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1  |  INTRODUC TION

Ecologists and environmental scientists make use of species distri-
bution models (SDMs) to help understand how organisms selectively 
use their resources and the factors which shape their spatial distri-
butions. SDMs have therefore become fundamental for many tasks 
in modern ecological modelling (Elith et al., 2006; Lele & Keim, 2006; 
Phillips & Elith, 2013). Considerable research has been carried out on 
species distribution modelling, as outlined in the extensive literature 

review of Guillera-Arroita et al. (2015). Of the different types of 
spatial data used in SDMs, presence-background (PB) data are plen-
tifully available and easy to access. PB data consist of a list of “pres-
ences” or locations where individuals/species have been observed, 
but there is no information about locations of absences Gurutzeta. 
This latter characteristic makes the data difficult to work with. PB 
data are often available from museum, herbarium collections, and 
other historical database records. It now becomes increasingly avail-
able via citizen science projects and online repositories such as the 
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Global Biodiversity Information Facility (GBIF: http://www.gbif.org). 
This paper will focus on the methodologies developed that relate to 
PB data, which have been used in approximately 50% of SDM pa-
pers, according to the survey in Guillera-Arroita et al. (2015). When 
using PB data, the key objective is usually to accurately estimate the 
site-specific probability of presence in a geographical area.

Numerous methods have been developed for modelling PB data 
with SDMs, including statistical regression models known in the lit-
erature as the LI (Lancaster & Imbens, 1996), LK (Lele & Keim, 2006), 
Expectation-Maximization (EM) (Ward et al., 2009), Scaled Binomial 
Loss Model (SB) (Phillips & Elith, 2011), spatial point process mod-
els (PPMs) (Renner & Warton, 2013; Warton & Shepherd, 2010), 
machine learning (ML) methods such as MAXENT (Phillips et al., 
2006), presence and background learning (PBL) algorithm (Li et al., 
2011), boosted regression trees (Elith et al., 2008), and various other 
methods. It is commonly recognized that the actual (or absolute) 
probability of presence given environmental covariates, namely the 
resource selection probability function (RSPF), cannot be predicted 
from presence-only or PB data, when there is no extra information 
or conditions available to make use of (Elith et al., 2008; Hastie & 
Fithian, 2013; Phillips & Elith, 2013; Wang & Stone, 2019; Ward et al., 
2009). Without the extra information, all of these methods have been 
shown only to be useful in their ability to estimate the ratio between 
the probability of presence and the probability of prevalence, also 
known as the resource selection function (RSF) (Manly et al., 2002) 
or the “relative” probability of presence (Wang & Stone, 2019). In fact, 
the conditions required to estimate the true conditional probability 
of presence from PB data has become a highly controversial topic 
(Hastie & Fithian, 2013; Knape & Korner-Nievergelt, 2015; Lele & 
Keim, 2006; Phillips & Elith, 2013; Solymos & Lele, 2015; Wang & 
Stone, 2019; Ward et al., 2009). LK claimed their method can success-
fully achieve this goal when the so-called “RSPF conditions” are satis-
fied (Lele & Keim, 2006). (We will outline these conditions shortly.) A 
paper devoted to this question (Solymos & Lele, 2015) argues that the 
class of admissible models that satisfy RSPF conditions is very broad 
and does not excessively restrict the application of the LK method. 
However, this contradicts arguments in many other papers including 
the important paper of Hastie and Fithian (2013).

Wang and Stone (2019) recently revealed the close connection 
between many commonly used but seemingly disparate methods, 
such as the LI, LK, EM, SB, MAXENT, and PPMs. In particular, Wang 
and Stone (2019) proposed a new unified Constrained LK (CLK) 
method, which serves as a generalization of the better known ex-
isting approach. However, the CLK method requires information of 
the population prevalence as the input, which is difficult to obtain or 
estimate in practice. This renders the CLK method, along with other 
methods (such as the SB and EM methods) that also require prior 
information of the population prevalence, limited in their practical 
applications.

In this paper, we propose a “refined” CLK method that can be used 
to accurately estimate the population prevalence so that the prob-
ability of presence can be ultimately estimated. A key assumption 
of the method is that there exists “local knowledge” where habitats 

are maximally or partially suitable for a species. This means there 
must be some sites where we have knowledge about the resource 
selection probability of a species. The idea was inspired by the work 
of Elkan and Noto (2008) and Li et al. (2011). Elkan and Noto (2008) 
originally proposed the positive and unlabelled learning (PUL) algo-
rithm to deal with the single-training-set sampling scenario in the 
field of ML. Li et al. (2011) further developed the presence and back-
ground learning (PBL) algorithm to estimate the actual probability of 
presence in modeling species’ distributions from PB data.

The performance of the method proposed here has been tested 
and compared with the popular LK method through extensive simu-
lation studies, where a wide range of RSPFs resource selection prob-
ability functions were taken directly from Solymos and Lele (2015) 
to ensure that the RSPF conditions were satisfied according to their 
definitions in Solymos and Lele (2015). Our simulation studies re-
veal that the performance of the LK method is often poor even in 
situations where the RSPF conditions are satisfied, in contrast to the 
problematical claims of Solymos and Lele (2015). On the other hand, 
simulations demonstrate the ability excellent performance of the pro-
posed method to estimate the absolute probability of presence when 
what we term “local knowledge” is satisfied. The experiments show 
that the local knowledge condition is not just helpful but is necessary 
for identifying probability of presence from PB data. Compared to 
the commonly used predetermined population prevalence (Phillips & 
Elith, 2011; Wang & Stone, 2019; Ward et al., 2009), the new method 
relaxes the required information and is thus less constrained.

2  |  MATERIAL S AND METHODS

2.1  |  Description

When working with SDMs, we are interested in whether a species is 
present or absent at a particular site, conditional on environmental 
covariates (denoted by x). Here, the variable y  =  1 represents the 
species’ presence while y = 0 represents its absence at a particu-
lar site. More specifically, a key goal is to estimate the conditional 
probability of Pr (y = 1|x), namely the absolute probability of pres-
ence at a site, based on the covariate x measured at that site. The 
overall population prevalence will be denoted as � = Pr (y = 1), that 
is, fraction of sites in the study area in which the species is present. 
A common practice in statistical modeling is to assume a parametric 
structure for Pr (y = 1|x), for example, the logit function

where �(x; �) can be a linear or nonlinear function of x, and β are param-
eters that need to be estimated.

The form of the parametric function is critically important for 
some statistical methods in SDM such as the LK method (Lele & 
Keim, 2006), and can determine the success of the method. In con-
trast, our proposed model is less reliant on the explicit form of the 

(1)Pr (y = 1|x;�) = 1

1 + exp[ − �(x; �)]
,

http://www.gbif.org
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parametric function. Examples will be provided in section 2.6 to 
show the robustness of our proposed method.

Presence-background data contain two independent random 
samples. The first sample P of size n1 is a random sample drawn from 
the presence points according to a selection/labelling mechanism 
(i.e., being labelled in the language of ML). The second sample B of 
size n0 is drawn independently and identically from all locations in the 
study area with only the covariates but no information about pres-
ence or absence at each location. We use s to represent the sampling 
stratum, with s = 1 for the observed/labelled samples appearing in P 
and s = 0 for “unlabelled” samples in B. Pr (s = 1) gives the probability 
of a species being observed or the probability of belonging to the 
presence samples. The class of y is not observed, but its information 
can be derived from the value of s. If the sample is labelled s = 1, then 
it is a “presence” with y = 1; that is Pr (y = 1|s = 1) = 1. But, if s = 0 we 
do not know whether y = 1 or y = 0. An important assumption under-
lying the labelling mechanism is that each labelled sample is chosen 
completely at random with the probability Pr (s = 1|y = 1) . The “se-
lected completely at random” (SCAR) assumption is stated formally 
as Pr (s = 1|y = 1, x) = Pr (s = 1|y = 1) (Bekker & Davis, 2020; Elkan 
& Noto, 2008). This assumption implies that no sampling bias exists 
for the PB data, or with sampling bias but the sampling effort and 
presence of species are conditionally independent given x. The latter 
assumption holds in many cases for PB data (Phillips et al., 2009).

