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Mitochondria are bioenergetic, biosynthetic, and signaling organelles that control var-
ious aspects of cellular and organism homeostasis. Quality control mechanisms are 
in place to ensure maximal mitochondrial function and metabolic homeostasis at the 
cellular level. Dysregulation of these pathways is a common theme in human disease. 
In this mini-review, we discuss how alterations of the mitochondrial network influences 
mitochondrial function, focusing on the molecular regulators of mitochondrial dynamics 
(organelle’s shape and localization). We highlight similarities and critical differences in 
the mitochondrial network of cancer and type 2 diabetes, which may be relevant for 
treatment of these diseases.
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inTRODUCTiOn

All living organisms rely on cellular and physiological mechanisms of homeostasis in order to 
maintain an internal environment optimal for life and function. Mitochondria are the foundation of 
cellular homeostasis, via their multiple roles in energy production, biosynthesis, calcium regulation 
and signaling, redox balance, and generation of reactive oxygen species. Not surprisingly, cells have 
evolved multiple mechanisms of quality control to ensure that mitochondria function at their best. 
These include protein import (1), folding and degradation (2), antioxidant defense mechanisms 
(3), mitochondrial turnover via autophagy (4), mitochondrial biogenesis (5), mitochondrial shape 
changes and cristae remodeling (6), and communication with the nucleus to coordinate transcrip-
tional responses (7).

Emerging evidence indicate that mitochondrial dysfunction is associated with disparate dis-
eases, including aging (8), neurodegenerative diseases (9), mitochondrial diseases (10), obesity 
(11), diabetes, and cancer. Although some controversies remain regarding whether functional or 
dysfunctional mitochondria are responsible for metabolic disorders, there is a resurgence of inter-
est in understanding the mechanisms responsible for such mitochondrial alterations in disease. 
This review focuses on the molecular regulators of mitochondrial dynamics (organelle’s shape and 
localization) in cancer and metabolic pathologies.

ReGULATiOn OF MiTOCHOnDRiAL DYnAMiCS

Mitochondria constantly undergo shape and number changes thanks to the two opposing pro cesses 
of fission and fusion (12). In turn, changes in gross mitochondrial morphology and the intercon-
nectivity of the mitochondrial network impact on energy production (13), calcium signaling, 
mitochondrial DNA distribution, apoptosis, mitophagy, and segregation of mitochondria between 
daughter cells (6). The fine-tuning of the fusion–fission balance is crucial for cellular fitness in 
response to extracellular stimuli and environmental stress (14). Thus, alterations of the fission–
fusion balance lead to oxidative stress, mitochondrial dysfunction, and metabolic alterations.

At the molecular level, dynamin-like GTPases orchestrate mitochondria shape changes. The 
fission protein dynamin-related protein 1 (DRP1) assembles into ring-like structures to constrict 
mitochondrial membranes in a GTP-dependent manner (6). DRP1 is recruited to mitochondria by 
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FiGURe 1 | Mitochondrial shape alterations in T2D. Mitochondrial 
fragmentation and impaired mitochondrial trafficking are a hallmark of T2D. 
These changes in mitochondrial dynamics lead to pathological responses in 
β-cells, skeletal muscle, adipocytes, and vessels. Abbreviations: INS, insulin; 
Glc, glucose; T2D, type 2 diabetes.
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fission protein 1 (FIS1), mitochondrial fission factor (MFF), and 
the mitochondrial dynamic proteins of 49 (MiD49) and 51 kDa 
(MiD51). On the other hand, the fusogenic proteins mitofusin 
1 and 2 (MFN1/2) are located in the outer mitochondrial mem-
brane, and tether two mitochondria through homo- and hetero-
typic dimerization (13). A single GTPase, optic atrophy protein 1 
(OPA1), achieves fusion of the IMM.

An expanding number of degenerative disorders are associated 
with mutations in the genes encoding MFN2 and OPA1, including 
Charcot–Marie–Tooth disease type 2A and autosomal dominant 
optic atrophy (15). Defective mitochondrial dynamics seem to 
play a more general role in the molecular and cellular pathogen-
esis of common neurodegenerative diseases (Alzheimer’s and 
Parkinson’s) (14), as well as in cardiovascular disease (16), type 2 
diabetes (T2D), and cancer.

