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Patients with EGFR-mutant non-small-cell lung cancer (NSCLC) greatly benefit from
EGFR-tyrosine kinase inhibitors (EGFR-TKIs) while the prognosis of patients who lack
EGFR-sensitive mutations (EGFR wild type, EGFR-WT) remains poor due to a lack of
effective therapeutic strategies. There is an urgent need to explore the key genes that
affect the prognosis and develop potentially effective drugs in EGFR-WT NSCLC patients.
In this study, we clustered functional modules related to the survival traits of EGFR-WT
patients using weighted gene co-expression network analysis (WGCNA). We used these
data to establish a two-gene prognostic signature based on the expression of CYP11B1
and DNALI1 by combining the least absolute shrinkage and selection operator (LASSO)
algorithms and Cox proportional hazards regression analysis. Following the calculation of
risk score (RS) based on the two-gene signature, patients with high RSs showed a worse
prognosis. We further explored targeted drugs that could be effective in patients with a
high RS by the connectivity map (CMap). Surprisingly, multiple HDAC inhibitors (HDACis)
such as trichostatin A (TSA) and vorinostat (SAHA) that may have efficacy were identified.
Also, we proved that HDACis could inhibit the proliferation and metastasis of NSCLC cells
in vitro. Taken together, our study identified prognostic biomarkers for patients with
EGFR-WT NSCLC and confirmed a novel potential role for HDACis in the clinical
management of EGFR-WT patients.
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INTRODUCTION

Lung cancer has the highest morbidity and mortality in China and
around the world. Most patients presented with lung cancer at a late
stage owing to hidden onset and unspecific symptoms associated
with the disease (1, 2). Lung cancer is generally classified into non-
small-cell lung cancer (NSCLC) and small cell lung cancer (SCLC).
However, this traditional classification according to histological
assessment fails to account for the complex prognosis and drug
resistance associated with the disease (3).

Radiotherapy combined with chemotherapy is the major
treatment strategy for SCLC, whereas targeted therapy has
become the first-line treatment for NSCLC patients carrying
specific driver mutations (4–6). Epidermal growth factor receptor
(EGFR)-tyrosine kinase inhibitors (TKI) such as gefitinib and
erlotinib were the first targeted therapy for NSCLC. They have
been widely applied in the clinical application for NSCLC patients
carrying EGFR-sensitive mutations such as in-frame deletions at
exon 19 and exon 21 point mutations (L858R). Also, EGFR-TKIs
have significantly prolonged disease-free survival (DFS) compared
with platinum-based chemotherapy (7, 8). However, only 20–30%
of all NSCLC patients with EGFR-sensitive mutations can benefit
from EGFR-TKIs. For patients with no EGFR gene mutations or an
unknown mutation status, platinum-based doublet chemotherapy
regimens remain the standard first-line therapy (9, 10). In these
cases, the tumor response rate is estimated to be less than 10% and
overall survival (OS) is only slightly improved (11). There is an
unmet need to develop a novel therapy and to improve the
prognosis for patients with EGFR wild-type (EGFR-WT) NSCLC.

The rapid development of bioinformatics analysis has allowed
the development of novel biomarkers that can predict prognosis
in patients with lung cancer (such as PD-L1 (12, 13), GLUT1
(14), and Ki-67 (15, 16)). However, little effort has been focused
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on the identification of specific biomarkers for EGFR-WT
patients. Thioredoxin reductases 1 (TrxR1) has been reported
to be related to the poor prognosis in EGFR-WT and ALK-
negative NSCLC (17). As the statistical power of individual
biomarkers is considered to be weak, it is necessary to establish
a gene signature biomarker to improve the accuracy of prognosis
prediction (18–20). Weighted gene co-expression network
analysis (WGCNA) is a systems biology approach that clusters
genes with a high co-expression relationship into the same
module (21). WGCNA has been widely used to assess the
functions of transcriptome systems (22), to identify gene
modules related to clinical parameters and to investigate cancer
biomarkers (23–25). However, WGCNA has not yet been reported
to reveal the prognostic prediction of biomarkers in EGFR-WT
NSCLC patients.

