS AND METHODS

T h e  c a n c e r  c e l l  l i n e s  p u r c h a s e d  f r o m 
American-Tissue-Culture-Collection.org MCF-7 (ATCC 
HTB-22™) and colorectal HT-29 (ATCC HTB-38™). The 
Dulbecco’s Modified Eagle’s medium (DMEM) and Roswell 
Park Memorial Institute (RPMI) media and chemicals 
obtained from Sigma Aldrich (USA). The anticancer 
drug PTX purchased from Acros Organic (USA). The 
FITC-Annexin-V apoptosis detection kit, Platinum ELISA 
kit, adenosine diphosphate/adenosine triphosphate 
(ADP/ATP) kit, AKT ultra-sensitive kit, and Rho A assay 
kit acquired from BD Bioscience (USA), Abcam (UK), and 
Cytoskeleton (USA). All chemicals were of analytical grade.

Cell culture
The cell lines culture in DMEM and RPMI 1640 medium, 
containing 10% fetal bovine serum and 1% antibiotics. Cells 
were culture in 5% CO2 at 37°C.[11-14] Cell lines were grown 
in 25 cm3 and 75 cm3 tissue culture flasks in a humidified 
atmosphere, containing 5% CO2 and 95% air, at 37°C. The 
cell culture procedure and guideline followed by Ethical 
Committee of the Faculty of Medicine and Health Sciences, 
UPM.

Inverted microscopy and flow cytometric analysis
Cell morphology studied under a Motic AE31 inverted 
microscope. FITC Annexin V Apoptosis Detection kit (USA) 
used to study the induction of apoptosis and necrosis. 

The cells were resuspended in binding buffer containing 
FITC-Annexin V and propidium Iodide (5 μl each) and then 
analyzed by flow cytometer.

Adenosine diphosphate/adenosine triphosphate ratio
The ADP/ATP ratio performed by using ADP/ATP 
(bioluminescent) method. One hundred μl of reaction mix 
consisting of 5 μl reconstitute ATP monitoring enzyme 
and 95 μl nucleotide releasing buffer were added to 
each sample-treated well and read after 5–10 min. After 
reconstituted ADP converting enzyme 1 μl of ADP, 
converting enzyme was added, and the samples again read 
in 5–10 min in a luminometer.

Tumor suppressor protein (p53)
P53, activation level analyzed by Human p53 Platinum 
ELISA US kit. Briefly, the cells (2 × 106 cells/ml) were 
collected and undergoes lysis using 1X Cell Lysis Buffer. 
One hundred μl p53 standard added to get the serial dilution 
ranging from 50 to 0.8 U/ml. Fifty microliter of each sample 
added in triplicate to all wells. One hundred μl of diluted 
streptavidin-horseradish peroxidase (HRP) was added to 
all wells, including the blank wells, and incubated at room 
temperature for 1 h. The results read using ELISA reader 
at 450 nm.

AKT and Rho A
AKT analyzed by AKT1 ultra-sensitive kit (ELISA). 
Concisely, after 24 h treatment, the cells were lysed and 
re-lysed by using cell extraction buffer and chilled 1× cell 
lysis buffer. The 50 μl of standard solution, treated samples, 
and control samples added to the microtiter wells. AKT1 
detection antibody solution of 50 μl was added. After 
incubation, one hundred μl Anti-Rabbit immunoglobulin 
G HRP working solution was added to each well. Stop 
solution of 100 μl added to all well. Similarly, Rho A 
activity observed using Rho A assay kit. The experiment 
was performed according to manufacturer protocol. Briefly, 
50 μl of anti-RhoA 44 primary and secondary antibody 
used. The mixed HRP-based detection reagent was used 
as detection system. The absorbance measured at 490 nm 
using a ELISA plate reader.

Statistical analysis
The data analyzed using a one-way analysis of variance also, 
Tukey honestly significant difference and least significant 
difference test (SPSS version 16.0, Chicago, SPSS Inc.). 
The P < 0.05 considered significant, whereas P < 0.01 as 
very significant. All experiments triplicated, and the data 
expressed as means with standard deviation.

RESULTS AND DISCUSSION

Morphological and flow cytometry
The morphological observation MCF-7 and HT-29 cancer 
cells was studied using a light microscope and flow 
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cytometry. The cells treated with HA-PTX NPs and PTX 
(1 and 100 ng/ml) treatment for 24 h [Figure 1a-j]. The treated 
cells showed morphological features of apoptotic cell death, 
nucleus becoming phase-dense, and condensed rounded 
cells. Flow cytometric analysis [Figure 2a-j] suggests that 
the cell treated with HA-PTX NPs more sensitive towards 
apoptosis (V+/PI−) as compared to free PTX. The induction of 
apoptosis observes in MCF-7 treated with low 1 ng/ml and 
100 ng/ml concentration. In HT-29, the process of necrosis 
observes when cells treated with 1 ng/ml concentration of 
HA-PTX.

Adenosine diphosphate/adenosine triphosphate ratio
In breast (MCF-7), the ADP/ATP ratio is high at 10 ng/ml 
HA-PTX as compare to PTX [Figure 3]. However, HT-29 
shows higher ADP/ATP as compared to the MCF-7 cancer 
cell lines after 10 ng/ml PTX and HA-PTX treatment. 
Similarly, at 100 ng/ml, colorectal cancer shows an increase in 
ADP/ATP ratio as compare to breast (MCF-7) cancer cell line.