MiTOCHOnDRiAL DYnAMiCS in T2D

The clinical complications of T2D include dyslipidemia, hyper-
glycemia (17), insulin resistance, and defects in insulin secretion 
from pancreatic beta cells (18). A major cause of such clinical 
complications is the increased production of mitochondrial 
ROS by hyperglycemia (17, 19). A common feature of mito-
chondrial morphology in T2D is an increased fragmentation 
(Figure 1), achieved via activation/upregulation of DRP1 and/or  
downregulation of MFN2 levels. In turn, increased fission and 
fragmentation of mitochondria was linked to HG-induced 
overproduction of ROS (20) and insulin secretion in mouse 
and human islets (21). Importantly, both HG-induced ROS and 
insulin secretion were blocked by inhibiting DRP1-induced 
fission. Furthermore, impaired mitochondrial fusion has been 
associated with insulin resistance in skeletal muscle (22) and 
with glucose intolerance and enhanced hepatic gluconeogenesis 
in a liver-specific MFN2 knockout (KO) mice (23). Interestingly, 
MFN2 KO led to increased ROS production, activation of JNK 
and endoplasmic reticulum (ER) stress response. Studies in 
rat models show that MFN2 overexpression improved insulin 
sensitivity and reduced lipid intermediates in muscle (24) and 
liver (25). At the molecular level, liver expression of MFN2 was 
associated with increased expression of the insulin receptor and 
the glucose transporter GLUT2, and activation of the PI3K/
AKT2 pathway.

In addition, dyslipidemia models of T2D show increased 
mitochondrial fission (Figure 1). Excess palmitate (PA)-induced 
mitochondrial fragmentation and increased mitochondrion-
associated DRP1 and FIS1 in differentiated muscle cells (26). 
In addition, PA induced mitochondrial depolarization, lower 
ATP synthesis and increased oxidative stress, and reduced 
insulin-stimulated glucose uptake (Figure 1). Both genetic and 
pharmacological inhibition of DRP1 attenuated PA-induced 
mitochondrial fragmentation and insulin resistance. In another 
study, DRP1 was induced in rat islets after stimulation by free 
fatty acids (FFAs), and this DRP-1 upregulation was accompanied 
by increased pancreatic β cell apoptosis (27).

Mitochondrial fission is associated with various processes 
that contribute to atherosclerosis in T2D (Figure 1), including 
endothelial dysfunction (28), collagen matrix alteration (29), 

and motility and proliferation of vascular smooth muscle cells 
(30). From a therapeutic standpoint, silencing FIS1 or DRP1 
in venous endothelial cells isolated from patients with T2D 
blunted HG-induced mitochondrial fission and ROS production 
(28). Furthermore, metformin attenuated the development of 
atherosclerosis in diabetic mice by reducing DRP1-mediated 
mitochondrial fission in an AMP-activated protein kinase 
(AMPK)-dependent manner (31). Mitochondrial fission induced 
by DRP1 also plays a critical role in the pathogenesis of microvas-
cular [nephropathy (32), retinopathy (33), and neuropathy] and 
macrovascular [stroke and myocardial ischemia (34)] complica-
tions of diabetes.

In summary, we know that many of the clinical complications 
of T2D are associated with mitochondrial fragmentation. We also 
know that tipping the balance toward increased mitochondrial 
fragmentation in mice leads to models of T2D. Furthermore, 
blocking DRP1 (or increasing MFNs) ameliorated hypergly-
cemia, dyslipidemia, and atherosclerosis in T2D models. Less 
clear are the mechanisms of alterations in expression and/or 
activity of DRP1/MFNs. Up to date, most of the studies have 
shown correlation between the hallmarks of T2D and increased 
fragmentation of mitochondria (Table 1). However, more studies 
should focus on understanding the spatiotemporal regulation 
of DRP1 and MFN1/2 levels during the natural progression of 
T2D. In this context, there are a number of open questions. For 
example, are there alterations on the regulation of DRP1/MFNs 
at the transcriptional, translational, or posttranslational level? 
Are DRP1/MFNs regulated by insulin, glucose, FFA signaling 
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TAbLe 1 | Mitochondrial dynamics in T2D and cancer.