This type of sampling mechanism was defined as the case-
control with contaminated controls in Lancaster and Imbens (1996) 
in econometrics studies and use-availability sampling in habitat-
selection studies (Keating & Cherry, 2004). In the context of ML, 
this problem belongs to a special case of classification, that is, PBL 
or case-control scenario of the PUL (Bekker & Davis, 2020; Elkan & 
Noto, 2008; Li et al., 2011).

2.2  |  Recap of the LK and CLK methods

The LK method defines the target log likelihood of the presence 
samples as (Lele & Keim, 2006);

By applying Bayes rule it becomes;

Dropping the terms that do not depend on the �, we obtain;

Lele and Keim (2006) used the background data B to estimate 
the denominator term � = Pr (y = 1) of population prevalence empir-
ically, and obtained the following log-likelihood;

In Equation (3), the species' prevalence has been approximated by 
the average probability over the background samples. Standard op-
timization techniques are used to find the coefficients β that maxi-
mizes Equation 3 (Lele & Keim, 2006).

Lele and Keim (2006) and Solymos and Lele (2015) argued that 
the LK method is valid in estimating the absolute probability of pres-
ence, if the so-called RSPF conditions hold. When stated simply, the 
RSPF conditions include (1) the true (actual) function of logPr (y = 1|x) 
should be nonlinear, and (2) not all covariates can be categorical. 
Readers are referred to Solymos and Lele (2015) for a complete dis-
cussion of these conditions. The logit function given in Equation (1) 
is one of the parametric functions that meet the RSPF conditions. 
(The complementary log-log (cloglog) function is another example 
that meets the conditions.) When these conditions are satisfied, it 
is claimed that the LK method can estimate the absolute probability 
of presence of a species without any other extra information needed 
(Lele & Keim, 2006; Solymos & Lele, 2015). Despite this, Hastie and 
Fithian (2013) have given an in-depth analysis showing why the LK 
method is incapable of estimating the correct parameter values when 
data arise via models that are nearly linear on the logit scale.

Existing literature makes it clear that information of population 
prevalence � is required in advance to estimate the absolute prob-
ability of presence at each site (Elith et al., 2008; Hastie & Fithian, 
2013; Phillips & Elith, 2013; Wang & Stone, 2019; Ward et al., 2009). 
In Wang and Stone (2019), we proposed the Constrained LK (CLK) 
method, which also requires the population prevalence as the prior 
information. In detail, the CLK method maximizes the following (LK 
type of) likelihood function,

with the constraint, i.e., 
1

n0

∑n0
j=1

Pr (y = 1�xj , �) = �0, where �0 is a pre-
determined population prevalence and n0 is the number of back-
ground samples. Note that this is different from just maximizing the 
function of Equation (3) in the LK method, as the constraint reduces 
the effective parameter space over which the maximization is per-
formed. It was also illustrated in Wang and Stone (2019) that the CLK 
method is capable of estimating the true probability of presence, the 
same as the EM (Ward et al., 2009), SB (Phillips & Elith, 2011) and SC 
(Steinberg & Cardell, 1992) methods, when the population preva-
lence is known. However, the population prevalence, �, is difficult to 
obtain in practice.

2.3  |  Estimating prevalence

Although it is difficult to obtain an accurate predetermined preva-
lence estimate of � in practice, we find the concept of “prototypical 

∑

x ∈ P

lnPr (x|y = 1;�).

∑

x ∈ P

ln
Pr (y = 1|x;�)Pr (x)

Pr (y = 1)
.

(2)
∑

x ∈ P

ln
Pr (y = 1|x; �)
Pr (y = 1)

.

(3)L =
�

x ∈ P

ln
Pr (y = 1�x; �)

1

n0

∑
x∈BPr (y = 1�x;�)

.

(4)L1(�) =
�

x ∈ P

Pr (y = 1�x, �)
1

n0

∑n0
j=1

Pr (y = 1�xj , �)
,
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presence locations” (PPL) proposed by Li et al. (2011) often yields 
accurate estimates of �. The concept was inspired by the PUL algo-
rithmpresence and background learning (PBL) (Elkan & Noto, 2008), 
and was further developed by Li et al. (2011) in the ecological con-
text of modelling PB data (PBL algorithm) species distributions. In 
this section, we propose an estimate for the population prevalence 
�, which can be plugged into the CLK method or other methods that 
require a predetermined prevalence to ultimately estimate the ab-
solute probability of presence. The steps of the new refined CLK 
method are summarised in Figure 1.

As a first step, we derive the relation between the probability of 
a species being observed, that is, Pr (s = 1|x), and absolute probabil-
ity of presence Pr (y = 1|x) as follows (see derivation in Appendix A),

where p1 is the number of observed presences and n0 is the number 
of background data. If we use p2 to denote the number of true pres-
ences in n0 background data, and c is defined as c =

p1

p1 + p2
, we can 

also obtain

Equation (5) shows the relation between the target probability of 
presence Pr (y = 1|x) and the conditional probability of the observed 
presence Pr (s = 1|x) under the case-control sampling scheme. This 
key relationship was also derived by Phillips et al. (2009) and Li et al. 
(2011). The derivation in Phillips et al. (2009) led to the introduction 
of the scaled binomial (SB) method (Elith et al., 2011), which assumes 
the population prevalence � to be known.

Elkan and Noto (2008) and Li et al. (2011) proposed ML approach 
to estimate c, and a central assumption was employed in their ap-
proaches. Although not specifically defined in their work, Elkan and 
Noto (2008) assume that Pr (y = 1|x) must equal to 1 at certain x 
value. This property was defined later by Bekker and Davis (2018) 
as the “local certainty” (LC) or the “positive subdomain/anchor set” 

assumption (Bekker & Davis, 2020). Similarly, Li et al. (2011) intro-
duced the concept of PPL at which the habitat is maximally suit-
able for the given species to survive. In the statistical language, 
the conditional probability of presence at these PPL is one, that is, 
Pr (y = 1|x) = 1 . In our framework, a similar assumption will be used 
to obtain an estimate for �.

At PPL, that is, when Pr (y = 1|x) = 1, it can be shown from 
Equation (5) that;

In another word, Equation (6) shows that we can estimate c through 
the predicted values of Pr (s = 1|x) at the PPL. For this, we first use 
ML methods to predict Pr (s = 1|x) by training a binary classification 
model using the presence (x, s = 1) and background (x, s = 0) data. 
Popular classification methods, such as logistic regression, k-nearest 
neighbours (KNN), support vector machines and neural networks, can 
be used to model Pr (s = 1|x). In this paper, a neural network was used 
as the classifier which has been shown to perform very well.

One or more geographical locations should exist as the PPL but 
proper identification may be hindered by noise in the predicted 
values of Pr (s = 1|x). To reduce the effect of noise, Elkan and Noto 
(2008) proposed three methods for estimating the sampling prob-
ability c, that is, the average values of Pr (s = 1|x) at the PPL, the 
maximum values of Pr (s = 1|x) at the PPL, and the ratio between 
the sum of Pr (s = 1|x) at the PPL and the sum of Pr (s = 1|x) over the 
background. Using the average as an example, c can be estimated as 
follows (Elkan & Noto, 2008; Li et al., 2011).

That is, c will be evaluated as the mean of predicted probabilities of 
Pr (s = 1|x) for x that belongs to the PPL. According to Equation 5, 
the probability of Pr (y = 1|x) is an increasing function of Pr (s = 1|x) , 
so we use the locations where Pr (s = 1|x) are maximal as the PPL. 
We rank the predicted Pr (s = 1|x) values for all presence and back-
ground points, and those locations where predicted Pr (s = 1|x) are 

Pr (s = 1|x) = 1

1 +
n0

p1
⋅

�

Pr (y = 1|x)

,

(5)Pr (s = 1|x) = 1

1 +
1− c

c
⋅

1

Pr (y = 1|x)

.