In this study, WGCNA was conducted on the expression
profiles of EGFR-WT NSCLC patients and a two-gene prognosis
signature was obtained by LASSO COX regression. We
performed connectivity map (CMap) database analysis to
identify HDACis as potential drugs to effectively target EGFR-
WT NSCLC patients with a high risk score (RS). Our findings
provided a further understanding for prognosis prediction and
clinical treatment of EGFR-WT NSCLC patients.
MATERIALS AND METHODS

The flow chart for this research is shown in Figure 1.

Data Acquisition and Consolidation
GSE31852 database expression profile and clinical data were
downloaded from the GEO database (Table S1 ) as a training set,
and 62 EGFR-WT patients with complete survival data were
FIGURE 1 | Schematic diagram of the bioinformatics process used for the analysis in this study.
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selected for further analysis (Table S2). Gene expression profiles
of these samples were annotated by using the Human Gene 1.0
ST Array (Table S3, Affymetrix, Santa Clara, CA) according to
Affymetrix protocols (Table S4). Probes with no gene or
duplicate-gene annotation were excluded.

GSE31210 database (Tables S5-S8) was selected as the
validation set, which contains the expression profile information,
gene mutation status, and progression-free survival (PFS) of 226
NSCLC expression profiles (127 EGFR mutations, 20 KRAS
mutations, 11 EML4-ALK fusion mutations, and 68 EGFR/
KRAS/ALK-WT cases). Samples of 423 EGFR-WT and 75
EGFR-mutant LUAD patients from The Cancer Genome Atlas
Program were downloaded from the The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/) as another
validation dataset (Table S9).

WGCNA Network Construction
R package “WGCNA” was used for the automatic construction
of a co-expression network. Firstly, a hierarchical clustering
analysis of the samples was undertaken to ensure that there is
little difference between the samples in the GSE31852 dataset
(Figure S1A). The co-expression similarity matrix of gene
expression was defined according to the Pearson correlation
coefficient. Following the selection of an appropriate soft
threshold b, the unweighted co-expression similarity matrix
was converted into a weighted adjacency matrix. Then, the
topological overlap matrix (TOM) was constructed using the
degree of dissimilarity between the nodes and the dissimilarity
index was defined between the nodes (26). Finally, by using the
dynamic tree-cutting algorithm, the TOM was modified and the
network modules were initially identified by satisfying conditions
such that the difference between these modules is less than 0.25,
or the similarity exceeds 0.75 (Table S10).

R package “WGCNA” was used sequentially to visualize the
constructed network module and elucidate the correlation between
external information. Modules with a significance P < 0.05 in the
correlation test were defined being related to the trait. All genes in
modules related to prognosis (time and status) were included in the
construction of a prognostic risk signature for EGFR-WT patients.

LASSO Regression and Multivariate COX
Regression
R packages “glmnet” and “survival” were used to perform COX
regression analysis through the LASSO algorithm. Those
parameters with non-zero regression coefficients in the LASSO
regression results were further included in the multivariate COX
regression analysis. Genes with statistical significance in the
multivariate Cox regression analysis were used to calculate
their weighted gene expression values to establish RSs for each
patient. The RS formula was established as follows:

RS  =  ExpmRNA1 �  bmRNA1 +  ExpmRNA2 �  bmRNA2 +  …   +
 ExpmRNAn �  bmRNAn

ExpmRNA represents the expression level of each gene, and
bmRNA denotes the regression coefficient of the gene in the multi-
factor COX regression model.
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Internal and External Verification of the
Prognostic Risk Score Signature
X-tile software was used to calculate the best cut-off value of the
patient’s RS. According to the best cut-off value, all patients were
divided into a high-RS group and a low-RS group. Kaplan–Meier
survival analysis was performed using the “survival” package
with the “log-rank” method. Both the consistency parameter
C-index of the survival model and the accuracy of the prediction
model in the training set were validated by the resampling
method for internal cross-validation using R package “boot.” R
package “survivalROC” was used to plot the ROC curve and
calculate the area under the curve (AUC).

Gene Set Enrichment Analysis for
Biological Function
GSEA Version 3.0 software was employed to enrich the main
biological function pathways in the high-RS group, referring to
“c2.cp.kegg.v6.2.symbols.gmt” and “h.all.v7.1.symbols.gmt” gene
sets taken from the MsigDB database. All processes were
performed according to the default parameters of the GSEA
software. The number of random combinations was set to 1,000
and the results were sorted according to normalized enrichment
scores (NES).