Disease Regulatory event Molecular pathway Cell function Reference

T2D DRP1 enrichment in 
calcified human carotid 
arteries

DRP1 controls matrix mineralization, cytoskeletal rearrangement,  
mitochondrial dysfunction, and reduced type 1 collagen secretion  
and alkaline phosphatase activity

Extracellular matrix changes  
in cardiovascular complications

(29)

FFA DRP1 leads to cytC release, caspase-3 activation,  
and generation of ROS

Apoptosis (27)

Hyperglycemia ROCK1 phosphorylates DRP1 Nepropathy (32)

PA Fragmentation was associated with increased oxidative  
stress, mitochondrial depolarization, loss of ATP  
production, and reduced insulin-stimulated glucose uptake

Insulin stimulated glucose  
uptake in skeletal muscle

(26)

FIS1 and DRP1  
increased in T2D patients

DRP1 induced ROS, and nitric oxide synthase activation Endothelial dysfunction (28)

Hyperglycemia HG leads to DRP1-mediated fragmentation and ROS Cellular respiration (20)

Inflammatory signaling 
(TNF-α)

TNF-α induced MiR-106b which led to MFN2 downregulation Insulin resistance (23)

Insulin Unknown Unknown (30)

Dyslipidemia MFN2 prevents accumulation of lipid intermediates,  
including diacylglycerol and ceramides

Insulin resistance in  
skeletal muscle

(24)

Dyslipidemia MFN2 promotes the insulin signaling pathway (INSR/IRS2/GLUT2PI3K/AKT) Insulin resistance in liver (25)

Hyperglycemia MFN2 deficiency impaired insulin signaling in muscle and  
liver, induced ER stress, ROS production, and JNK activation

Insulin and glucose  
homeostasis

(23)

Cancer Oncogenic MAPK  
signaling

RasG12V or BRAFV600E activate ERK1/2, which then  
phosphorylates and activates DRP1

Mitochondria function and  
cell survival

(56)

mTOR mTORC1/4E-BP-dependent translation of MTFP1 leads  
to activation and recruitment of DRP1 to mitochondria

Cell survival (58)

Nestin Nestin binds DRP1 and enhances DRP1 recruitment Proliferation and invasion (59)

EHD1 EHD1 and Rabankyrin-5 interact with the retromer complex and induce  
VPS35-mediated removal of inactive DRP1 from mitochondrial membranes

Unknown (60)

AMPK AMPK phosphorylates MFF, which increases DRP1  
recruitment to mitochondria

Unknown (61)

SPOP loss-of- 
function mutants

SPOP mutations allow localization of INF2 to mitochondria, where  
it recruits DRP1

Cell migration and invasion (62)

SIRT4 SIRT4 inhibited Drp1 phosphorylation and weakened Drp1 recruitment  
to the mitochondrial membrane via an interaction with FIS1

Cell migration and invasion (63)

Estradiol Estradiol stimulates mitochondria fission by decreasing  
MFN1/2 levels

Cell migration and proliferation (66)

Androgen Androgens increase DRP1 expression via the AR Cell proliferation (65)

The upstream regulators of mitochondrial shape are presented along with the molecular mechanisms at play.
SPOP, speckle-type POZ protein; FFA, free fatty acid; FIS1, fission protein 1; DRP1, dynamin-related protein 1; AMPK, AMP-activated protein kinase; MFF, mitochondrial fission 
factor; T2D, type 2 diabetes; ER, endoplasmic reticulum; MFN1/2, fusogenic proteins mitofusin 1 and 2; AR, androgen receptor.
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pathways? What are the tissue- and cell-specific differences in 
the regulation of mitochondrial shape in T2D? Identifying such 
molecular pathways controlling DRP1/MFN alterations in T2D 
might enable therapeutic efforts in prediabetic patients to prevent 
full-blown settlement of the disease.

Another question that warrants further investigation is 
whether genetic susceptibility variants of DRP1 or MFNs are 
associated with T2D. A recent study in type 1 diabetes patients 
identified genetic factors associated with kidney disease (35). We 
propose that a similar approach in T2D patients could address 
to what extent genomic alterations of the mitochondrial shape 
genes are associated with disease. A potential association between 
genomic alterations of mitochondrial shaping genes and T2D 
might allow for better screening of susceptibility and/or risk 
prediction of certain T2D complications.