(6)Pr (s = 1|x) = c.

(7)ĉ =
1

n

∑

x ∈PPL

Pr (s = 1|x).

F I G U R E  1 Steps for the refined CLK 
method to estimate the probability of 
presence from presence-background data
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high are used as the PPL (Li et al., 2011). In our simulation study, we 
used the top 10th percentile, which is tested sufficient and appropri-
ate for our study.

From Equation (6), we can easily show the relation between � 
and c as follows;

� can thus be estimated as

We then substituted �̂ into Equation (4) as the constraint of the 
CLK likelihood function to ultimately estimate the unknown para-
metric function of Pr (y = 1|x, �).

In our proposed method, the population prevalence is estimated 
from the available PB data, provided the LC condition is satisfied. 
This contrasts with previous studies in which a predetermined value 
of prevalence (although often unavailable) is required (Phillips & 
Elith, 2011; Wang & Stone, 2019; Ward et al., 2009). The LC or the 
PPL requires the maximal probability to be one at some sites. This 
might appear to be a strong assumption; however, we suggest that 
this assumption is not implausible both theoretically and practically.

2.4  |  Justification of LC/PPL Assumptions

In the relevant ML literature such as Elkan and Noto (2008) and Li 
et al. (2011), it is typically assumed that the LC or the PPL condition 
holds for general classification problems. However, these critical as-
sumptions were not made explicit in the literature. In this section, 
we will explain how the PPL or the LC is not implausible in the con-
text of species niche modelling. To understand the concept clearly, 
consider the classification problem when working with true pres-
ence and absence data. Suppose for example, a logistic function for 
Pr (y = 1|x) (such as in Equation (1)) is the underlying probability func-
tionresource selection probability function that drives the distribu-
tion of presence and absence observations. When we simulate the 
presence-absence data from Pr (y = 1|x), we first generate a random 
value r on the interval of [0, 1] for each site. A site is assigned y = 1 
(presence) if r ≤ Pr (y = 1|x), and y = 0 (absence) otherwise. Those 
sites with probabilities less than one could be randomly allocated as 
either presence or absence (or just absence) depending on the ran-
dom value of r . The presences and absences generated at these sites 
would thus be “inseparable.” In another word, in order for (observed) 
presences distinguishable from absences (unobserved in PB data), 
some sites must have Pr (y = 1|x) = 1 (i.e., the PPL) so that a unique 
region in feature space is only occupied by the presence samples.

Figure 2  shows two presence-absence datasets driven by two 
different probability functions. The first dataset was generated 
from a logistic probability distribution function that satisfies the 

LC condition (see left figure of Figure 2), whereas the second data 
points were generated from a scaled logistic function where the 
maximal probability does not reach one (see right figure of Figure 2). 
It can see from the first figure that there exists some PPL where the 
presence (red) points are clearly separated from the absence (black) 
points, particularly in the top left quadrant. In contrast, in the sec-
ond dataset, there appears no region where presences are clearly 
separated from absences; presence and absence points nearly over-
lap in the feature space of (x1, x2).

Machine learning focuses more on classes that are strongly sepa-
rable. Therefore, to classify presence and absence from the PB data, 
LC or PPL is a key assumption underlying the case-control sampling 
scenario in PBL. Without extra information, the presence and ab-
sence points in the second data set would be hard to separate, re-
gardless of the method used.

2.5  |  Local Knowledge (LKN) condition

In statistical studies, however, we notice that the LC or PPL condi-
tion is sometimes not satisfied, i.e., Pr (y = 1|x) does not reach the 
maximal value of one. The scaled logistic example used in Hastie 
and Fithian (2013) to demonstrate the failure of the LK method and 
our second example in Figure 2 are such examples. When the pres-
ence and absence may not be distinguishable, other assumption or 
condition must be required to identify probability of presence from 
PB data. However, this condition should not be based on unfounded 
assumption, such as the RSPF conditions (Solymos & Lele, 2015). 
Rather in this section, we propose a local knowledge (LKN) condi-
tion that is one of such assumptions or conditions to handle these 
“difficult” problems. Compared to the commonly recognised popula-
tion prevalence, which requires the probabilities of presence over 
the whole landscape, the LKN condition relaxes the information re-
quired and is thus less constrained.

A simple derivation from Equation (5) shows that;

If we have the knowledge, for example, about the maximal 
probability of presence of the species (which is not necessarily 
one), we can rank the predicted values of Pr (s = 1|x) for all ob-
served presences and background points. Those locations with the 
highest Pr (s = 1|x) will be used as the locations with LKN. Using 
a maximal probability of 0.7 as an example, we can show from 
Equation (10) that

where L are those locations with LKN, for example, the maximal 
probabilities of Pr (y = 1|x) in this case. LKN does not necessarily 
refer to the information of the maximal probability, and it can also 

(8)� =
p1

n0
⋅

1 − c

c
,

(9)�̂ =
p1

n0
⋅

1 − ĉ

ĉ
.

(10)� =
p1

n0
⋅

1 − Pr (s = 1|x)
Pr (s = 1|x)

Pr (y = 1|x).

(11)�̂ =
0.7p1
n0

[
1 − Pr (s = 1|xL)
Pr (s = 1|xL)

]
,
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include any nominated probability of presence at a given site or over 
a particular landscape. In general, if LKN is available so that there 
are some locations where the probabilities of Pr (y = 1|x) are known, 
it should be possible to make use of the trained value of Pr (s = 1|x) 
at these locations to estimate � from Equation (10) and to finally 
estimate our objective function of Pr (y = 1|x). In the following sim-
ulation section, the scaled logistic example explored in Hastie and 
Fithian (2013) will be revisited to show how the LKN assumption can 
be used to estimate the absolute probability of presence. We also 
test the LKN on some probability functions extracted from Solymos 
and Lele (2015) that satisfy the RSPF conditions.

The LKN condition was built under the same framework and ex-
tends the LC condition. The PPL assumption given by Elkan and Noto 
(2008) and Li et al. (2011) is just one particular LKN subclass, in this 
case, where Pr (y = 1|x) = 1 at these locations. In practice, LKN could 
be gained through experts’ knowledge or pilot studies.

At the end of this section, we summarize the steps (as given in 
Figure 1) of the new refined CLK method to estimate the conditional 
probability of presence Pr (y = 1|x, �) as follows: 

Step 1: Train the model to estimate Pr (s = 1|x), using all presence 
(x, s = 1) and background (x, s = 0) data points. A commonly used 

ML binary classifier, such as the neural network or support vec-
tor machine, can be used for modelling Pr (s = 1|x);
Step 2: Estimate the population prevalence �̂ using Equation 10 
based on the predicted probabilities of Pr (s = 1|x) at the PPL or 
locations with LKN;
Step 3: Maximize the log-likelihood function of Equation (4) with 
respect to �, with � substituted by �̂ from step 2 and obtain the 
estimated probability of presence Pr (y = 1|x; �).

2.6  |  Simulation study

In this section, simulations are carried out first to assess the fra-
gility of the LK method and its RSPF conditions proposed by Lele 
and Keim (2006) and Solymos and Lele (2015); and second to 
demonstrate the performance of the proposed concept of LKN, 
in conjunction with the CLK method, to estimate the probability 
of presence.