Differential Gene Screening and Targeted
Drug Prediction
Differentially expressed genes (DEGs) of the high-RS group
versus low-RS group with |log fold change (log FC)| > 0.585
and p-value < 0.05 were analyzed by the R package “limma”
(Table S11). Then, to find those drugs targeting high-RS patients,
the differential gene sets were input into the CMap drug database
(http://www.broadinstitute.org/cmap). The results included
genes, diseases, or drug networks that were similar with, or
opposite to, the expression profile. A positive score meant that
the change in the expression profile caused by a drug was similar
to the input gene expression profile. Conversely, a negative score
indicated that the change in the expression profile caused by a
drug was opposite that in the input gene expression profile.
A drug with a negative score may reverse the corresponding
gene expression in the disease and thus serves as a potential
targeting drug for the disease (Table S12). Potential compound
drugs were selected for verification according to the correlation
score (less than 90) of the drugs (Table S12) based on published
data from the literature (26).

Cell Culture and Reagents
Lung adenocarcinoma cell lines A549 and H1299 without EGFR
mutations were purchased from the Type Culture Collection of
the Chinese Academy of Sciences (Shanghai, China), and
cultured in RPMI-1640 (GibcoBRL, USA) supplemented with
10% fetal bovine serum (FBS), penicillin (100 U/ml), and
streptomycin (100 mg/ml), in a humid atmosphere containing
5% CO2 at 37°C. Trichostatin A (TSA, HY-15144) and vorinostat
(SAHA, HY-10221) were purchased from MedChem Express
(Monmouth Junction, NJ, USA).
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MTT Assay
Approximately 2,000 cells per well in 96-well plates were treated
with various concentrations of TSA or SAHA for 48 or 72 h. Then,
we added 20 ml of 3-(4,5-dimethylthiazolyl-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) (5 mg/ml) to each well and
the cells were incubated for another 4 h at 37°C. After removing
the medium, cells were lysed in 200 ml dimenthylsulfoxide
(DMSO) at room-temperature, and the optical density (OD)
was measured at a wavelength of 570 nm with a microplate
reader (Bio-Rad Laboratories, Hercules, CA, USA).

Transwell Assay
Cells were treated with HDACis for 24 h, collected, and
resuspend in serum-free media. Transwell chambers (Corning,
NY, USA) were plated into a 24-well plate; 2 × 104 cells in 200 ml
of serum-free medium were seeded onto the upper chamber and
500 ml of medium with 10% FBS was added to the lower chamber
with or without HDACis. After incubation for 24 h, the
chambers were fixed with methanol and cells on the upper
membrane were removed. Cells in the lower membrane were
stained with Wright-Giemsa dye and the number of
cells counted.

Statistical Analysis
All statistical analyses and visualization were performed using
GraphPad Prism 7.0 and R (version 3.6.2). Student’s t-test was
used to compare the differences between the two groups: P < 0.05
was considered statistically significant.
RESULTS

Data Collation and Patient Characteristics
In order to identify the key prognostic biomarkers for EGFR-WT
NSCLC patients, we performed a systematic analysis of the
GSE31852 dataset that included 62 patients with complete
progression-free survival (PFS) information. The general
information of these patients is summarized in Table 1. These
patients included 24 lung adenocarcinomas, accounting for
38.7% of the samples, and six lung squamous cell carcinomas,
accounting for 9.7% of the sample. The cohort consisted of 21
men and 16 women, accounting for 33.9 and 25.8% of the
samples respectively. Six patients had no previous history of
smoking, and 31 patients were former smokers. According to the
expression profiles, all of the patients were clustered
gene expression datasets (Figure S1A). As no obvious outliers
in the expression profiles were observed, all of the 62 EGFR-WT
patients were included in the subsequent analysis.

Construction of a Scale-Free Network by
WGCNA
WGCNA was conducted on the gene expression profile data to
identify the gene network modules co-expressed in EGFR-WT
patients and to explore the relationship between these gene
network modules and prognosis. Firstly, a soft threshold (b = 18)
with an R2 > 0.9 was defined to establish an adjacency matrix
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(Figures 2A, B). All genes were clustered into 21 modules with
different colors (Figure 2C). The gray module in which the genes
were not clustered was excluded from the analysis. The similarity
between each module was less than 0.75 (Figures 2D, E).