MiTOCHOnDRiAL DYnAMiCS in CAnCeR

Recent evidence indicates that mitochondrial shape, size, and 
localization regulate several of the hallmarks of cancer. For 
instance, mitochondrial shape dynamics have been linked to 
metabolic adaptation, cell cycle progression (36), necroptosis 
(19), apoptosis (37–39), autophagy (40), tumor growth, tumor 
cell motility (41, 42), invasiveness, and metastasis (43). The role 
of mitochondrial shape changes as regulators of cancer biology is 
reviewed in Ref. (44). Here, we will discuss recent insights into 
how mitochondrial dynamics are regulated in cancer.

When considering the common alterations in mitochondria 
shape, we find a dichotomy between tumors with enhanced 
mito chondrial fragmentation versus tumors with enhanced mito-
chondrial fusion. For instance, hepatocellular carcinoma (45), 
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osteosarcoma (46), medulloblastoma (47), thyroid (42), colorectal 
(48), endometrial (49), and breast cancer (43) show increased 
mitochondrial fragmentation, due to upregulation of DRP1 levels 
and a concomitant reduction in MFN1/2 levels. On the other 
hand, tumors of the prostate (50), neuroblastoma (51), leukemia 
(52), glioblastoma (53), and lung (54) are associated with down-
regulation of DRP1 and increased MFN1/2 levels. What could  
be driving these contrasting preferences of fission versus fusion 
of the mitochondrial networks in cancer? Plausible explanations 
could lie on the genomic landscape, hormonal/growth factor 
context, tumor microenvironmental conditions, and therapy 
responses of the tumors in question.

Oncogenic and tumor suppressor signaling converge on 
mitochondria to reprogram cellular metabolism (55); thus, the 
particular genomic events driving a tumor might favor mitochon-
drial shape changes to meet the metabolic demands of the tumor 
cells. According to this hypothesis, oncogene-induced metabolic 
reprogramming should induce changes in mitochondrial shape. 
Indeed, recent studies show that oncogenic RasG12V, BRAFV600E 
and MAPK/ERK (56, 57), mTOR (58) Nestin (59), and the endo-
cytic protein EDH1 (60) increase DRP1-mediated mitochondrial 
fission. Similarly, the energy-sensing AMPK increased recruit-
ment of DRP1 to mitochondria via phosphorylation of the MFF 
and (61). Speckle-type POZ protein loss-of-function mutations 
commonly found in primary prostate cancer were associated 
with increased DRP1 activation, mitochondrial fission, and 
prostate cancer cell invasion (62). Recently, loss of expression of 
the sirtuin SIRT4 was shown to lead to increased mitochondrial 
fragmentation (63). The signaling events that lead to DRP1 
activation downstream of genomic and epigenetic alterations are 
summarized in Table 1.

In addition to the increasing number of oncogenes and tumor 
suppressors, growth factors and hormones regulate mitochondrial 
shape. Examples include Sonic Hedgehog (47), non-canonical 
Wnt ligands, pro-inflammatory cytokines, transforming growth 
factor-β, estradiol (64), and androgens (65). Estradiol promotes 
mitochondrial fragmentation through a reduction of MFN2 with 
parallel increase of FIS1 levels in ER+ breast cancer (66). From 
a translational standpoint, overexpression of MFN2 prevented 
estradiol-induced cell proliferation and motility (66). On the 
other hand, DRP1 is a transcriptional target of the androgen 
receptor, and androgen-stimulated DRP1 expression sensitizes 
prostate cancer cells to therapy-induced apoptosis (65). The pos-
sibility that other hormone-related malignancies exploit similar 
mechanisms of mitochondrial shape awaits further confirmation.

Tumor microenvironmental conditions exert yet another 
layer of regulation of mitochondrial shape. For instance, mito-
chondrial elongation is induced by nutrient deprivation in cancer 
cells (67). A hypoxic environment enhances mitochondrial fis-
sion in breast cancer (68) and glioblastoma (69). In this context, 
DRP1 was essential for hypoxia-stimulated cell motility. Indeed, 
silencing or expression of a dominant-negative mutant of DRP1 
inhibited hypoxia-induced migration in both tumor cell models.