To simplify the presentation, we consider a single predictor vari-
able x in our simulations. We use three different groups of functions 
for Pr (y = 1|x). Category 1 meets both the RSPF and LC conditions 
(see the top plot of Figure 3 and top section of Table 1); Category 

F I G U R E  2 The presence (red dots) and absence (black dots) on the left were generated from a logistic probability function 
Pr (y = 1|x) = 1

1+ exp(− 0.606+ 3.64x1 − 1.26x2)
, which satisfies the LC condition, that is, Pr (y = 1|x) = 1 at some points. The presence and absences points 

in the right figure were generated from a scaled logistic probability function Pr (y = 1|x) = 0.5

1+ exp(− 0.606+ 3.64x1 − 1.26x2)
 , where the probability of one 

is not reached in the feature space of (x1, x2). The presence (red) and absences (black) points are more separable in the left figure, particularly 
in the top left area; whereas there is no clear region in the right figure where presence and absence points are clearly separable

F I G U R E  3 The selected simulated species distributions of the three categories of functions. The Pr (y = 1|x) is plotted as a function of the 
covariate x. The top plot shows Category 1 functions (both RSPF and LC satisfied) which include linear logistic (black), quadratic logistic (red) 
and cubic logistic (green). The middle plot gives functions of Category 2 (only LC satisfied/RSPF not satisfied) which are linear scaled logistic 
(black), Gaussian (quadratic) (red), and cubic exponential (green) functions. The bottom plot shows Category 3 (only RSPF satisfied) which are 
linear logistic (black), quadratic logistic (red), and cubic logistic (green) functions
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2 functions only satisfy the LC condition (see the middle plot of 
Figure 3 and middle section in Table 1) (by this we mean that the 
selected parametric functions achieves the probability of 1 at some 
points of x) and Category 3 functions only satisfy the RSPF condi-
tions and not the LC (see the bottom plot of Figure 3 and bottom 
section in Table 1). In each category, three functions are selected 
such that it consist of one linear, one quadratic and one cubic func-
tion of x (see Figure 3 and Table 1). To ensure functions in Category 
1 and Category 3 satisfy the RSPF conditions, we used exactly the 
same functions as those in Solymos and Lele (2015) that include 
linear, quadratic and cubic logistic and complementary log-log (clo-
glog) functions. In Category 2, linear scaled logistic, Gaussian and 
cubic exponential functions are chosen as not to satisfy the RSPF 
conditions, because the constant terms in these functions would 
be cancelled out in the LK's loglikelihood function (see Equation 3). 
Both the scaled logistic and exponential functions were also noted 
in Solymos and Lele (2015) as not satisfying the RSPF conditions. 
These functions have been modified in our study to meet the LC 
conditions (see Figure 3 middle row).

All the functions in Categories 1 and 3 were fitted by logistic 
functions for both the LK and the refined CLK methods (see Figure 4 
top row and Figure 5 bottom row). Gaussian and cubic exponen-
tial functions in Category 2 were fitted by exponential functions 
to align with the form of the original functions. The scaled logistic 
function in Category 2 was also fit by an exponential function to 
test the robustness of the CLK method with different type of fit-
ting function than the logistic function (see Figure 5 upper row). For 
functions in Category 3, we assumed the LKN of Pr (y = 1|x) = 0.83, 
Pr (y = 1|x) = 0.8 and Pr (y = 1|x) = 0.75, which are the maximal prob-
abilities of the linear, quadratic and cubic logistic functions over the 

range of x. We also tested the performance of the CLK method with 
the mis-specified LKN information, where the LKN used differs the 
true probability by ± 10%. Results are shown in the bottom row of 
Figure 5.

Solymos and Lele (2015) pointed out that if the nonlinearity on 
the log-scale is weak, it may need very large sample sizes to get rea-
sonable estimate for the LK method. To ensure a stable performance 
of the LK method, simulations were carried out with 5000 presence 
samples and 50,000 background samples. When the LK method re-
sults were not satisfactory in some experiments such as Category 3, 
we repeated some experiments with even larger samples of 50,000 
presences and 500,000 background points to investigate the per-
formance of LK method under very large sample conditions (Phillips 
& Elith, 2013; Solymos & Lele, 2015). Meanwhile the performance 
under the smaller sample (e.g., 250 presences and 5000 background 
samples) were also investigated for both methods in Category 1, and 
the results are given in Figure 4 bottom row.

The cloglog functions used in Solymos and Lele (2015) was de-
fined as one of the possible functions satisfying the RSPF conditions. 
To test the robustness of both the refined CLK and the LK meth-
ods against mis-specified parametric functional form, we generated 
data using cloglog function but fit the data with logistic functions. 
The cloglog functions studied by Solymos and Lele (2015). Results 
are shown in Figures D2 and D3 in Appendix D. For cloglog func-
tions in Category 2 where only RSPF conditions are satisfied, the 
maximal probabilities of Pr (y = 1|x) = 0.73, Pr (y = 1|x) = 0.89 and 
Pr (y = 1|x) = 0.68 were assumed as the known LKN for fitting the 
linear, quadratic and cubic functions, respectively (see Figure D3).

The neural network package “nnet” in R (Venables & Ripley, 
2002) was used to train Pr (s = 1|x) for the refined CLK method. 

Category
Conditions 
met Function type Probability functions

Category 1 Local Linear Pr (y = 1|x) = 1

1+ exp(− 0.606+ 3.64x)

Certainty & Quadratic Pr (y = 1|x) = 1

1+ exp(− 0.606+ 3.64x − 1.26x2)

RSPF Cubic Pr (y = 1|x) = 1

1+ exp(0.284+ 2.298x + 0.232x2 − 7.269x3)

Category 2 Local Scaled logistic Pr (y = 1|x) = 8.3

1+ exp(4− 2x)

Certainty Gaussian Pr (y = 1|x) = 0.99exp( − (4x−2)2)

Exponential Pr (y = 1|x) = exp( − 0.5 + 0.5x − 0.9x2 + 0.9x3)

Category 3 Linear Pr (y = 1|x) = 1

1+ exp( − 0.5855− 1.064x)

RSPF Quadratic Pr (y = 1|x) = 1

1+ exp( − 0.5855− 1.064x + 0.218x2)

Cubic Pr (y = 1|x) = 1

1+ exp(− 0.5855− 1.064x + 0.218x2 + 1.81x3)

TA B L E  1 Probability of presence 
for the simulated species used in the 
experimental evaluation, where Category 
1 satisfies both RSPF and LC conditions, 
Category 2 is where only LC is satisfied 
(RSPF conditions are not satisfied). 
Category 3 is where only RSPF conditions 
are satisfied (LC is not satisfied)

F I G U R E  4 Top panel contains the graphs of Category 1, in which the Pr (y = 1|x) is plotted against the covariate x when the original 
parametric function satisfies both the RSPF and LC conditions. For each simulation, 5000 presence samples and 50,000 background 
samples were chosen from a landscape with the predictor variable x in [−1, 1]. The bottom panel contains the category 1 functions with a 
smaller sample of 250 presence samples and 5000 background samples chosen from the same landscape as the top panel. Estimated lines 
from each of 1000 simulations are plotted in light green (LK) and light orange (CLK). Three solid lines are plotted representing the true 
probability function (black), representing the average LK estimates (green) and average CLK estimates (orange), respectively, as averaged 
from 1000 simulations
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We rank the predicted Pr (s = 1|x) for the presence and background 
points, and those locations whose predicted Pr (s = 1|x) lie in the top 
10th percentile are used as the PPL or locations with the LKN. The 
choice for the 10th percentile threshold is arbitrary but was tested 
sufficient and robust for our simulation studies.

We run the simulations 1000 times for each species distribution 
function. The estimated environmental relationship for each of the 
1000 simulation are plotted using the LK and refined CLK methods, 
against the true probabilities. Root mean square errors (RMSE) of 
fitted probabilities against the true probabilities of presence are also 
calculated and plotted in Figures 6, D2 and D3. Moreover, the error 
(nonconvergence) rates of the LK method in 1000 iterations are 
given in Tables E1 and E2 in Appendix E.

All model fitting and assessment have been carried out in R 
version 3.6.1. The R code supplied by Solymos and Lele (2015) has 
been used to choose the functions that satisfy the RSPF condition. 
The “ResourceSelection” package (Lele, 2009; Lele & Keim, 2006; 
Solymos & Lele, 2015) has been used to fit the LK method, and the R 
code provided by Phillips and Elith (2013) has been used with modi-
fication where relevant.