We calculated the module eigengenes (ME) value of the
samples which represented the gene expression pattern of each
module. We found that the gene expression of every sample in
each module was different whereas the gene expression of each
sample in every module was similar. These results suggested that
the modules composed of genes with similar expression patterns
may have important biological functions (Figure S1B). Then,
according to gene significance (GS) which was defined as the
association of a single gene with external information (clinical
pathology parameters), the correlation between the survival
parameters (PFS time and state) and related modules was
explored (Table S10, Figure 2F). Among each of the 20
modules, the turquoise and green modules were both
significantly associated with PFS (P < 0.05) compared to the
other traits. These modules were most closely related to PFS time
and PFS status with correlation coefficients of −0.42 (P < 0.0001)
and −0.35 (P < 0.0001), respectively. These results indicated that
the gene expression patterns in the turquoise and green modules
were most closely correlated with prognosis in the EGFR-
WT patients.

Construction of Two-Gene Prognostic
Signature-Based RS for EGFR-WT NSCLC
Patients
As each module in the WGCNA network based on gene
expression profiles could be regarded as a characteristic for
EGFR-WT patients, the turquoise module (Figure S2A) and
green modules (Figure S2B) may contain the prognostic
prediction genes for EGFR-WT patients. The genes of these
two modules were combined as candidate gene sets for
prognostic markers in EGFR-WT patients. To further select
the key genes related to prognosis, we performed the Least
Absolute Shrinkage and Selection Operator (LASSO)
TABLE 1 | Characteristics of patients of GSE31852.

Characteristic Number (%)

Gender
Male 21 (33.9)
Female 16 (25.8)
Unknown 25 (40.3)

Smoking status
Never 6 (9.7)
Former 31 (50.0)
Unknown 25 (40.3)

Pathological stage
I 1 (1.6)
II 2 (3.2)
III 7 (11.3)
IV 27 (43.5)
Unknown 25 (40.3)

Histology
Adenocarcinoma 24 (38.7)
Squamous carcinoma 6 (9.7)
Unknown 32 (51.6)
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regression combined with multivariate COX regression analysis
(Figures 3A and S2C, D). CYP11B1and DNALI1 were identified
as independent prognostic factors for PFS of EGFR-WT NSCLC
patients by univariate and multivariate Cox regression (Table 2).
Based on the expression of independent prognostic factors and
their corresponding coefficients in the regression analysis, the
two-gene signature-based RS of each EGFR-WT patient was
derived based on the following formula:

RS  =   Exp(CYP11B1) �  3:3531005
� �

 

+   Exp(DNALI1) �   −0:6605697ð Þ� �

According to the best cut-off value (RS = 19.1), the patients
were divided into high- and low-RS groups (Figure 3B). Kaplan-
Meier survival analysis showed that the PFS of patients in the
high-RS group was significantly shorter than that in the low-RS
group (Figure 3C, HR = 3.99, 95% CI = 2.04–7.82, P < 0.0001).
The C-index was 0.8625 (95% CI = 0.7579–0.9671, P < 0.001) by
internal cross-validation.

To assess the predictive ability of the model for short-term
PFS, the receiver operating characteristic (ROC) curves of the
two-gene signature-based on the RS and gene expression were
Frontiers in Oncology | www.frontiersin.org 5
drawn at 1, 2, and 6 months, and the AUC was determined. The
results showed that the two-gene RS model was a good indicator
of short-term PFS (Figure 3D). The AUCs for the two-gene RS at
1, 2, and 6 months were 0.736, 0.781, and 0.848, respectively.
These values were significantly better than those obtained based
on simple gene expression for predicting PFS at each time point
(Figures S2E, F).

Taken together, these results indicated that the two-gene RS
signature established by the PFS-related modules of WGCNA
reflected the survival of EGFR-WT patients and had better
predictive power than independent prognostic gene expression.