Finally, cancer cells also remodel their mitochondrial network 
in response to therapy. For instance, DRP1-mediated mitochon-
drial fragmentation is associated with cisplatin (68, 70), cytara-
bine and methotrexate (71), and tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL) (70) treatment among others. 
However, other therapeutic agents such as histone deacetylase 
inhibitors (72) produce the opposite effect, namely increased 
elongation of mitochondria. These opposite effects of therapy upon 
mitochondria morphology can be reconciled when considering the 
divergent signaling pathways elicited by the drugs. In the case of 
HDAC inhibitors, a decreased expression of FIS1 impaired DRP1 
recruitment to mitochondria. These effects were independent of 
apoptosis induction. On the other hand, increased mitochondrial 
fragmentation on cisplatin and TRAIL-treated cells is coupled 
to apoptosis. Also worth considering, HDAC inhibitors could  
have additional roles in regulating mitochondrial morphology, 
due to non-histone-acetylating activity (acetylation of non-histone 
proteins, regulation of signaling kinases). A final consideration is 
the influence of the genomic background and tumor microenvi-
ronment on eliciting fission versus fusion upon therapy.

In summary, emerging evidence suggests that the contribu-
tion of the mitochondrial shaping genes to tumor cell biology 
is tumor type dependent and may reflect the genetic makeup, 
hormonal/growth factor context, tumor microenvironment 
conditions, and therapy responses of the tumor. Future efforts 
should aim to integrate these novel regulatory pathways and 
reach a comprehensive picture of the regulation of mitochon-
drial shape and function in cancer. Second, more emphasis 
should be directed toward identifying metabolic-dependent 
versus -independent functions of DRP1 and MFNs in cancer. 
For instance, which of the phenotypes associated with DRP1 
activation in cancer are explained on basis of metabolism 
(increased glycolysis versus respiration)? Is it DRP1’s function 
on apoptosis (or mitochondrial localization) also important?  
A third area of interest for future research would be the develop-
ment of anti-cancer therapies targeting mitochondrial dynam-
ics. Encouraging fresh evidence indicates that modulating 
mitochondria morphology enhances anti-cancer therapies (73), 
particularly death receptor ligands (74–76) and antimitotic 
drugs (77).

TARGeTinG MiTOCHOnDRiAL DYnAMiCS

The involvement of DRP1-mediated fission in disparate dis-
eases settings has fueled the development of pharmacological 
approaches to inhibit mitochondrial fission. Mitochondrial divi-
sion inhibitor-1 (mdivi-1) selectively impairs the GTPase activity 
of DRP1, without affecting the activity of dynamin-1, MFN1/2, 
or OPA1 (78). The mechanism of action of mdivi-1 involves 
allosteric binding and stabilization of a conformational form of 
unassembled DRP1 that cannot polymerize. mdivi-1 treatment 
induces rapid mitochondrial fusion, dampens ROS production 
and increases ATP production. Interestingly, the original report 
described a second function of DRP1 in mitochondrial outer 
membrane polarization (MOMP). DRP1 facilitated BAX/BAK-
dependent MOMP in response to C8-BID or staurosporine, 
independently of mitochondrial fragmentation. Thus, mdivi-1 
impaired staurosporine-induced apoptosis (78). Interestingly, 
mdivi-1 can induce apoptosis in DRP1-KO cells (79), suggesting 
that mdivi-1 has off-target effects. In contrast to these initial stud-
ies in which mdivi-1 prevented apoptosis, later studies showed 
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that mdivi-1 sensitized cells to TRAIL-dependent apoptosis (74). 
This potentiation of apoptosis by mdivi-1 occurred through acti-
vation of mitochondrial and ER apoptosis pathways. Thus, these 
controversial results suggest that mdivi-1 can act either as pro- or 
anti-apoptotic pharmacologic agent, depending on the cell types 
and apoptotic stimuli in question (80).

In T2D models, mdivi-1 prevented mitochondrial fragmen-
tation, oxidative stress and inflammation, and improved endo-
thelial cell function (31). Another study showed that mdivi-1 
prevented HG-stimulated insulin secretion in mouse and 
human islets (21). Furthermore, mdivi-1 rescued palmitate-
induced mitochondrial dysfunction and ROS generation, as 
well as insulin resistance in skeletal muscle (26). Inhibition 
of Drp1 with mdivi-1 improved mitochondrial function and 
cardiac function in a model of myocardial ischemia/reperfusion 
of diabetic hearts (34).