2.7  |  Revisiting an Example Hastie and Fithian 
(2013)

One of the pivotal publications by Hastie and Fithian (2013) demon-
strated the failure of the LK method to fit and distinguish between 
the scaled and full logistic functions. From the perspective of ML, 
the presences and absences generated from a scaled logistic func-
tion are actually not separable, because scaled logistic functions 
do not satisfy the LC condition. We revisit the example in Hastie 
and Fithian (2013) and fit the scaled logistic function with the CLK 
method but using the LKN information. We will show that the LKN 
assumption is not only helpful but also necessary in removing the 
multiple solutions that create identifiability issues in the LK method.

In their paper, Hastie and Fithian (2013) demonstrated the lack 
of fit in the LK methods using two logistic functions. The full logistic 
function considered is f1(x) =

1

1+ exp(1− x)
 while the scaled logistic 

function is exactly half of that, i.e., f2(x) =
1

2
f1(x), where 

x ∈ [ − 2.5, 2.5] . We first fit both functions by the LK and CLK meth-
ods, using a sample of 5000 presences and 50, 000, background data 
points with 1000 iterations (top row of Figure 7). We also tried dif-
ferent sample size to test the robustness of the LK method and the 

CLK method (see bottom row of Figure 7). For the refined CLK 
method, we assumed the LKN of Pr (y = 1|x) = 0.8 and 
Pr (y = 1|x) = 0.4, which are the maximal probabilities that the full 
and scaled logistic functions can reach over the range of x. We used 
the top 10th percentile of sites where Pr (s = 1|x) are highest as the 
locations with LKN.

3  |  RESULTS

3.1  |  Simulation results

The results of the three categories are given in Figures 4 and 5 
in which the Pr (y = 1|x) is plotted against x. In these figures, the 
black line gives the original parametric functions selected as given 
in Table 1. The green and orange dashed lines indicate the simula-
tion lines for the 1000 iterations carried out for the LK and refined 
CLK methods while the respective solid lines show the average of 
those simulations. The top panel of Figure 4 shows that when both 
the RSPF and the LC conditions are satisfied in Category 1, the LK 
and refined CLK methods both perform well in estimating the true 
function of Pr (y = 1|x), with the mean estimates close to the true 
functions. Both methods have similarly small RMSEs for the fitted 
probabilities against the true probabilities (see top left panel of 
Figure 6). However, when the number of presence points reduces 
(such as to 250), the LK method starts to perform unstably with 
more variations (see Figure 4 bottom row). The dispersion for the 
CLK method also increase but are consistently stable. Overall, the 
CLK method with the LC condition perform well with small sam-
ples regarding both the accuracy and precision (see top right plot 
in Figure 6).

Category 2 functions (Figure 5 top panel) do not satisfy the RSPF 
conditions, but they meet the LC conditions. Under these circum-
stances, the refined CLK method performs consistently well for all 
functions (orange), while the LK (green) performs poorly as expected 
given that these functions fail to satisfy the RSPF conditions. The 
poor performance is seen by the simulated curves not close to the 
original functions (black) and with large deviations (light green lines) 
that indicate possible identifiability issues. RMSEs of the LK method 
are very large in contrast to the small RMSEs of the refine CLK 
method (Figure 6 bottom left panel).

Figure 5 bottom panel shows the performance of the two meth-
ods for functions in Category 3. Interestingly, the LK method (green 

F I G U R E  5 Top row shows the Category 2 results, in which only the LC is satisfied. The exponential parametric function is used to fit CLK 
method, while the LK methods fit by logistic function. Bottom row shows Category 3 results, where the RSPF conditions are met, with the 
LNK of the maximal probabilities of 0.83 used for linear logistic (left), 0.8 for Quadratic (middle) and 0.75 for Cubic (right) logistic functions 
respectively. Estimated lines from each of 1000 simulations are plotted in light green (LK) and light orange (CLK). Three solid lines are 
plotted representing the true probability function (black), average of the LK estimates (green) and average of the CLK estimates (orange), 
respectively, over 1000 simulations. The dashed brown lines in the bottom row show a single run of the simulation when the LKN is mis-
specified by ± 10% from its true value. For each simulation, 5000 presence samples and 50,000 background samples were generated from a 
landscape with the predictor variable x in [0, 1] and [−1, 1] for Category 2 and 3, respectively
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lines) fails to perform well in all functions in Category 3, where the 
claimed RSPF conditions are all met for these functions (Solymos 
& Lele, 2015). The average fit for the linear logistic function may 
appear close to the true probability function, but the individual es-
timates are so unstable that fluctuate widely. A large dispersion is 
sometimes a signal that the model is not identifiable, and more infor-
mation is required for the model to be identified. This also poses a 
large risk of using the LK method in practice, as it could give a result 
that may be far away from the actual probability of presence. On the 
other hand, the refined CLK method well predicts the true probabil-
ity function resource selection probability function when accurate 

LKN information is available, with much smaller variances compared 
to those of the LK method. This is partially due to more information 
utilised. Using the neural network to train Pr (s = 1|x) also improves 
the accuracy of our method compared to the logistic regression clas-
sification method.

The brown dashed lines in the bottom panel of Figure 5 show 
the estimate of probability when the LKN is mis-specified by 
a ±10% margin of error from the true LKN. Overall, a 10% mis-
specification of the LKN has led to a similar level (i.e. around 
10%) of over or under-estimation of the probabilities of presence. 
Regardless, the biased estimates of the refined CLK method are 

F I G U R E  6 Bar plot of the RMSEs of the two methods, LK and CLK for the logistic functions in Category 1 (top left) as given in top row 
in Figure 4, Category 1 (top right) with small samples, Category 2 (bottom left) as given in top row in Figure 5 and Category 3 with LKN for 
(bottom right) as given in the bottom row of Figure 5

F I G U R E  7 Top panel shows the full and scaled logistic functions (same as Hastie & Fithian (2013)). Here, we used the LKN of 
Pr (y = 1|x) = 0.8 for the full logistic function and Pr (y = 1|x) = 0.4 for the scaled logistic function both around x = 2.5 . The green and 
orange dashed lines (top panel) represent estimates of LK and CLK methods, respectively, and the solid green and orange lines represent 
the averages of the 1000 simulations. The original logistic functions are given in black. Bottom panel shows the fitted scaled logistic 
functions from both the LK method (green) and the CLK (orange) with different sample sizes. From the bottom left to right, the presence and 
background samples increase from (50, 5000), (500, 5000) to a very large samples of (5000, 50,000)
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still more accurate and precise than the LK estimates for both 
the quadratic and cubic logistic functions. Although the mean of 
LK seems a better fit for the linear logistic function (Figure 5 left 
bottom plot), the LK shows an exceptionally large dispersion, an 
indicator of the model lack of identifiability. The bottom right-side 
panel of Figure 6 again shows the larger RMSEs of the LK method 
compared with the refined CLK method for all three functions in 
Category 3.

Comparable results were also observed for cloglog functions 
(see Appendix D), where both methods were fitted using logistic 
functions. In this circumstance, the refined CLK method consistently 
performs well with accurate estimates and small variances. Even 
though the cloglog function satisfies the RSPF conditions, perfor-
mance of the LK method is unstable and not robust as claimed by 
Solymos and Lele (2015). These simulations again demonstrate that 
parametric function based conditions are fragile and insufficient. 
The LKN additional to the LK method provides a robust and solid 
solution to estimate the true probability of presence from PB data 
(see Figures D2 and D3 in Appendix D).

Phillips and Elith (2013) and Solymos and Lele (2015) mention 
that the LK method performs better when the sample size is “large 
enough.” Solymos and Lele (2015) hint that the above-mentioned 
problem can be overcome with larger sample sizes. We found that 
when using a “very large” sample of 50,000 presences and 500,000 
background samples (see Figure B1 in Appendix B), the LK method 
shows an improved performance with less variations when com-
pared with the performance from a sample of 5000 presences and 
50,000 background samples (See Figure 5). Nevertheless, a signifi-
cant improvement in performance is only observed for some func-
tions (linear logistic function in Figure B1 in Appendix B), while the 
improvement is only slight for other functions.