External Validation of Two-Gene RS for
EGFR-WT Patients
To validate the significance of the two-gene signature for the
prognosis of PFS in EGFR-WT NSCLC patients, the GSE31210
database was selected for external verification. All patients were
divided into high- or low-RS groups according to the best cut-off
value (RS = 10.1) and analyzed based on the Kaplan-Meier
survival curves. In patients with EGFR mutations, the PFS of
low-RS group was significantly shorter than that of high-RS
group (Figures S3A, B). In contrast, in patients with EGFR-WT
A B D

E

F

C

FIGURE 2 | Construction of the weighted gene co-expression network analysis (WGCNA) network in EGFR-WT NSCLC patients and module identification.
(A) Network topology for different soft-threshold powers. (B) The mean connectivity for different soft threshold powers. (C) One-step network construction by
weighted gene co-expression network analysis (WGCNA). (D) Hierarchical clustering tree for clustering modules. (E) Heatmap of the correlation between identified
modules (F) Correlation of modules and traits. Colors represent the correlation coefficient, while the number on each module represents the associated P-value.
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(including KRAS mutations, ALK fusion, and none of three
mutations named as triple-negative type), the PFS of high-RS
patients tended to be shorter although it failed to reach statistical
significance (P > 0.05) potentially due to the small sample size
(Figures 4A, B). Further refinement of the grouping indicated
that the two-gene RS signature had better performance in
predicting PFS for patients with triple-negative disease (HR =
3.11, 95% CI = 1.35–7.19, P < 0.01) (Figures 4C, D). The C-index
results of the prognostic model in the three classifications of
populations also showed that the RS could fit the true situation of
PFS for patients with triple-negative lung cancer (Table 3).
However, no significant difference in the long-term OS was
found between the high- and low-RS groups regardless of the
types of mutations (Figure S4).

Our results demonstrated that the two-gene RS was
significant for survival prediction in EGFR-WT patients
Frontiers in Oncology | www.frontiersin.org 6
particularly in those who did not have EGFR/KRAS/ALK
mutations. The two-gene signature was also verified in TCGA
database (Figures S3C, D and 4E, F). All NSCLC patients were
also divided into high- and low-RS groups and analyzed from the
Kaplan-Meier survival curves. The survival time of high-RS
patients was significantly shorter than that of low-RS patients
(HR = 2.1, 95% CI = 1.51–2.91, P < 0.0001), suggesting that the
two-gene signature had a generalized and adaptive capacity in
predicting the prognosis of EGFR-WT NSCLC patients.

Verification of HDAC Inhibitors as
Potential Targeted Drugs for EGFR-WT
NSCLC
To clarify the biological characteristics of high-RS populations,
we performed GSEA on the gene expression profile of EGFR-WT
NSCLC patients using the tumor-related HALLMARK pathway
A

B

D

C

FIGURE 3 | Identification of the two-gene prognostic signature-based risk score (RS) for EGFR-WT NSCLC patients. (A) Six robust markers obtained by LASSO
regression. (B) The distribution of RSs in GSE31852. Top: two groups for EGFR-WT patients according to the best cut-off of risk score. Middle: relationship between
RS (X-axis) and PFS time (Y-axis). Bottom: heatmap plot for the expression of genes in the two-gene signature. (C) Kaplan-Meier curve of PFS probability based on
the RS in EGFR-WT NSCLC. (D) ROC curves were used to compare the predictive ability of the two-gene prognostic signature for 1, 2, and 6-month survival
probabilities. PFS status: SD, stable disease; PD, progressive disease.
TABLE 2 | Univariate and multivariate Cox regression analysis between six candidate markers and progression-free survival (PFS) after Least Absolute Shrinkage and
Selection Operator (LASSO) analysis.

Genes Univariate COX Multivariate COX

HR 95% CI P-value HR 95% CI P-value

ABHD16B 23.5951 3.5311–157.6667 0.00111 ** 3.5896 0.4189–30.7607 0.2436
CHADL 22.49484 5.13425–98.5573 0.00004 *** 7.8693 0.6556–94.4554 0.1037
CYP11B1 25.99976 5.63712–119.9172 0.00003 *** 6.5785 1.2655–34.1969 0.0251 *
DNALI1 0.54419 0.33607–0.88118 0.01335 * 0.2759 0.1472–0.5174 0.0001 ***
DUSP9 10.75214 3.09879–37.30756 0.00018 *** 4.7842 0.6875–33.2923 0.1138
DVL2 10.39295 2.73054–39.55755 0.0006 *** 3.066 0.6193–15.1795 0.1698
March 2021 | Volume 11 | Article 6201
*P < 0.05，**P < 0.01，***P < 0.001.
54

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


E

F

-WT in GSE31210 and The Cancer Genome Atlas (TCGA) databases. The distribution of
ps for patients according to the best cut-off of RS. Middle: relationship between RS and
bability based on the RS in patients with (B) EGFR-WT, (D) EGFR/ALK/KRAS wild type in

W
ang

et
al.