Tumor suppressor protein (p53)
Figure 4 shows that MCF-7 showed dose-dependent effects 
up to 10 ng/ml HA-PTX with a 2–3-fold increase of p53 

Figure 1:	Morphology	of	breast	cancer	cell	line	(MCF‑7)	for	(a)	control;	(b	and	c)	paclitaxel	and	hyaluronic	acid‑paclitaxel	treated	at	1	ng/ml;	
(d	and	e)	paclitaxel	and	hyaluronic	acid‑paclitaxel	treated	at	100	ng/ml;	colorectal	cancer	cell	line	(HT‑29)	for	(f)	control;	(g	and	h)	paclitaxel	
and	hyaluronic	acid‑paclitaxel	treated	at	1	ng/ml;	(i	and	j)	paclitaxel	and	hyaluronic	acid‑paclitaxel	treated	at	100	ng/ml	after	24	h
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Figure 2:	Flow	cytometric	analysis	of	breast	cancer	cell	line	(MCF‑7)	for	(a)	control;	(b	and	c)	paclitaxel	and	hyaluronic	acid‑paclitaxel	treated	
at	1	ng/ml;	(d	and	e)	paclitaxel	and	hyaluronic	acid‑paclitaxel	treated	at	100	ng/ml;	colorectal	cancer	cell	line	(HT‑29)	for	(f)	control;	(g	and	h)	
paclitaxeland	hyaluronic	acid‑paclitaxel	treated	at	1	ng/ml;	(i	and	j)	paclitaxel	and	hyaluronic	acid‑paclitaxel	treated	at	100	ng/ml	after	24	h
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level as compared to control. The better p53 responses at 
low concentrations of PTX and HA-PTX in MCF-7 were 
consistent with other reports.[15] In HT-29 cells, elevated 
basal levels of p53 protein and no effect on p53 level with 
further HA-PTX treatment. However, this may suggest 
the presence of a p53 mutant, as the majority of colorectal 
cancer cell lines are p53 mutated, amino acids 273 Arginine 
mutates into Histidine results in dysregulation in cell-cycle 
checkpoints.[16-18]

AKT and Rho A
Both HA-PTX and PTX showed nonsignificant upregulation 
of AKT [Figures 5 and 6] activation at 1–100 ng/ml in A549, 
but lower activation (<0.4) observed in HT-29. The HA-PTX 
did not trigger the activation as well as lack of suppression 
of AKT and Rho A protein levels.

DISCUSSION

In our studies, HA-PTX inhibits cell growth via cell arrest 
and induction of apoptosis without up-regulating the 
survival proteins such as AKT and RhoA. The increase in 
ADP/ATP ratio suggested the induction of growth arrest 
as ATP molecules aided in the process of growth and 
cell division. Our results supported by previous studies 
that taxol can decrease fructose 1,6-bisphosphate which, 
reduce the facility of ATP molecules, mandatory for 

Figure 3:	Adenosine	diphosphate/adenosine	 triphosphate	 ratio	 in	
breast	and	colorectal	cancer	cell	lines	treatment	at	1	and	100	ng/ml	
treatment	after	24	h

Figure 5:	AKT	activation	in	breast	and	colorectal	cancer	cell	lines	
treatment	at	1	and	100	ng/ml	treatment	after	24	h

dynamic changes involve in cell growth and division.[19] 
In our studies, PTX unable to up-regulate the p53 protein. 
Moreover, previous studies also supported that PTX 
activates the mechanism of apoptosis without p53 activation 
or in the absence of wild-type p53.[20-24]

AKT is over-expressed in many human tumors. The lack 
of suppression in AKT was found in our studies. However, 
we could suggest that in future studies, various AKT 
inhibitors along PTX-HA could increase drugs sensitivity 
towards cancer cells. However, few studies show that 
inhibitor along with PTX may be produced antagonistic 
effects.[25-30] Interestingly, the acquired up-regulation was 
also negligible after treated with HA-PTX. Similarly, Rho 
GTPases over-expressed in various malignancies. In our 
studies, the Rho A activity not found to be down-regulated 
after treatment with HA-PTX. However, we can propose 
that in our future studies that by using HA-PTX along with 
inhibitors might give positive outcomes. As previous studies 
show that Y27632 or by the silencing of RhoA against RhoA 
possibility increase the sensitivity in resistant cells.[31,32] Taxol 
might not activate Rho A activator protein GEF-H1.[32-34] 
HA-PTX also does not affect RhoA-dependent changes such 
as stress fiber formation, which explains the nonactivation 
of AKT and Rho A levels in our study. HA-PTX causes cell 
growth arrest might be via inhibition in depolymerization 

Figure 4:	p53	activation	in	breast	and	colorectal	cancer	cell	lines	after	
paclitaxeland	hyaluronic	acid‑paclitaxel	treatment	at	1	and	100	ng/
ml	treatment	after	24	h

Figure 6:	Rho	A	activation	in	breast	and	colorectal	cancer	cell	lines	
after	 paclitaxel	 and	hyaluronic	 acid‑paclitaxel	 treatment	 at	 1	 and	
100	ng/ml	treatment	after	24	h
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of the microtubule, and induce apoptosis in MCF-7 and 
HT-29 cancer cells.

CONCLUSION

HA-PTX NPs induced apoptosis with the characteristic 
feature of apoptosis. The flow cytometry analysis showed 
a dose-dependent increase in apoptosis in cancer cell 
lines. The activation level of p53 increased in MCF-7 after 
treatment with HA-PTX NPs, but no changes observed in 
HT-29 might be due to colorectal cancer cell mutations. 
However, HA-PTX did not induce the activation of cancer 
progression pathway proteins AKT and Rho A in MCF-7 
and HT-29. HA-PTX triggered growth arrest and apoptosis 
as the mode of cell death via p53 activation in MCF-7. 
Therefore, further in vivo study needs to done to explore 
the potential of HA-PTX in drug development.
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