An instability of the LK method is also observed while using 
the “ResourceSelection” package in fitting the LK method. The LK 
shows a greater variation in their estimation, when different start-
ing values were used to optimize the log-likelihood function. Even 
in the cases when the logistic parametric functions satisfy the RSPF 
conditions, failures (nonconvergences) were observed in our simu-
lations. The nonconvergence rate (see Table E1 in Appendix E) is the 
proportion of simulations that didn't converge. Using the quadratic 
logistic function in Category 1 as an example, the LK method didn't 
converge 2.2% of times when the function satisfies the LC condi-
tion. The failure rate increases to 31.4% (for the quadratic logistic 
function in category 3) when the LC is not met, while in both cases, 
the quadratic functions still satisfy the RSPF condition. Similar be-
havior is also observed for mis-specified models (See Table E2 in 
the Appendix E).

3.2  |  Results of the revisited example from 
Hastie and Fithian (2013)

Hastie and Fithian (2013) showed that the proportional likeli-
hood (see Equation 2) that forms the basis of the LK method has 

identifiability issues. In their argument, they considered the full lo-
gistic function f1(x) and a scaled logistic f2(x) which is exactly half of 
the full logistic function f1(x). The top panels in Figure 7 plots these 
two functions f1(x) & f2(x) given by Hastie and Fithian (2013).

Because of the scaling, it is easy to see from Equation 3 that 
the likelihoods of these two functions f1(x) and f2(x) are exactly the 
same. Thus, when we attempted to fit the two different datasets 
(generated from the scaled and the full logistic function), the LK 
method gave exactly the same parameter estimates for the � i for 
both functions. This is confirmed in our simulation when large sam-
ple sizes are applied. The LK method yields the same estimates for 
both the full and the scaled logistic functions. Thus despite the fact 
that f2(x) =

1

2
f1(x) (black line in Figure 7 top left panel), the estimation 

scheme finds f̂2(x) ≈ f̂1(x). Figure 7 (top left panel) shows the LK fits 
(green lines) are close to the full-logistic (plotted in black Figure 7 top 
right panel). This effect was observed and explained in Hastie and 
Fithian (2013). The refined CLK method, on the other hand, predicts 
both logistic functions very well, when the maximal probabilities for 
Pr (y = 1|x) are available for both the full and scaled logistic regres-
sions. The predicted functions from the refined CLK method align 
closely with both the true probability functions, with small variations 
observed between replications (see orange dashed lines in the top 
panel of Figure 7).

An effect that was not discussed in Hastie and Fithian (2013) 
is the case when the sample sizes of the presence and/or back-
ground are small (bottom panel of Figure 7). The identifiability 
problems of the LK method are even more severe in these cases. 
The green dashed lines show that the many LK fits we attempted 
are in fact a manifestation of the likelihood's multiple proportional 
solutions interfering. Each such solution has the same likelihood 
as the full logistic model. As the sample sizes increase, the model 
gradually identifies the function with the “maximum” likelihood as 
the interested parametric function, which in these types of cases 
tends to be the full logistic function. This is why the LK method 
has such trouble fitting scaled functions. Moreover, we also found 
that it requires very large samples for the LK method to perform 
stably (bottom panel of Figure 7). By contrast, the CLK method 
performs consistently well even with a small number of presence 
points.

Simulations in Appendix C show the performance of the refined 
CLK method for logistic functions in Category 3 and the scaled lo-
gistic function where the LC conditions were not satisfied but were 
erroneously assumed. Results show that the average probabilities 
(dashed red lines in Figure C1) are overestimated proportionally 
to the true probabilities of presence (black lines). Because of the 
(wrong) LC restriction, the maximal estimated probabilities tend to 
reach one. Compared to the LK method, however, the mean esti-
mates of the refined CLK method are still closer to the true para-
metric functions apart from the linear logistic function, where the 
LK method again shows exceptionally large variation that indicates 
possible identifiability issue with the method. This issue is only alle-
viated when sample size becomes extremely large (see Figure B1 in 
Appendix B).
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4  |  DISCUSSION

In this paper, we have studied the modeling of the probability of pres-
ence (or probability of use) of a species using presence-background 
(or use-availability) data. To estimate the resource selection prob-
ability, either a strong parametric assumption such as the logit func-
tion requirement for the LK method or extra information such as the 
population prevalence (as in the SB, EM, and CLK methods) has been 
proposed (Elith et al., 2011; Phillips & Elith, 2013; Wang & Stone, 
2019; Ward et al., 2009).

The LK method, along with other methods with a strong para-
metric assumption, have been widely used in the literature and they 
claimed that the absolute probability of presence may possibly be 
estimated without requiring an estimate of the prevalence (Lele & 
Keim, 2006; Royle et al., 2012; Solymos & Lele, 2015). But there 
have been arguments in the literature and many researchers have 
warned against using these methods to accurately estimate the ac-
tual probability of presence (Elith et al., 2006; Guillera-Arroita et al., 
2015; Hastie & Fithian, 2013; Keating & Cherry, 2004; Knape & 
Korner-Nievergelt, 2015; Phillips & Elith, 2013; Renner & Warton, 
2013; Wang & Stone, 2019; Ward et al., 2009). Our simulation study 
suggests that the LK method performs well only when the “RSPF-
eligible” functions satisfy the LC condition and samples are not 
small. When presence sample is small, linear logit/cloglog functions 
with the LC seem the only functions that performs reasonably well. 
Taking a large sample along with a strong parametric assumption 
may sometimes overcome these problems, as we think Solymos and 
Lele are arguing. But either finding a large enough sample or know-
ing a parametric assumption is not feasible in practice. Our paper 
shows again that these methods (such as the LK) are fragile and can 
give unreliable estimates even when its underlying so-called RSPF 
condition is met. Thus, our results contradict the claim made in 
Solymos and Lele (2015) that “if the RSPF condition is satisfied, it is 
possible to estimate absolute probability of selection.” Although the 
RSPF condition is necessary for the LK method, our study indicates 
the “success” of the LK method depends crucially on the LC, that is, 
classes of presence and absence are separable.

It was shown that the LK method has difficulty distinguishing 
between the actual likelihood and other possibly similar likelihoods 
that arise from scaled functions. From the perspective of ML, the 
presence observations generated from the scaled logistic func-
tions, which do not satisfy the LC condition, completely overlap 
with absence observations and two classes are inseparable. It is 
thus expected that the LK method would have multiple solutions 
and difficulty in locating the true probability function of presence. 
Under this circumstance, we believe that not only the LK method 
but any other methods should have trouble in distinguishing two 
inseparable classes, except when extra information is enforced. The 
extra information, however, if coming from unfounded model as-
sumption, only renders fragile estimation/prediction of the desired 
probabilities. Rather, the LKN proposed in the paper provides an 
effective additional datum to reliably estimate absolute (rather than 
relative) probability of presence from the PB data. This condition 

relaxes the commonly recognised population prevalence and helps 
overcome the identifiability issue inherent in the proportional LK 
likelihood function, that is, the problem Hastie and Fithian (2013) 
elaborated on.

Other related ideas of anchoring the presence probability also 
exists, such as using extra effort at a subset of sites (e.g., with occu-
pancy model designs) or integration of presence-only with presence-
absence data (Dorazio et al., 2015; Fithian et al., 2015; Koshkina 
et al., 2017). The conceptual idea behind all these methods is the 
same, that is, using additional information to anchor the PB data to 
estimate probability of presence. We propose a new approach which 
combines both ML (Elkan & Noto, 2008; Li et al., 2011) and statistical 
techniques to strengthen the estimation of population prevalence 
and to finally estimate the probability of presence. Our approach 
estimates the population prevalence based on the LC assumption. 
By doing this, we eliminate the strong parametric assumption in the 
LK method, while removing the need of additional fieldwork to es-
timate the population prevalence. Our estimate of the population 
prevalence can also be fed into the SB, EM as well as the widely 
used MAXENT (Phillips et al., 2006) models to predict the absolute 
probability of presence.