H
D
A
C
is
Targeting

EG
FR

W
ild-Type

N
S
C
LC

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

M
arch

2021
|
Volum

e
11

|
A
rticle

620154
7

A

B D

C

FIGURE 4 | The verification of the two-gene prognostic signature for non-small-cell lung cancer (NSCLC) patients with EGFR
RSs in patients with (A) EGFR-WT, (C) EGFR/ALK/KRAS wild type in GSE31210, and (E) EGFR-WT in TCGA. Top: two grou
PFS information. Bottom: heatmap plot for the expression of genes in the two-gene signature. Kaplan-Meier curve of PFS pro
GSE31210, and (F) EGFR-WT in TCGA.

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. HDACis Targeting EGFR Wild-Type NSCLC
gene set and the classic Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway gene set. Our results showed that
both pathways were enriched in metastasis-related pathways
including epithelial-mesenchymal transition, apical junction,
focal adhesion, ECM receptor interaction and regulation of
actin cytoskeleton. These data indicated that the poor
prognosis of high-RS patients may be attributed to the
enhancement of tumor metastatic ability (Figure 5A).

To ascertain potential drug targeting in the EGFR-WT high-
RS population, we performed differential gene analysis between
the high- and low-RS groups, and identified 25 up-regulated
differential expression genes (DEGs) and 36 down-regulated
DEGs (Table S11, Figure 5B). We compared these DEGs with
the CMap database, aiming to identify the drugs that interacted
with the DEGs as detailed in the Materials and Methods (Figure
5C). Twenty-four candidate drugs were identified, and
TABLE 3 | C-index of the two-gene risk score (RS) signature in three different
mutation populations.

Mutant C-index 95% CI P-value

EGFR-mutant 0.7051 0.4933–0.9169 0.0578
EGFR-WT 0.6600 0.4933–0.8268 0.0599
EGFR/KRAS/ALK-WT 0.7330 0.5887–0.8774 0.0016
Frontiers in Oncology | www.f
rontiersin.org
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FIGURE 5 | Compounds predicted to target EGFR-WT non-small-cell lung cancer (NSCLC) patients with a high risk score (RS) and verification in vitro. (A) Gene Set
Enrichment Analysis (GSEA) of EGFR-WT NSCLC patients with high RS according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (top) and
HALLMARK pathways (bottom). (B) Heatmap for the analysis of differentially expressed mRNA. (C) Schematic illustration for of the drug screening procedure through
querying of the connectivity map (CMap).
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TABLE 4 | Candidate drugs targeting EGFR-WT patients with high risk score (RS).

No. Score Name Description

1 −98.94 Tracazolate GABA receptor modulator
2 −95.3 SB-202190 p38 MAPK inhibitor
3 −95.14 Vemurafenib RAF inhibitor
4 −94.88 THM-I-94 HDAC inhibitor
5 −94.76 Trichostatin-a HDAC inhibitor
6 −94.58 NCH-51 HDAC inhibitor
7 −93.9 ISOX HDAC inhibitor
8 −93.89 AZD-7762 CHK inhibitor
9 −93.84 TG-101348 FLT3 inhibitor
10 −93.81 HG-5-113-01 Protein kinase inhibitor
11 −93.62 Vorinostat HDAC inhibitor
12 −93.59 Droxinostat HDAC inhibitor
13 −93.16 SB-590885 RAF inhibitor
14 −93.09 Dasatinib BCR-ABL kinase inhibitor
15 −92.74 Scriptaid HDAC inhibitor
16 −92.61 HC-toxin HDAC inhibitor
17 −92.39 Fostamatinib SYK inhibitor
18 −92.11 KU-0063794 MTOR inhibitor
19 −91.53 TPCA-1 IKK inhibitor
20 −91.21 TWS-119 Glycogen synthase

kinase inhibitor
21 −90.68 GSK-1070916 Aurora kinase inhibitor
22 −90.64 Pyroxamide HDAC inhibitor
23 −90.41 PI-828 PI3K inhibitor
24 −90.13 PP-2 SRC inhibitor
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interestingly, nine were classified as HDACi (Tables 4, S12).
Considering the safety and feasibility of HDCAis for clinical
applications, we verified two common HDACis, TSA, and SAHA
in EGFR-WT lung cancer cells (A549 and H1299). Both HDACis
significantly inhibited the proliferation and migration of these
cell models (Figures 6A, B), indicating the potential of TSA and
SAHA as novel treatment strategies in EGFR-WT lung cancer.