In cancer cells, DRP1 inhibition has been shown to modulate 
therapy sensitivity, tumor metabolism, growth, and invasiveness. 
For instance, mdivi-1 suppressed mitochondrial autophagy, 
metabolic reprogramming, cancer cell viability, and motility of 
breast cancer cells (81). In regards to therapy modulation, mdivi-1 
potentiated TRAIL-induced apoptosis in melanoma (74, 76) and 
ovarian cancer models (75). Furthermore, mdivi-1 induced cell 
death (75) and synergized apoptotic effects of platinum agents 
in drug resistant ovarian tumor cells (79). However, mdivi-1 
prevents apoptosis induced by cisplatin in breast cancer (68) and 
leukemia (52). As discussed above, these controversial results 
suggest that mdivi-1 can act either as pro- or anti-apoptotic agent, 
depending on the cell types and apoptotic stimuli in question 
[reviewed in Ref. (80)]. Further investigations should address the 
precise mechanisms dictating the differential effects of mdivi-1 
on cell survival.

Regarding the potential utility of mdivi-1 in the clinic,  
a number of questions remain open. For instance, what are the 
consequences of sustained in vivo inhibition of mitochondrial 
fission? What are the pharmacokinetics and cytotoxicity pro-
files for mdivi-1? Another point to consider is that mdivi-1 has 
poor solubility in water (80). This fact might limit the utility of 
mdivi-1 and might open the door for the design of new DRP1 
inhibitors with improved solubility, specificity, and potency. In 
this regard, another pharmacological agent targets the recruit-
ment of DRP1 to mitochondria via its interaction with FIS1. 
The small peptide inhibitor P110 blocks DRP1/FIS1 binding 
(82) and has shown promising results in neurodegenerative 
disease models. When tested in hepatocellular carcinoma, 
P110 blocked cell proliferation in vitro and in vivo (83). Future 
research will be needed to evaluate the utility of P100 both in 
T2D and cancer models.

COnCLUSiOn

Given the metabolic alterations that are a hallmark of both 
T2D and cancer, it is not surprising that mitochondrial altera-
tions are a shared feature in these disparate diseases. Over the 
past few years, we have learnt that mitochondria are not static, 
solitary organelles, but they rather undergo constant changes in 
morphology and subcellular distribution to meet the metabolic 

demands of the cell. Defects in mitochondrial dynamics play a 
role in the molecular and cellular pathogenesis of both T2D and 
cancer. Now, how similar or different are these two pathologies 
in regards to mitochondrial dynamics? In T2D, the literature 
unanimously reports an increase of mitochondrial fission medi-
ated by DRP1. In cancer, most tumors follow this same pattern 
of increased DRP1-mediated mitochondrial fission. However, 
although less frequently, tumors might display augmented mito-
chondrial fusion via an increase of MFN1/2 levels and/or activity. 
How are these differences and similarities in the mitochondrial 
network explained at the molecular level? Up to date, most of 
the studies have shown correlation between T2D and altered 
mitochondrial shape. More studies should focus on understand-
ing the spatiotemporal regulation of DRP1 and MFN1/2 levels 
and activity during the natural progression of T2D. Likewise, 
there is limited information on how the genetic, epigenetic, and 
microenvironmental factors influence mitochondrial dynamics, 
or which signaling pathways integrate extracellular stimuli with 
mitochondrial shape in T2D. Thus, due to this limited informa-
tion, is not possible to conclude if T2D and cancer utilize similar 
or divergent mechanisms of control of mitochondrial shape.  
In this regard, it would be interesting to address how metabolic 
pathways commonly altered both in T2D and cancer impinge on 
mitochondrial morphology. Examples of such pathways include 
PI3K/AKT and AMPK. Another question that warrants further 
investigation is whether other aspects of mitochondrial biology 
are dysregulated in these diseases. For instance, are there altera-
tions in mitochondrial quality control, mitochondria crosstalk to 
other organelles, or mitochondrial localization present in both 
T2D and cancer?

Regarding the use of DRP1 inhibitors as anti-T2D and - 
cancer agents, further studies should determine long-term 
effects of targeting mitochondrial dynamics in vivo, and esta-
blish the pharmacokinetics and cytotoxicity profiles for mdivi-1.  
In addition, the involvement of potential compensatory or 
resistance mechanisms to mdivi-1 has not been explored yet 
and should be addressed in the future. An area in need of 
further investment is the development of selective MFN1/2 
inhibitors. Despite the existence of a few DRP1 inhibitors, there 
is no equivalent therapeutic agent to target fusion. The fact that 
several tumors show increased fusion might warrant further 
effort in this area.
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