The LC condition assumes that Pr (y = 1|x) = 1 is satisfied at 
the PPL (Li et al., 2011). The LC (or the PPL) was also defined as 
the “positive subdomain/anchor set” assumption in the ML lit-
erature as a key assumption for the population prevalence to be 
identifiable in a balanced ecosystem (Bekker & Davis, 2020). As 
we described, users can find PPL by identifying large prediction 
values of Pr (s = 1|x) from the observed presences and background 
points (or the presence locations). As one reviewer pointed out, 
users could enlarge the study area so that it is more likely to 
include certain PPL in study area, because under the LC or the 
positive subdomain assumption there will be locations for which 
Pr (y = 1|x) = 1 (Bekker & Davis, 2020; Elkan & Noto, 2008; Li et al., 
2011). Additionally, adding more relevant features(covariates) to 
distinguish between species’ presences and absences may also 
help. In ecological system, LC holds, for example, if some locations 
or combination of niches always provide sustainable conditions 
for a species to survive. Long-term spatial persistence and spatial 
stability is well known for forest communities where some spe-
cies and individuals persist on centennial to millennial timescales, 
in coral reefs, and even in seagrass meadows where structurally 
complex habitats create persisting localised hotspots. These are 
just several examples where LC would seem to be a very reason-
able assumption and will be dependent on suitability of surround-
ing ecological and environmental conditions.

In some cases, the LC condition may not be satisfied but was still 
erroneously assumed. The probability of presence at each location 
would be overestimated but the ranking of the presence probabil-
ities across study area is still preserved. Under the circumstance, 
the LKN condition is proposed as an extension of the LC condition 
to overcome the identifiability issue underlying those “inseparable” 
presence and absence problems. There exists potential risk of mis-
specifying the LKN for attention, where a mis-specified information 
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will give biased probability of presence. The level of bias depends on 
the degree of mis-specification.

The PBL method (Li et al., 2011) can predict the required prob-
ability well, but it is hard to gain the inferential relationship be-
tween the probability of a species’ presence and the influential 
environmental covariates. The CLK method, on the other hand, 
provides a remedy by finding the impact of the environmen-
tal covariates on species’ presence, whilst also providing good 
predictions. We also extend the LC or the PPL condition to the 
more general LKN condition. Similar to the PBL method, the per-
formance of the refined CLK method is dependent on the clas-
sification method being chosen to fit the conditional labelling 
probability Pr (s = 1|x). In our numerical studies, a simple logistic 
regression as the classifier gave poor results when compared to 
the neural network (comparative results not shown). That is the 
reason we used the neural network in classifying Pr (s = 1|x) versus 
Pr (s = 0|x). Similar as other ML methods, our proposed approach 
also requires reasonably large background samples to enable reli-
able estimation, whereas the selection of large background sam-
ples can be easily achieved in practice.

An alternative suggestion by a referee is to perform/conceive 
the CLK method in a Bayesian framework, given its similarity to set-
ting a highly informative prior (i.e., a spike prior) on the LKN at some 
sites. This could be a potential research to extend the CLK method 
in the framework of Bayesian analysis. Meanwhile, this paper as-
sumes presence sample is SCAR, where there is either no sampling 
bias or the sampling effort and presence of species are conditionally 
independent givenx. When SCAR is not satisfied and if the sampling 
mechanism is known, such as depending on certain covariates, the 
information could be incorporated into a model to enable an un-
biased estimation of the probability of presence. This suggests a 
potential direction for future research to combine the ML and statis-
tical methods to study PB data with sampling bias.

5  |  CONCLUSION

Estimating the absolute probability of presence from presence 
only data is an ill-defined problem. In order for the probability 
identifiable, additional assumption is necessary. This paper first 
shows that the proper condition to estimate the absolute prob-
ability of presence is not the RSPF conditions as the LK method 
has claimed. We found that the LK method is fragile and often 
fails to give reliable estimates even when the RSPF conditions are 
satisfied. Rather, we propose the LKN condition, which relaxes 
the predetermined population prevalence condition that has so 
often been used in much of the existing literature. The proposed 
concept of LKN extends the LC or the PPL assumption when the 
latter is not satisfied. The concept has significant implications for 
demonstrating the necessary assumption to possibly estimate the 
absolute probability of presence from PB data in species distribu-
tion modelling.
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APPENDIX A

REL ATIONSHIP BE T WEEN THE ABSOLUTE PROBABILIT Y OF PRE SENCE AND THE CONDITIONAL PROBABILIT Y 
OF SELEC TION
The relationship is identified using Li et al. (2011) and Phillips et al. (2009). The definition of Pr (s = 1|x), that is, the probability that a site will be 
chosen as a presence sample rather than a background sample, conditioned on the environmental variables (Phillips et al., 2009) is not similar 
to Pr (y = 1|x), that is, the probability of occurrence conditioned on the environmental variables. We will now define the notations used.

We denote presence as y = 1 and absence as y = 0. Hence, the desired model can be written as P(y = 1|x). Let � = Pr (y = 1), the overall 
prevalence of the species of presence. and p1 is the number of observed presence data points in the presence sample in the training data set. 
The background data in the training set contain p2 presences and n2 absences, both in proportion to their overall population prevalence and 
p2 + n2 = n0. Moreover, let s = 1 denote the observed presence and s = 0 the background data. Remember that a background data point is 
either an unknown presence or an unknown absence. If s = 1, we know that y = 1; however, if s = 0, we do not know whether y = 1 or y = 0. 
Therefore,

The background points are drawn independently and identically from all locations in the study area. It contains p2 presences, which are in 
proportion to the overall population prevalence �. Therefore, Pr (y = 1) = � =

p2

n0
.

By definition of conditional probability, we have,

By applying the Bayes rule, we have

Then by definition of Pr (s = 1) and Pr (s = 0)

Next, dividing all terms by p1 ⋅ Pr (x|s = 1), we have

Pr (x|s = 1) is the density of the environmental covariates conditional on the observed presence, while Pr (x|s = 0) is the density of environ-
mental covariates for the entire region. Pr (x|s = 1) can be shown the same as the density of environmental covariates conditional on species’ 
presence as follows:

Pr (s = 1) =
p1

(p1 + n0)
,

Pr (s = 0) =
n0

(p1 + n0)
.

Pr (s = 1|x) = Pr (x, s = 1)

Pr (x)

(A1)
Pr (s=1|x) =

Pr (x|s=1)Pr (s=1)

Pr (x)

=
Pr (x|s=1)Pr (s=1)

Pr (x|s=1)Pr (s=1)+Pr (x|s=0)Pr (s=0)
.

Pr (s = 1|x) =
p1 ⋅ Pr (x|s = 1)

p1 ⋅ Pr (x|s = 1) + n0 ⋅ Pr (x|s = 0)
.

Pr (s = 1|x) = 1

1 +
n0

p1
⋅

Pr (x|s= 0)

Pr (x|s= 1)

.

Pr (x|s=1) =Pr (x|s=1, y=1)(by the sampling scheme)

=
Pr (s=1|x, y=1)Pr (x|y=1)

Pr (s=1|y=1)

(
by Bayes’ theorem

)

=Pr (x|y=1)
(
by assumption of “selected completely at random”

)
.
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Similarly, as the background data is an independent and identical sample randomly selected from all locations in the whole region, so 
Pr (x|s = 0) = Pr (x) the density of covariates of the whole region. These assumptions can also be found from previous work (Bekker & Davis, 
2020; Lancaster & Imbens, 1996; Li et al., 2011; Phillips et al., 2009).

By applying the Bayes rule again to Pr (x|y = 1) we get

Hence,

If we define c = p1

p1 + p2
, the above equation becomes

Equation (A2) shows the important relationship between the model fitted to PB data using a presence–absence method and the target prob-
ability of presence. It can see that the fitted probability of Pr (s = 1|x) is not equal to, or even proportional to probability of presence (Elith et 
al., 2011; Li et al., 2011; Phillips et al., 2009).