Discussion
In the current study, we established a RS based on a two-gene
signature for EGFR-WT NSCLC patients and found that EGFR-
WT patients with a high RS had a worse prognosis.
Mechanistically, a high RS might cause poor prognosis by
activating multiple metastasis-related pathways such as
epithelial-mesenchymal transition and ECM receptor
interaction. Furthermore, HDACis were screened out as
potential targeted drugs for EGFR-WT NSCLC and found to
inhibit cell proliferation and migration of EGFR-WT
NSCLC cells.

Although well-known driver genes such as EGFR and ALK
with sensitive mutations could strongly predict the efficacy of
targeted drugs in NSCLC patients, about 50% of NSCLC patients
without driver gene mutations do not benefit from the
personalized targeted therapy (27, 28). For those patients that
do not have corresponding mutations or have unknown
mutation status, platinum-based doublet chemotherapy
remains the standard first-line regimen which has poor efficacy
(9, 10). In these patients, docetaxel or pemetrexed could be used
as second-line single-agent chemotherapies. However, the tumor
response rate was less than 10% and the OS was only slightly
improved with these treatments (11). The current known tumor-
driver mutations are not sufficient to fully predict the drug
response of lung cancer. This study aimed to ascertain the
characteristics of gene expression profiles in EGFR-WT
Frontiers in Oncology | www.frontiersin.org 9
NSCLC patients and provide evidence for the clinical
treatment for NSCLC patients without specific mutations.

The rapid development of NGS technology and bioinformatics
has allowed major progress in the prediction of NSCLC
prognosis. In addition to the TNM stage, multi-gene prognostic
signatures based on transcriptome sequencing have been
developed for prognosis. However, the majority of studies of
gene signatures for predicting prognosis in lung cancer have
focused on RSs related to specific mechanisms, starting with
functional molecules or cell components, such as immune
infiltration (29–31), EMT scores (32), hypoxic or metabolic
catabolites (33, 34), and non-coding RNA (35, 36). Little
research has considered specific mutations.

Few gene signature studies have considered a scale-free
property of the gene interaction network using WGCNA (37).
WGCNA bridges the gap from individual genes to systems
biology networks and can be utilized to identify hub genes that
play key roles in the disease by converting the relationship
between genes from a constant probability to the value adding
a correlation weight (38). This allows the conversion from a
random network to a scale-free network (39). Unfortunately,
WGCNA on EGFR-WT NSCLC patients has not yet
been reported.

In the present study, we used WGCNA to cluster the gene
expression pattern of the EGFR-WT population, studied the co-
expressed gene modules and correlated the gene modules with
patient prognostic information for the first time. Due to the
limited omics data containing information on mutations, the
accuracy and comprehensiveness of our two-gene signature need
to be validated in a large cohort of lung cancer patients. Also, we
observed that the two-gene signature predicted the prognosis of
patients without known driver gene mutations (EGFR/KRAS/
ALK-WT) better than that of patients with EGFR-WT alone.
Thus, the accumulation of next-generation sequencing (NGS)
A B

FIGURE 6 | Verification of the effect of HDACis on EGFR-WT non-small-cell lung cancer (NSCLC) cells in vitro. (A) Inhibition of cell proliferation of trichostatin A (TSA)
and vorinostat (SAHA) as assessed by MTT assay in A549 and H1299 cells. (B) Inhibition of migration ability by TSA and SAHA as assessed by Transwell assays in
A549 and H1299 cells. ****P < 0.0001.
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data in clinical tumor assessment and treatment may allow the
further verification of a two-gene signature in a larger multi-
omics database.