Here, we also show the relation between c and the sampling probability of Pr (s = 1|y = 1) as follows:

We see from A2 that Pr (s= 1|x)
1−Pr (s= 1|x) =

c

1− c
Pr (y = 1|x). Therefore, Pr (s= 1|y = 1)

Pr (s= 0)
=

c

1− c
, and thus c = Pr (s= 1|y = 1)

Pr (s= 1)+Pr (s= 1|y = 1)
.

Pr (s = 1|x) = 1

1 +
n0

p1
⋅

Pr (x)

Pr (x|y = 1)

=
1

1 +
n0

p1
⋅

Pr (x)
Pr (y = 1|x)Pr (x)

Pr (y = 1)

,

Pr (s = 1|x) = 1

1 +
n0

p1
⋅

Pr (y = 1)

Pr (y = 1|x)

=
1

1 +
n0

p1
⋅

�

Pr (y = 1|x)

=
1

1 +
p2

p1
⋅

1

Pr (y = 1|x)

.

(A2)Pr (s = 1|x) = 1

1 +
1− c

c
⋅

1

Pr (y = 1|x)

.

Pr (s=1|x)
1−Pr (s=1|x)

=
Pr (x|s=1)Pr (s=1)

Pr (x|s=0)Pr (s=0)
=
Pr (x|y=1)Pr (s=1)

Pr (x)Pr (s=0)

=
Pr (y=1|x)Pr (x)
Pr (y=1)Pr (x)

⋅

Pr (s=1)

Pr (s=0)

=
Pr (y=1|x)
Pr (s=0)

Pr (s=1|y=1).
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APPENDIX B

RE SULTS OF THE LK ME THOD WITH VERY L ARG E SAMPLE S IZE

F I G U R E  B 1 Category 3: The Pr (y = 1|x) is plotted when the original logistic parametric function only satisfies the RSPF condition 
(Category 3) for very large sample size. The original simulated function (black line), average LK method (green) is given with the respective 
1000 simulation lines (light green) for the Linear Logistic (left), Quadratic Logistic (middle) and Cubic logistic (right). For each simulation, 
50,000 presence samples and 500,000 background samples were chosen from a landscape with the predictor variable x in [−1, 1]
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APPENDIX C

RE SULTS OF THE MIS-SPECIFIED LC ON C ATEGORY 3 LOG IS TIC FUNC TIONS

F I G U R E  C 1 Simulations were conducted for logistic functions in Category 3 and the scaled logistic function Hastie where the LC are 
not met but are erroneously assumed. The original simulated function (black line), average of the refined CLK method (brown dashed line), 
and average of the LK method (solid green) are shown, with the respective 1000 simulated lines (light green) for the LK method. From left 
to right, it shows the Linear Logistic (left most), Quadratic Logistic (middle left), Cubic logistic (middle right) and scaled logistic function 
(right most). For each simulation, 5000 presence samples and 50,000 background samples were chosen from a landscape with the predictor 
variable x in [−1, 1]
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APPENDIX D

RE SULTS OF THE COMPLEMENTARY LOG - LOG (CLOG LOG) FUNC TIONS
The chosen cloglog functions are given in Figure D1 and Table D1. These cloglog functions are divided into two categories, category one 
having three functions that satisfy both the RSPF and the LC condition and the second category only satisfies the RSPF conditions. These 
functions are also fitted using the logit parametric function to investigate the performance of the LK and CLK methods when the model is 

F I G U R E  D 1 The selected simulated 
species distributions of the two groups 
of cloglog functions; category 1 and 
2, respectively. The plots display the 
following functions named as follows. 
The top plot gives the functions of the 
category 1: only RSPF conditions satisfied, 
that are linear (black), quadratic (red) and 
cubic (green). The bottom plot of category 
2: RSPF and LC satisfied gives the linear 
(black), quadratic (red) and cubic (green)
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mis-specified. The results given in the Figures D2 and D3 show that the performance of the CLK method is good even though the models are 
mis-specified, whereas the LK method is still unable to accurately identify the original function as expected.

F I G U R E  D 2 The Pr (y = 1|x) is plotted 
when the original cloglog parametric 
functions that satisfy both the RSPF and 
the LC conditions as given by Solymos 
and Lele (2015). The original simulated 
function (black line), average LK method 
(green) and average CLK method 
(orange) are given with the respective 
1000 simulation lines (light green dashed 
lines for LK and light orange dashed for 
CLK methods). For each simulation, 5000 
presence samples and 50,000 background 
samples were chosen from a landscape 
with the predictor variable x in [−1, 1]. 
The bottom bar plot visualize the RMSEs 
of the two methods, LK and CLK for the 
above logistic functions
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F I G U R E  D 3 The Pr (y = 1|x) is 
plotted when the original cloglog 
parametric functions that satisfy 
only RSPF conditions (with the LKN 
information assumed to be available 
as Pr (y = 1 |x) = 0.73∕0.89∕0.68 for 
linear, quadratic, and cubic functions 
respectively at maximum point of x). The 
original simulated function (black line), 
average LK method (green) and average 
CLK method (orange) are given with the 
respective 1000 simulation lines (light 
green dashed lines for LK and light orange 
dashed for CLK methods). For each 
simulation, 5000 presence samples and 
50,000 background samples were chosen 
from a landscape with the predictor 
variable x in [−1, 1]. The bottom bar plot 
visualize the RMSEs of the two methods, 
LK and CLK for the above logistic 
functions

Linear Clog Quadratic Clog Cubic Clog

LK
CLK

R
M

S 
er

ro
r

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4

Simulated species Probability of presence

Category 1 Both RSPF & LC Satisfied

Linear Pr (y = 1|x) = 1 − exp( − exp( − 0.886 − 1.16x))

Quadratic Pr (y = 1|x) = 1 − exp( − exp(0.37 + 1.56x − 1.5x2))

Cubic Pr (y = 1|x) = 1 − exp( − exp(0.5855 + 1.064x − 0.218x2 − 1.81x3))

Category 2 Only RSPF conditions Satisfied

Linear Pr (y = 1|x) = 1 − exp( − exp(0.5855 + 1.064x))

Quadratic Pr (y = 1|x) = 1 − exp( − exp(0.5855 + 1.064x − 0.218x2))

Cubic Pr (y = 1|x) = 1 − exp( − exp(0.1 − 0.064x − 0.85x2 − 0.81x3))

TA B L E  D 1 Probability of presence 
for the simulated complementary log-log 
(cloglog) species used in the experimental 
evaluation



    |  25 of 25WANG et al.

APPENDIX E

NONCONVERG ENCE R ATE OF LK ME THOD

These tables show the nonconvergence rate of the LK method when fitting the models. It is also noted that the CLK method did not have 
any errors/nonconvergences during model fitting.

Category (Logistic) Conditions satisfied Function
Nonconvergence 
rate

Category 1 Local Certainty Linear 0

& Quadratic 2.2

RSPF Cubic 0

Category 2 Gaussian 10.5

Local Certainty Scaled Logistic 0.3

Exponential 38

Category 3 Linear 1.2

RSPF Quadratic 31.4

Cubic 11.6

TA B L E  E1 Proportion of 
nonconvergence for the LK methods 
fitting three categories of logit functions 
with 1000 replications of simulations. 
5000 presence samples and 50,000 
background samples were used in 
simulations

TA B L E  E 2 Proportion of nonconvergence for the LK methods 
fitting two categories of complementary log-log (cloglog) functions 
with 1000 replications. 5000 presence samples and 50,000 
background samples were used in simulations

Category 
(cloglog)

Conditions 
satisfied Function

Nonconvergence 
rate

Category 1 Local Certainty Linear 3.5

& Quadratic 22.9

RSPF Cubic 0

Category 2 Linear 0.1

RSPF Quadratic 1.5

Cubic 16.2
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