Considering the genes in WGCNA modules might be
interrelated, they were not suitable for direct prognostic
signature construction as this may result in multi-collinearity.
We performed LASSO regression on the genes in the WGCNA
modules to screen for the prognostic factors for the subsequent
multivariate COX regression model. These analyses led to the
selection of CYP11B1 and DNALI1 genes to construct a
prognostic risk signature for EGFR-WT patients.

CYP11B1 encodes the cytochrome P450 family 11 subfamily
B member 1 protein that is mostly expressed in the adrenal
glands and is related to excessive cortisol secretion (40). In
cancer, CYP11B1 is not only related to aldosterone- and
cortisol-co-secreting adrenal tumors (41, 42), but it also affects
the drug response of breast cancer (43), gastrointestinal tumors
(44), leukemia (45), and other tumors. DNALI1 encodes dynein
axonemal light intermediate chain 1 protein which is a human
homologue of p28 in Chlamydia. DNALI1 is widely expressed in
the human testis, ovaries and other tissues (28, 46), but the
functions of DNALI1 in physiological processes and tumor
development remain unclear. Limited studies have reported
that DNALI1 is down-regulated in breast cancer (47) and
negatively correlated with poor prognosis (48, 49). However,
the expression pattern and function of both genes in lung cancer,
as well as their influence on prognosis are unknown.

In this study, we analyzed the predictive significance of both
molecules in the prognosis of NSCLC patients from online
databases (Figure S5). The prognosis of patients with high
expression of CYP11B1 or low expression of DNALI1 was
significantly poor (P < 0.0001). Furthermore, the efficiency of
prognostic prediction in the EGFR-WT population from RS
based on the two-gene signature was better than that by
individual genes (Figures S2E, F). The RS based on the two-
gene signature had good predictive significance for the prognosis
of EGFR-WT patients. This may provide a good reference value
for clinical decision-making in EGFR-WT patients, particularly
in patients without known driver mutations.

From the online drug database named CMap, HDACis were
screened out as potential drugs to improve the prognosis of EGFR-
WT patients with a high RS based on the two-gene signature.

CMap is a database developed by Broad Research Institute to
reveal the functional relationships between small molecule
compounds, genes, and disease states (50). CMap was
employed to compare the differentially expressed gene list with
the reference gene sets after specific treatments in the database. A
correlation score (−100 to 100) was obtained according to the
enrichment of differentially expressed genes in the reference gene
expression profile. A positive score indicated that the up-
regulation or down-regulation pattern of input genes was
similar to the pattern of reference gene expression treated with
different drugs. In contrast, a negative score indicated that the
drugs regulated the expression of genes in an opposite direction.
Finally, all treatments in the database were ranked according to
the correlation score with the reference gene expression profile.
Frontiers in Oncology | www.frontiersin.org 10
We found that among a total of 24 drug candidates with
scores less than −90, 9 were HDACis, accounting for more than
one-third of those identified. HDACis, such as romidepsin and
vorinostat, are approved by the Food and Drug Administration
(FDA) in cutaneous T cell lymphoma therapy (51, 52). However,
although multiple preclinical studies have shown that HDAC
inhibitors play a significant anti-cancer role in vitro or in animal
models (53, 54), HDACis monotherapy clinical trials for lung
cancer have failed (55–57). The results in the present study
independently predicted that HDACis may be potential drugs for
patients with high-RS EGFR-WT NSCLC and implicated the
possibility of HDACis as single drugs for lung cancer therapy.
Furthermore, HDACis were found to inhibit the proliferation
and migration capacity of EGFR-WT NSCLC cells which was
consistent with previous studies. Our research provides
support for the independent application of HDAC inhibitors in
EGFR wild-type NSCLC. Large-scale clinical trials should be
carried out to confirm the efficacy of HDACis in EGFR-WT
NSCLC patients.

In conclusion, the current study showed that a two-gene
signature could effectively predict the survival of EGFR-WT
patients, especially in NSCLC patients without known gene
mutations. Our data also indicate that HDACis, such as TSA
or SAHA, might be potentially effective clinical drugs for high-RS
EGFR-WT patients. This study may fill the gap in lung cancer
data analysis on one-specific mutant population, highlights the
need for differential analysis of different oncomutations in cancer
and also provides clues for the clinical treatment of EGFR-WT
NSCLC patients.
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